Antimicrobial Neuropeptides and Their Receptors: Immunoregulator and Therapeutic Targets for Immune Disorders
Abstract
:1. Introduction
2. Neuropeptide Immunoregulatory Mechanism
2.1. Anti-Inflammatory Effects
2.2. Pro-Inflammatory Effects
3. Antimicrobial Neuropeptide Receptors as Potential Therapeutic Targets for Immune Diseases
3.1. Pituitary Adenylate Cyclase-Activating Polypeptide (PACAP)
3.2. Vasoactive Intestinal Peptide (VIP)
3.3. α-Melanocyte Stimulating Hormone (α-MSH)
3.4. Ghrelin
3.5. Adrenomedullin (AM)
3.6. Calcitonin-Gene Related Peptide (CGRP)
3.7. Substance P (SP)
3.8. Neuropeptide Y (NPY)
3.9. Urocortin II (UCN II)
3.10. Catestatin (CST)
4. Future Perspectives and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
α-MSH | α-melanocyte-stimulating hormone |
ACTH | Adrenocorticotropic hormone |
AM | Adrenomedullin |
AMPs | Antimicrobial peptides |
ApoE−/− | ApoE knockout |
CgA | Chromogranin A |
CGRP | Calcitonin gene-related peptide |
CINV | Chemotherapy-induced nausea and vomiting |
CNS | Central nervous system |
CREB | cAMP response element-binding protein |
CRF | Corticotropin-releasing factor |
CRLR | Calcitonin receptor-like receptor |
CST | Catestatin |
DCs | Dendritic cast-off cells |
DCs | Dendritic cells |
ERK | Extracellular signal-regulated kinase |
FDA | Food and Drug Administration |
HANS | Hypothalamic-autonomic nervous system axis |
HBECs | Human bronchial epithelial cells |
iNOS | Inducible nitric oxide synthase |
JAK | Janus kinase |
LPS | Lipopolysaccharide |
MAP | Mean arterial pressure |
MK-0974 | Telcagepant |
MPO | Myeloperoxidase |
NAChR | Nicotinic acetylcholine receptor |
NmU | Neuromedin |
NO | Nitric oxide |
NPY | Neuropeptide Y |
PACAP | Pituitary adenylate cyclase-activating polypeptide |
PD | Parkinson’s disease |
POMC | Proopiomelanocortin |
RAMPs | Receptor activity-modifying proteins |
SCI | Spinal cord injury |
SP | Substance P |
STAT1 | Signal transducer and activator of transcription 1 |
TM30338 | Obinepitide |
UCN II | Urocortin II |
VIP | Vasoactive intestinal peptide |
References
- Azzoni, R.; Perdijk, O.; Harris, N.L.; Marsland, B.J. Neuroimmune interactions in the lung. Annu. Rev. Immunol. 2023, 42, 57–81. [Google Scholar] [CrossRef] [PubMed]
- Yang, D.; Almanzar, N.; Chiu, I.M. The role of cellular and molecular neuroimmune crosstalk in gut immunity. Cell. Mol. Immunol. 2023, 20, 1259–1269. [Google Scholar] [CrossRef]
- Klein Wolterink, R.G.; Wu, G.S.; Chiu, I.M.; Veiga-Fernandes, H. Neuroimmune interactions in peripheral organs. Annu. Rev. Neurosci. 2022, 45, 339–360. [Google Scholar] [CrossRef]
- Seyfi, R.; Kahaki, F.A.; Ebrahimi, T.; Montazersaheb, S.; Eyvazi, S.; Babaeipour, V.; Tarhriz, V. Antimicrobial peptides (AMPs): Roles, functions and mechanism of action. Int. J. Pept. Res. Ther. 2020, 26, 1451–1463. [Google Scholar] [CrossRef]
- Augustyniak, D.; Nowak, J.; Lundy, F.T. Direct and indirect antimicrobial activities of neuropeptides and their therapeutic potential. Curr. Protein. Pept. Sc. 2012, 13, 723–738. [Google Scholar] [CrossRef]
- Yeo, X.Y.; Cunliffe, G.; Ho, R.C.; Lee, S.S.; Jung, S. Potentials of neuropeptides as therapeutic agents for neurological diseases. Biomedicines 2022, 10, 343. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez-Rey, E.; Chorny, A.; Delgado, M. Regulation of immune tolerance by anti-inflammatory neuropeptides. Nat. Rev. Immunol. 2007, 7, 52–63. [Google Scholar] [CrossRef] [PubMed]
- Zhu, F.; Yu, D.; Qin, X.; Qian, Y.; Ma, J.; Li, W.; Liu, Q.; Wang, C.; Zhang, Y.; Li, Y. The neuropeptide CGRP enters the macrophage cytosol to suppress the NLRP3 inflammasome during pulmonary infection. Cell. Mol. Immunol. 2023, 20, 264–276. [Google Scholar] [CrossRef] [PubMed]
- Zoccali, C.; Ortiz, A.; Blumbyte, I.A.; Rudolf, S.; Beck-Sickinger, A.G.; Malyszko, J.; Spasovski, G.; Carriazo, S.; Viggiano, D.; Kurganaite, J. Neuropeptide Y as a risk factor for cardiorenal disease and cognitive dysfunction in chronic kidney disease: Translational opportunities and challenges. Nephrol. Dial. Transpl. 2022, 37, 14–23. [Google Scholar] [CrossRef]
- De Neve, J.; Elhabazi, K.; Gonzalez, S.; Herby, C.; Schneider, S.; Utard, V.; Fellmann-Clauss, R.; Petit-Demouliere, N.; Lecat, S.; Kremer, M. Multitarget μ-Opioid Receptor Agonists─Neuropeptide FF Receptor Antagonists Induce Potent Antinociception with Reduced Adverse Side Effects. J. Med. Chem. 2024, 67, 7603–7619. [Google Scholar] [CrossRef]
- Li, X.; Chen, K.; Liu, R.; Zheng, Z.; Hou, X. Antimicrobial neuropeptides and their therapeutic potential in vertebrate brain infectious disease. Front. Immunol. 2024, 15, 1496147. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez-Rey, E.; Delgado, M. Anti-inflammatory neuropeptide receptors: New therapeutic targets for immune disorders? Trends. Pharmacol. Sci. 2007, 28, 482–491. [Google Scholar] [CrossRef]
- Arambula, S.E.; McCarthy, M.M. Neuroendocrine-Immune Crosstalk Shapes Sex-Specific Brain Development. Endocrinology 2020, 161, bqaa055. [Google Scholar] [CrossRef] [PubMed]
- Ader, R.; Cohen, N. Behaviorally conditioned immunosuppression. Psychosom. Med. 1975, 37, 333–340. [Google Scholar] [CrossRef] [PubMed]
- Daëron, M. The immune system as a system of relations. Front. Immunol. 2022, 13, 984678. [Google Scholar] [CrossRef] [PubMed]
- Sun, Z.; Wang, X.; Feng, S.; Xie, C.; Xing, Y.; Guo, L.; Zhao, J.; Ji, C. A review of neuroendocrine immune system abnormalities in IBS based on the brain–gut axis and research progress of acupuncture intervention. Front. Neurosci. 2023, 17, 934341. [Google Scholar] [CrossRef]
- Delgado, M.; Ganea, D. Anti-inflammatory neuropeptides: A new class of endogenous immunoregulatory agents. Brain. Behav. Immun. 2008, 22, 1146–1151. [Google Scholar] [CrossRef] [PubMed]
- Krause, P.J.; Kavathas, P.B.; Ruddle, N.H. Immunoepidemiology; Springer Nature: Cham, Switzerland, 2020. [Google Scholar]
- Wang, W.; Guo, D.-Y.; Lin, Y.-J.; Tao, Y.-X. Melanocortin regulation of inflammation. Front. Endocrinol. 2019, 10, 683. [Google Scholar] [CrossRef]
- Profumo, E.; Maggi, E.; Arese, M.; Di Cristofano, C.; Salvati, B.; Saso, L.; Businaro, R.; Buttari, B. Neuropeptide Y Promotes Human M2 Macrophage Polarization and Enhances p62/SQSTM1-Dependent Autophagy and NRF2 Activation. Int. J. Mol. Sci. 2022, 23, 13009. [Google Scholar] [CrossRef] [PubMed]
- Kiss, A.L. Inflammation in Focus: The Beginning and the End. Pathol. Oncol.Res. 2022, 27, 1610136. [Google Scholar] [CrossRef]
- Rodríguez-Gómez, J.A.; Kavanagh, E.; Engskog-Vlachos, P.; Engskog, M.K.R.; Herrera, A.J.; Espinosa-Oliva, A.M.; Joseph, B.; Hajji, N.; Venero, J.L.; Burguillos, M.A. Microglia: Agents of the CNS Pro-Inflammatory Response. Cells 2020, 9, 1717. [Google Scholar] [CrossRef] [PubMed]
- Waschek, J. VIP and PACAP: Neuropeptide modulators of CNS inflammation, injury, and repair. Brit. J. Pharmacol. 2013, 169, 512–523. [Google Scholar] [CrossRef]
- Vasconcelos, D.P.; Jabangwe, C.; Lamghari, M.; Alves, C.J. The neuroimmune interplay in joint pain: The role of macrophages. Front. Immunol. 2022, 13, 812962. [Google Scholar] [CrossRef] [PubMed]
- Ye, Y.; Liang, Z.; Xue, L. Neuromedin U: Potential roles in immunity and inflammation. Immunology 2021, 162, 17–29. [Google Scholar] [CrossRef] [PubMed]
- Carniglia, L.; Ramírez, D.; Durand, D.; Saba, J.; Turati, J.; Caruso, C.; Scimonelli, T.N.; Lasaga, M. Neuropeptides and Microglial Activation in Inflammation, Pain, and Neurodegenerative Diseases. Mediat. Inflamm. 2017, 2017, 5048616. [Google Scholar] [CrossRef] [PubMed]
- Lauritano, D.; Mastrangelo, F.; D’Ovidio, C.; Ronconi, G.; Caraffa, A.; Gallenga, C.E.; Frydas, I.; Kritas, S.K.; Trimarchi, M.; Carinci, F.; et al. Activation of Mast Cells by Neuropeptides: The Role of Pro-Inflammatory and Anti-Inflammatory Cytokines. Int. J. Mol. Sci. 2023, 24, 4811. [Google Scholar] [CrossRef] [PubMed]
- Peters, E.M.; Ericson, M.E.; Hosoi, J.; Seiffert, K.; Hordinsky, M.K.; Ansel, J.C.; Paus, R.; Scholzen, T.E. Neuropeptide control mechanisms in cutaneous biology: Physiological and clinical significance. J. Investig. Dermatol. 2006, 126, 1937–1947. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.R.; Keshari, S.; Kurihara, K.; Liu, J.; McKendrick, L.M.; Chen, C.-S.; Yang, Y.; Falo, L.D.; Das, J.; Sumpter, T.L.; et al. Agonism of the glutamate receptor GluK2 suppresses dermal mast cell activation and cutaneous inflammation. Sci. Transl. Med. 2024, 16, eadq9133. [Google Scholar] [CrossRef] [PubMed]
- Nagamine, M.; Kaitani, A.; Izawa, K.; Ando, T.; Yoshikawa, A.; Nakamura, M.; Maehara, A.; Yamamoto, R.; Okamoto, Y.; Wang, H.; et al. Neuronal substance P-driven MRGPRX2-dependent mast cell degranulation products differentially promote vascular permeability. Front. Immunol. 2024, 15, 1477072. [Google Scholar] [CrossRef] [PubMed]
- Mashaghi, A.; Marmalidou, A.; Tehrani, M.; Grace, P.M.; Pothoulakis, C.; Dana, R. Neuropeptide substance P and the immune response. Cell. Mol. Life. Sci. 2016, 73, 4249–4264. [Google Scholar] [CrossRef]
- Abad, C.; Martinez, C.; Leceta, J.; Juarranz, M.G.; Delgado, M.; Gomariz, R.P. Pituitary Adenylate-Cyclase-Activating Polypeptide Expression in the Immune System. Neuroimmunomodulation 2002, 10, 177–186. [Google Scholar] [CrossRef] [PubMed]
- Abad, C.; Tan, Y.-V. Immunomodulatory Roles of PACAP and VIP: Lessons from Knockout Mice. J. Mol. Neurosci. 2018, 66, 102–113. [Google Scholar] [CrossRef] [PubMed]
- Blalock, J.E. Proopiomelanocortin and the Immune-Neuroendocrine Connection. Ann. Ny. Acad. Sci. 1999, 885, 161–172. [Google Scholar] [CrossRef] [PubMed]
- Dall’Olmo, L.; Papa, N.; Surdo, N.C.; Marigo, I.; Mocellin, S. Alpha-melanocyte stimulating hormone (α-MSH): Biology, clinical relevance and implication in melanoma. J. Transl. Med. 2023, 21, 562. [Google Scholar] [CrossRef] [PubMed]
- Pintér, E.; Pozsgai, G.; Hajna, Z.; Helyes, Z.; Szolcsányi, J. Neuropeptide receptors as potential drug targets in the treatment of inflammatory conditions. Brit. J. Clin. Pharmaco. 2014, 77, 5–20. [Google Scholar] [CrossRef]
- Stengel, A.; Taché, Y. Ghrelin—A Pleiotropic Hormone Secreted from Endocrine X/A-Like Cells of the Stomach. Front. Neurosci. 2012, 6, 24. [Google Scholar] [CrossRef]
- Ma, Y.; Zhang, H.; Guo, W.; Yu, L. Potential role of ghrelin in the regulation of inflammation. Faseb. J. 2022, 36, 22508. [Google Scholar] [CrossRef] [PubMed]
- Theil, M.-M.; Miyake, S.; Mizuno, M.; Tomi, C.; Croxford, J.L.; Hosoda, H.; Theil, J.; von Hörsten, S.; Yokote, H.; Chiba, A. Suppression of experimental autoimmune encephalomyelitis by ghrelin. J. Immunol. 2009, 183, 2859–2866. [Google Scholar] [CrossRef]
- Ashizuka, S.; Kita, T.; Inatsu, H.; Kitamura, K. Adrenomedullin: A Novel Therapeutic for the Treatment of Inflammatory Bowel Disease. Biomedicines 2021, 9, 1068. [Google Scholar] [CrossRef] [PubMed]
- Minamino, N.; Kikumoto, K.; Isumi, Y. Regulation of adrenomedullin expression and release. Microsc. Res. Techniq. 2002, 57, 28–39. [Google Scholar] [CrossRef]
- Rullé, S.; Kioon, M.D.A.; Asensio, C.; Mussard, J.; Ea, H.K.; Boissier, M.C.; Lioté, F.; Falgarone, G. Adrenomedullin, a neuropeptide with immunoregulatory properties induces semi-mature tolerogenic dendritic cells. Immunology 2012, 136, 252–264. [Google Scholar] [CrossRef]
- Mikami, N.; Matsushita, H.; Kato, T.; Kawasaki, R.; Sawazaki, T.; Kishimoto, T.; Ogitani, Y.; Watanabe, K.; Miyagi, Y.; Sueda, K.; et al. Calcitonin Gene-Related Peptide Is an Important Regulator of Cutaneous Immunity: Effect on Dendritic Cell and T Cell Functions. J. Immunol. 2011, 186, 6886–6893. [Google Scholar] [CrossRef]
- Tsujikawa, K.; Yayama, K.; Hayashi, T.; Matsushita, H.; Yamaguchi, T.; Shigeno, T.; Ogitani, Y.; Hirayama, M.; Kato, T.; Fukada, S.-I.; et al. Hypertension and dysregulated proinflammatory cytokine production in receptor activity-modifying protein 1-deficient mice. Proc. Natl. Acad. Sci. USA 2007, 104, 16702–16707. [Google Scholar] [CrossRef] [PubMed]
- Mehta, D.; Granstein, R.D. Immunoregulatory effects of neuropeptides on endothelial cells: Relevance to dermatological disorders. Dermatology 2019, 235, 175–186. [Google Scholar] [CrossRef] [PubMed]
- Harrison, S.; Geppetti, P. Substance P. Int. J. Biochem. Cell Biol. 2001, 33, 555–576. [Google Scholar] [CrossRef] [PubMed]
- Yaraee, R.; Ebtekar, M.; Ahmadiani, A.; Sabahi, F. Neuropeptides (SP and CGRP) augment pro-inflammatory cytokine production in HSV-infected macrophages. Int. Immunopharmacol. 2003, 3, 1883–1887. [Google Scholar] [CrossRef] [PubMed]
- Azzolina, A.; Bongiovanni, A.; Lampiasi, N. Substance P induces TNF-α and IL-6 production through NFκB in peritoneal mast cells. BBA-Mol. Cell Res. 2003, 1643, 75–83. [Google Scholar] [CrossRef] [PubMed]
- Fujiwara, S.; Hoshizaki, M.; Ichida, Y.; Lex, D.; Imai, Y. Pulmonary phagocyte-derived NPY controls the pathology of severe influenza virus infection. Nat. Microbiol. 2019, 4, 258–268. [Google Scholar] [CrossRef]
- Li, S.; Koziol-White, C.; Jude, J.; Jiang, M.; Morrisey, E.E. Epithelium-generated neuropeptide Y induces smooth muscle contraction to promote airway hyperresponsiveness. J. Clin. Investig. 2016, 126, 1978. [Google Scholar] [CrossRef]
- Chen, W.C.; Liu, Y.B.; Liu, W.F.; Zhou, Y.Y.; Lin, S. Neuropeptide Y Is an Immunomodulatory Factor: Direct and Indirect. Front. Immunol. 2020, 11, 580378. [Google Scholar] [CrossRef]
- Hernanz, A.; Tato, E.; Fuente, M.D.L.; Miguel, E.D.; Arnalich, F. Differential effects of gastrin-releasing peptide, neuropeptide Y, somatostatin and vasoactive intestinal peptide on interleukin-1β, interleukin-6 and tumor necrosis factor-α production by whole blood cells from healthy young and old subjects. J. Neuroimmunol. 1996, 71, 25–30. [Google Scholar] [CrossRef] [PubMed]
- Slominski, A.; Wortsman, J.; Pisarchik, A.; Zbytek, B.; Linton, E.A.; Mazurkiewicz, J.E.; Wei, E.T. Cutaneous expression of corticotropin-releasing hormone (CRH), Urocortin, and CRH receptors. FASEB J. 2001, 15, 1678–1693. [Google Scholar] [CrossRef] [PubMed]
- Lui, P.P.; Ainali, C.; Chu, C.-C.; Terranova-Barberio, M.; Karagiannis, P.; Tewari, A.; Safinia, N.; Sharif-Paghaleh, E.; Tsoka, S.; Woszczek, G.; et al. Human skin CD141+ dendritic cells regulate cutaneous immunity via the neuropeptide urocortin 2. iScience 2023, 26, 108029. [Google Scholar] [CrossRef] [PubMed]
- Liao, F.; Zheng, Y.; Cai, J.; Fan, J.; Wang, J.; Yang, J.; Cui, Q.; Xu, G.; Tang, C.; Geng, B. Catestatin attenuates endoplasmic reticulum induced cell apoptosis by activation type 2 muscarinic acetylcholine receptor in cardiac ischemia/reperfusion. Sci. Rep. 2015, 5, 16590. [Google Scholar] [CrossRef] [PubMed]
- Muntjewerff, E.M.; Dunkel, G.; Nicolasen, M.J.; Mahata, S.K.; van den Bogaart, G. Catestatin as a target for treatment of inflammatory diseases. Front. Immunol. 2018, 9, 2199. [Google Scholar] [CrossRef] [PubMed]
- Rabbi, M.F.; Eissa, N.; Munyaka, P.M.; Kermarrec, L.; Elgazzar, O.; Khafipour, E.; Bernstein, C.N.; Ghia, J.E. Reactivation of Intestinal Inflammation Is Suppressed by Catestatin in a Murine Model of Colitis via M1 Macrophages and Not the Gut Microbiota. Front. Immunol. 2017, 8, 985. [Google Scholar] [CrossRef] [PubMed]
- Tasma, Z.; Siow, A.; Harris, P.W.; Brimble, M.A.; Hay, D.L.; Walker, C.S. Characterisation of agonist signalling profiles and agonist-dependent antagonism at PACAP-responsive receptors: Implications for drug discovery. Brit. J. Pharmacol. 2022, 179, 435–453. [Google Scholar] [CrossRef] [PubMed]
- Sundrum, T.; Walker, C.S. Pituitary adenylate cyclase-activating polypeptide receptors in the trigeminovascular system: Implications for migraine. Brit. J. Pharmacol. 2018, 175, 4109–4120. [Google Scholar] [CrossRef] [PubMed]
- Van Rampelbergh, J.; Juarranz, M.G.; Perret, J.; Bondue, A.; Solano, R.M.; Delporte, C.; De Neef, P.; Robberecht, P.; Waelbroeck, M. Characterization of a novel VPAC(1) selective agonist and identification of the receptor domains implicated in the carboxyl-terminal peptide recognition. Br. J. Pharmacol. 2000, 130, 819–826. [Google Scholar] [CrossRef]
- Vu, J.P.; Million, M.; Larauche, M.; Luong, L.; Norris, J.; Waschek, J.A.; Pothoulakis, C.; Pisegna, J.R.; Germano, P.M. Inhibition of Vasoactive Intestinal Polypeptide (VIP) Induces Resistance to Dextran Sodium Sulfate (DSS)-Induced Colitis in Mice. J. Mol. Neurosci. 2014, 52, 37–47. [Google Scholar] [CrossRef]
- Langer, I.; Jeandriens, J.; Couvineau, A.; Sanmukh, S.; Latek, D. Signal Transduction by VIP and PACAP Receptors. Biomedicines 2022, 10, 406. [Google Scholar] [CrossRef]
- Ciranna, L.; Reglodi, D.; Chow, B.K.; Vaudry, D. Editorial: Novel Therapeutic Potential for Pituitary Adenylate Cyclase-Activating Polypeptide (PACAP), Vasoactive Intestinal Peptide (VIP) and Related Peptides in Cognition Deficits. Front. Cell. Neurosci. 2021, 15, 748970. [Google Scholar] [CrossRef]
- Zhang, L.; Zhou, Y.; Yang, L.; Wang, Y.; Xiao, Z. PACAP6-38 improves nitroglycerin-induced central sensitization by modulating synaptic plasticity at the trigeminal nucleus caudalis in a male rat model of chronic migraine. J. Headache. Pain 2023, 24, 66. [Google Scholar] [CrossRef]
- Mey, L.; Bonaterra, G.A.; Hoffmann, J.; Schwarzbach, H.; Schwarz, A.; Eiden, L.E.; Weihe, E.; Kinscherf, R. PAC-1 Agonist Maxadilan Reduces Atherosclerotic Lesions in Hypercholesterolemic ApoE Deficient Mice. Int. J. Mol. Sci. 2024, 25, 100941. [Google Scholar] [CrossRef] [PubMed]
- Ericson, M.D.; Tran, L.T.; Mathre, S.S.; Freeman, K.T.; Holdaway, K.; John, K.; Lunzer, M.M.; Bouchard, J.L.; Haskellluevano, C. Discovery of a Pan-Melanocortin Receptor Antagonist [Ac-DPhe(pI)-Arg-Nal(2′)-Orn-NH2] at the MC1R, MC3R, MC4R, and MC5R that Mediates an Increased Feeding Response in Mice and a 40-Fold Selective MC1R Antagonist [Ac-DPhe(pI)-DArg-Nal(2′)-Arg-NH2]. J. Med. Chem. 2023, 66, 8103–8117. [Google Scholar] [CrossRef]
- San-Jose, L.M.; Ducrest, A.L.; Ducret, V.; Simon, C.; Richter, H.; Wakamatsu, K.; Roulin, A. MC1R variants affect the expression of melanocortin and melanogenic genes and the association between melanocortin genes and coloration. Mol. Ecol. 2017, 26, 259–276. [Google Scholar] [CrossRef]
- Garrido-Mesa, J.; Thomas, B.L.; Dodd, J.; Spana, C.; Perretti, M.; Montero-Melendez, T. Pro-resolving and anti-arthritic properties of the MC1 selective agonist PL8177. Front. Immunol. 2022, 13, 1078678. [Google Scholar] [CrossRef]
- Kondo, M.; Suzuki, T.; Kawano, Y.; Kojima, S.; Miyashiro, M.; Matsumoto, A.; Kania, G.; Błyszczuk, P.; Ross, R.L.; Mulipa, P.; et al. Dersimelagon, a novel oral melanocortin 1 receptor agonist, demonstrates disease-modifying effects in preclinical models of systemic sclerosis. Arthritis Res. Ther. 2022, 24, 210. [Google Scholar] [CrossRef] [PubMed]
- Mun, Y.; Kim, W.; Shin, D. Melanocortin 1 Receptor (MC1R): Pharmacological and Therapeutic Aspects. Int. J. Mol. Sci. 2023, 24, 12152. [Google Scholar] [CrossRef]
- Hruby, V.J.; Cai, M.; Nyberg, J.; Muthu, D. Approaches to the rational design of selective melanocortin receptor antagonists. Expert Opin. Drug Discov. 2011, 6, 543–557. [Google Scholar] [CrossRef] [PubMed]
- Getting, S.J.; Perretti, M. MC3-R as a novel target for antiinflammatory therapy. Drug News Perspect 2000, 13, 19–27. [Google Scholar] [PubMed]
- Getting, S.J.; Lam, C.W.; Leoni, G.; Gavins, F.N.E.; Grieco, P.; Perretti, M. [D-Trp8]-gamma-melanocyte-stimulating hormone exhibits anti-inflammatory efficacy in mice bearing a nonfunctional MC1R (recessive yellow e/e mouse). Mol. Pharmacol. 2006, 70, 1850–1855. [Google Scholar] [CrossRef] [PubMed]
- Grieco, P.; Han, G.; Weinberg, D.; MacNeil, T.; Van der Ploeg, L.; Hruby, V.J. Design and synthesis of highly potent and selective melanotropin analogues of SHU9119 modified at position 6. Biochem. Biophys. Res. Commun. 2002, 292, 1075–1080. [Google Scholar] [CrossRef]
- Dezaki, K.; Hosoda, H.; Kakei, M.; Hashiguchi, S.; Watanabe, M.; Kangawa, K.; Yada, T. Endogenous ghrelin in pancreatic islets restricts insulin release by attenuating Ca2+ signaling in β-cells: Implication in the glycemic control in rodents. Diabetes 2004, 53, 3142–3151. [Google Scholar] [CrossRef]
- Cheng, K.; Wei, L.; Chaung, L.; Chan, W.W.; Butler, B.; Smith, R. Inhibition of L-692,429-stimulated rat growth hormone release by a weak substance P antagonist: L-756,867. J. Endocrinol. 1997, 152, 155–158. [Google Scholar] [CrossRef] [PubMed]
- Jeong, Y.-O.; Shin, S.; Park, J.; Ku, B.; Song, J.; Kim, J.-J.; Jeon, S.; Lee, S.; Moon, M. MK-0677, a Ghrelin Agonist, Alleviates Amyloid Beta-Related Pathology in 5XFAD Mice, an Animal Model of Alzheimer’s Disease. Int. J. Mol. Sci. 2018, 19, 1800. [Google Scholar] [CrossRef] [PubMed]
- Ellis, A.; Zeglinski, P.; Brown, D.J.; Frauman, A.G.; Millard, M.; Furness, J. Pharmacokinetics of the ghrelin agonist capromorelin in a single ascending dose Phase-I safety trial in spinal cord-injured and able-bodied volunteers. Spinal Cord 2015, 53, 103–108. [Google Scholar] [CrossRef] [PubMed]
- Colldén, G.; Tschöp, M.H.; Müller, T.D. Therapeutic potential of targeting the ghrelin pathway. Int. J. Mol. Sci. 2017, 18, 798. [Google Scholar] [CrossRef]
- Granado, M.; Priego, T.; Martín, A.I.; Villanúa, M.A.; López-Calderón, A. Anti-inflammatory effect of the ghrelin agonist growth hormone-releasing peptide-2 (GHRP-2) in arthritic rats. Am. J. Physiol. Endocrinol. Metab. 2005, 288, 486–492. [Google Scholar] [CrossRef] [PubMed]
- Liang, Y.; Yin, W.; Yin, Y.; Zhang, W. Ghrelin based therapy of metabolic diseases. Curr. Med. Chem. 2021, 28, 2565–2576. [Google Scholar] [CrossRef]
- Doods, H.; Hallermayer, G.; Wu, D.; Entzeroth, M.; Rudolf, K.; Engel, W.; Eberlein, W. Pharmacological profile of BIBN4096BS, the first selective small molecule CGRP antagonist. Brit. J. Pharmacol. 2000, 129, 420–423. [Google Scholar] [CrossRef]
- Burgey, C.S.; Paone, D.V.; Shaw, A.W.; Deng, J.Z.; Nguyen, D.N.; Potteiger, C.M.; Graham, S.L.; Vacca, J.P.; Williams, T.M. Synthesis of the (3R, 6S)-3-Amino-6-(2, 3-difluorophenyl) azepan-2-one of Telcagepant (MK-0974), a Calcitonin Gene-Related Peptide Receptor Antagonist for the Treatment of Migraine Headache. Org. Lett. 2008, 10, 3235–3238. [Google Scholar] [CrossRef] [PubMed]
- Bell, I.M.; Gallicchio, S.N.; Wood, M.R.; Quigley, A.G.; Stump, C.A.; Zartman, C.B.; Fay, J.F.; Li, C.-C.; Lynch, J.J.; Moore, E.L. Discovery of MK-3207: A highly potent, orally bioavailable CGRP receptor antagonist. ACS Med. Chem. Lett. 2010, 1, 24–29. [Google Scholar] [CrossRef]
- Degnan, A.P.; Chaturvedula, P.V.; Conway, C.M.; Cook, D.A.; Davis, C.D.; Denton, R.; Han, X.; Macci, R.; Mathias, N.R.; Moench, P. Discovery of (R)-4-(8-Fluoro-2-oxo-1, 2-dihydroquinazolin-3 (4 H)-yl)-N-(3-(7-methyl-1 H-indazol-5-yl)-1-oxo-1-(4-(piperidin-1-yl) piperidin-1-yl) propan-2-yl) piperidine-1-carboxamide (BMS-694153): A Potent Antagonist of the Human Calcitonin Gene-Related Peptide Receptor for Migraine with Rapid and Efficient Intranasal Exposure. J. Med. Chem. 2008, 51, 4858–4861. [Google Scholar]
- Hay, D.L.; Garelja, M.L.; Poyner, D.R.; Walker, C.S. Update on the pharmacology of calcitonin/CGRP family of peptides: IUPHAR Review 25. Brit. J. Pharmacol. 2018, 175, 3–17. [Google Scholar] [CrossRef]
- Baraldi, C.; Beier, D.; Martelletti, P.; Pellesi, L. The preclinical discovery and development of atogepant for migraine prophylaxis. Expert Opin. Drug Discov. 2024, 19, 783–788. [Google Scholar] [CrossRef]
- Li, Q.; Dong, C.; Li, W.; Bu, W.; Wu, J.; Zhao, W. Neuropeptide Y protects cerebral cortical neurons by regulating microglial immune function. Neural Regen. Res. 2014, 9, 959–967. [Google Scholar]
- Vona-Davis, L.; McFadden, D. NPY family of hormones: Clinical relevance and potential use in gastrointestinal disease. Curr. Top. Med. Chem. 2007, 7, 1710–1720. [Google Scholar] [CrossRef] [PubMed]
- Schober, D.A.; Van Abbema, A.M.; Smiley, D.L.; Bruns, R.F.; Gehlert, D.R. The neuropeptide Y Y1 antagonist, 1229U91, a potent agonist for the human pancreatic polypeptide-preferring (NPY Y4) receptor. Peptides 1998, 19, 537–542. [Google Scholar] [CrossRef] [PubMed]
- Kaiser, A.; Wanka, L.; Ziffert, I.; Beck-Sickinger, A.G. Biased agonists at the human Y 1 receptor lead to prolonged membrane residency and extended receptor G protein interaction. Cell. Mol. Life. Sci. 2020, 77, 4675–4691. [Google Scholar] [CrossRef]
- Domin, H.; Konieczny, J.; Cieślik, P.; Pochwat, B.; Wyska, E.; Szafarz, M.; Lenda, T.; Biała, D.; Gąsior, Ł.; Śmiałowska, M. The antidepressant-like and glioprotective effects of the Y2 receptor antagonist SF-11 in the astroglial degeneration model of depression in rats: Involvement of glutamatergic inhibition. Behav. Brain Res. 2024, 457, 114729. [Google Scholar] [CrossRef]
- Cippitelli, A.; Rezvani, A.H.; Robinson, J.E.; Eisenberg, L.; Levin, E.D.; Bonaventure, P.; Motley, S.T.; Lovenberg, T.W.; Heilig, M.; Thorsell, A. The novel, selective, brain-penetrant neuropeptide Y Y2 receptor antagonist, JNJ-31020028, tested in animal models of alcohol consumption, relapse, and anxiety. Alcohol 2011, 45, 567–576. [Google Scholar] [CrossRef] [PubMed]
- Malmström, R.E.; Lundberg, J.O.; Weitzberg, E. Autoinhibitory function of the sympathetic prejunctional neuropeptide Y Y2 receptor evidenced by BIIE0246. Eur. J. Pharmacol. 2002, 439, 113–119. [Google Scholar] [CrossRef]
- Li, Z.; Kuang, X.; Chen, T.; Shen, T.; Wu, J. Peptide YY 3–36 attenuates trinitrobenzene sulfonic acid-induced colitis in mice by modulating Th1/Th2 differentiation. Bioengineered 2022, 13, 10144–10158. [Google Scholar] [CrossRef] [PubMed]
- Brothers, S.P.; Wahlestedt, C. Therapeutic potential of neuropeptide Y (NPY) receptor ligands. EMBO Mol. Med. 2010, 2, 429–439. [Google Scholar] [CrossRef]
- Hay, D.L.; Conner, A.C.; Howitt, S.G.; Smith, D.M.; Poyner, D.R. The pharmacology of adrenomedullin receptors and their relationship to CGRP receptors. J. Mol. Neurosci. 2004, 22, 105–113. [Google Scholar] [CrossRef] [PubMed]
- Ma, W.; Chabot, J.-G.; Quirion, R. A role for adrenomedullin as a pain-related peptide in the rat. Proc. Natl. Acad. Sci. USA 2006, 103, 16027–16032. [Google Scholar] [CrossRef] [PubMed]
- Avgoustou, P. Developing Small Molecule Antagonists Against AM2 Receptor for the Treatment of Pancreatic Cancer. Ph.D. Thesis, University of Sheffield, Sheffield, UK, 2018. [Google Scholar]
- Tsatsanis, C.; Androulidaki, A.; Dermitzaki, E.; Charalampopoulos, I.; Spiess, J.; Gravanis, A.; Margioris, A.N. Urocortin 1 and Urocortin 2 induce macrophage apoptosis via CRFR2. Febs Lett. 2005, 579, 4259–4264. [Google Scholar] [CrossRef] [PubMed]
- Kokkotou, E.; Torres, D.; Moss, A.C.; O’Brien, M.; Grigoriadis, D.E.; Karalis, K.; Pothoulakis, C. Corticotropin-releasing hormone receptor 2-deficient mice have reduced intestinal inflammatory responses. J. Immunol. 2006, 177, 3355–3361. [Google Scholar] [CrossRef] [PubMed]
- Pereira, G.; Gillies, H.; Chanda, S.; Corbett, M.; Vernon, S.D.; Milani, T.; Bateman, L. Acute corticotropin-releasing factor receptor type 2 agonism results in sustained symptom improvement in myalgic encephalomyelitis/chronic fatigue syndrome. Front. Syst. Neurosci. 2021, 15, 698240. [Google Scholar] [CrossRef] [PubMed]
- Jin, P.; Deng, S.; Sherchan, P.; Cui, Y.; Huang, L.; Li, G.; Lian, L.; Xie, S.; Lenahan, C.; Travis, Z.D.; et al. Neurokinin Receptor 1 (NK1R) Antagonist Aprepitant Enhances Hematoma Clearance by Regulating Microglial Polarization via PKC/p38MAPK/NFκB Pathway After Experimental Intracerebral Hemorrhage in Mice. Neurotherapeutics 2021, 18, 1922–1938. [Google Scholar] [CrossRef]
- Favila, N.; Gurney, K.; Overton, P.G. The NK1 antagonist L-733,060 facilitates sequence learning. J. Psychopharmacol. 2023, 37, 610–626. [Google Scholar] [CrossRef] [PubMed]
- Bignami, F.; Giacomini, C.; Lorusso, A.; Aramini, A.; Rama, P.; Ferrari, G. NK1 Receptor Antagonists as a New Treatment for Corneal Neovascularization. Investing. Ophthalmol. Vis. Sci. 2014, 55, 6783–6794. [Google Scholar] [CrossRef] [PubMed]
- Hawcock, A.B.; Beresford, I.J.; Marshall, F.H.; Hagan, R.M. Temperature and agonist dependency of tachykinin NK1 receptor antagonist potencies in rat isolated superior cervical ganglion. Eur. J. Pharmacol. 1995, 294, 163–171. [Google Scholar] [CrossRef]
- Brannan, S.K.; Sawchak, S.; Miller, A.C.; Lieberman, J.A.; Paul, S.M.; Breier, A. Muscarinic Cholinergic Receptor Agonist and Peripheral Antagonist for Schizophrenia. N. Engl. J. Med. 2021, 384, 717–726. [Google Scholar] [CrossRef]
- Kruse, A.C.; Ring, A.M.; Manglik, A.; Hu, J.; Hu, K.; Eitel, K.; Hübner, H.; Pardon, E.; Valant, C.; Sexton, P.M. Activation and allosteric modulation of a muscarinic acetylcholine receptor. Nature 2013, 504, 101–106. [Google Scholar] [CrossRef] [PubMed]
- Miyata, A.; Arimura, A.; Dahl, R.R.; Minamino, N.; Uehara, A.; Jiang, L.; Culler, M.D.; Coy, D.H. Isolation of a novel 38 residue-hypothalamic polypeptide which stimulates adenylate cyclase in pituitary cells. Biochem. Biophys. Res. Commun. 1989, 164, 567–574. [Google Scholar] [CrossRef] [PubMed]
- Leceta, J.; Gomariz, R.P.; Martinez, C.; Abad, C.; Ganea, D.; Delgado, M. Receptors and transcriptional factors involved in the anti-inflammatory activity of VIP and PACAP. Ann. Ny. Acad. Sci. 2000, 921, 92–102. [Google Scholar] [CrossRef]
- Jansen, M.I.; Thomas Broome, S.; Castorina, A. Exploring the Pro-Phagocytic and Anti-Inflammatory Functions of PACAP and VIP in Microglia: Implications for Multiple Sclerosis. Int. J. Mol. Sci. 2022, 23, 4788. [Google Scholar] [CrossRef] [PubMed]
- Lu, J.; Piper, S.J.; Zhao, P.; Miller, L.J.; Wootten, D.; Sexton, P.M. Targeting VIP and PACAP receptor signaling: New insights into designing drugs for the PACAP subfamily of receptors. Int. J. Mol. Sci. 2022, 23, 8069. [Google Scholar] [CrossRef] [PubMed]
- Delgado, M.; Leceta, J.; Ganea, D. Vasoactive intestinal peptide and pituitary adenylate cyclase-activating polypeptide inhibit the production of inflammatory mediators by activated microglia. J. Leukoc. Biol. 2003, 73, 155–164. [Google Scholar] [CrossRef] [PubMed]
- Mao, S.-S.; Hua, R.; Zhao, X.-P.; Qin, X.; Sun, Z.-Q.; Zhang, Y.; Wu, Y.-Q.; Jia, M.-X.; Cao, J.-L.; Zhang, Y.-M. Exogenous Administration of PACAP Alleviates Traumatic Brain Injury in Rats through a Mechanism Involving the TLR4/MyD88/NF-κB Pathway. J. Neurotrauma 2012, 29, 1941–1959. [Google Scholar] [CrossRef] [PubMed]
- Tan, Y.-V.; Abad, C.; Wang, Y.; Lopez, R.; Waschek, J.A. VPAC2 (vasoactive intestinal peptide receptor type 2) receptor deficient mice develop exacerbated experimental autoimmune encephalomyelitis with increased Th1/Th17 and reduced Th2/Treg responses. Brain. Behav. Immun. 2015, 44, 167–175. [Google Scholar] [CrossRef] [PubMed]
- Mutt, S.V. Polypeptide with Broad Biological Activity: Isolation from Small Intestine. Science 1970, 169, 1217–1218. [Google Scholar]
- Bell, G.I. The glucagon superfamily: Precursor structure and gene organization. Peptides 1986, 7, 27–36. [Google Scholar] [CrossRef]
- Delgado, M.; Ganea, D. Cutting edge: Is vasoactive intestinal peptide a type 2 cytokine? J. Immunol. 2001, 166, 2907–2912. [Google Scholar] [CrossRef] [PubMed]
- Kittikulsuth, W.; Nakano, D.; Kitada, K.; Uyama, T.; Ueda, N.; Asano, E.; Okano, K.; Matsuda, Y.; Nishiyama, A. Vasoactive intestinal peptide blockade suppresses tumor growth by regulating macrophage polarization and function in CT26 tumor-bearing mice. Sci. Rep. 2023, 13, 927. [Google Scholar] [CrossRef] [PubMed]
- Harmer, S.C.; Bicknell, A.B. Role of gamma-MSH peptides in the regulation of adrenal steroidogenesis. Peptides 2005, 26, 1944–1951. [Google Scholar] [CrossRef]
- Luger, T.A.; Brzoska, T.; Scholzen, T.E.; Kalden, D.H.; Ansel, J. The Role of alpha-MSH as a Modulator of Cutaneous Inflammation. Ann. Ny. Acad. Sci. 2000, 917, 232–238. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Chery, S.; Lazerson, A.; Altman, N.H.; Jackson, R.; Holt, G.; Campos, M.; Andrew; Mirsaeidi, M. Anti-inflammatory effects of α-MSH through p-CREB expression in sarcoidosis like granuloma model. Sci. Rep. 2020, 10, 7277. [Google Scholar] [CrossRef] [PubMed]
- Kojima, M.; Hosoda, H.; Date, Y.; Nakazato, M.; Matsuo, H.; Kangawa, K. Ghrelin is a growth-hormone-releasing acylated peptide from stomach. Nature 1999, 402, 656–660. [Google Scholar] [CrossRef]
- Noh, J.Y.; Wu, C.-S.; Deluca, J.A.A.; Devaraj, S.; Jayaraman, A.; Alaniz, R.C.; Tan, X.-D.; Allred, C.D.; Sun, Y. Novel Role of Ghrelin Receptor in Gut Dysbiosis and Experimental Colitis in Aging. Int. J. Mol. Sci. 2022, 23, 2219. [Google Scholar] [CrossRef] [PubMed]
- Navarro, G.; Aguinaga, D.; Angelats, E.; Medrano, M.; Moreno, E.; Mallol, J.; Cortés, A.; Canela, E.I.; Casadó, V.; McCormick, P.J. A significant role of the truncated ghrelin receptor GHS-R1b in ghrelin-induced signaling in neurons. J. Biol. Chem. 2016, 291, 13048–13062. [Google Scholar] [CrossRef] [PubMed]
- Navarro, G.; Rea, W.; Quiroz, C.; Moreno, E.; Gomez, D.; Wenthur, C.J.; Casadó, V.; Leggio, L.; Hearing, M.C.; Ferré, S. Complexes of Ghrelin GHS-R1a, GHS-R1b, and Dopamine D1 Receptors Localized in the Ventral Tegmental Area as Main Mediators of the Dopaminergic Effects of Ghrelin. J. Neurosci. 2022, 42, 940–953. [Google Scholar] [CrossRef]
- Delporte, C. Structure and Physiological Actions of Ghrelin. Scientifica 2013, 2013, 518909. [Google Scholar] [CrossRef]
- Zhao, D.; Zhan, Y.; Zeng, H.; Moyer, M.P.; Mantzoros, C.S.; Pothoulakis, C. Ghrelin stimulates interleukin-8 gene expression through protein kinase C-mediated NF-κB pathway in human colonic epithelial cells. J. Cell. Biochem. 2005, 97, 1317–1327. [Google Scholar] [CrossRef] [PubMed]
- Li, W.G.; Gavrila, D.; Liu, X.; Wang, L.; Gunnlaugsson, S.; Stoll, L.L.; McCormick, M.L.; Sigmund, C.D.; Tang, C.; Weintraub, N.L. Ghrelin inhibits proinflammatory responses and nuclear factor-κB activation in human endothelial cells. Circulation 2004, 109, 2221–2226. [Google Scholar] [CrossRef] [PubMed]
- Kitamura, K.; Kangawa, K.; Kawamoto, M.; Ichiki, Y.; Nakamura, S.; Matsuo, H.; Eto, T. Adrenomedullin: A novel hypotensive peptide isolated from human pheochromocytoma. Biochem. Biophys. Res. Commun. 1993, 192, 553–560. [Google Scholar] [CrossRef]
- Kitamura, K.; Kangawa, K.; Eto, T. Adrenomedullin and PAMP: Discovery, structures, and cardiovascular functions. Microsc. Res. Techniq. 2002, 57, 3–13. [Google Scholar] [CrossRef]
- Warfvinge, K.; Edvinsson, L. Distribution of CGRP and CGRP receptor components in the rat brain. Cephalalgia 2019, 39, 342–353. [Google Scholar] [CrossRef]
- Juaneda, C.; Dumont, Y.; Chabot, J.-G.; Quirion, R. Autoradiographic distribution of adrenomedullin receptors in the rat brain. Eur. J. Pharmacol. 2001, 421, 1–2. [Google Scholar] [CrossRef] [PubMed]
- Pleguezuelos, O.; Hagi-Pavli, E.; Crowther, G.; Kapas, S. Adrenomedullin signals through NF-κB in epithelial cells. FEBS Letters 2004, 577, 249–254. [Google Scholar] [CrossRef] [PubMed]
- Wei, Y.; Tanaka, M.; Sakurai, T.; Kamiyoshi, A.; Ichikawa-Shindo, Y.; Kawate, H.; Cui, N.; Kakihara, S.; Zhao, Y.; Aruga, K.; et al. Adrenomedullin Ameliorates Pulmonary Fibrosis by Regulating TGF-ß-Smads Signaling and Myofibroblast Differentiation. Endocrinology 2021, 162, 090. [Google Scholar] [CrossRef]
- Rosenfeld, M.G.; Mermod, J.-J.; Amara, S.G.; Swanson, L.W.; Sawchenko, P.E.; Rivier, J.; Vale, W.W.; Evans, R.M. Production of a novel neuropeptide encoded by the calcitonin gene via tissue-specific RNA processing. Nature 1983, 304, 129–135. [Google Scholar] [CrossRef]
- Ma, W.; Chabot, J.G.; Powell, K.J.; Jhamandas, K.; Dickerson, I.M.; Quirion, R. Localization and modulation of calcitonin gene-related peptide-receptor component protein-immunoreactive cells in the rat central and peripheral nervous systems. Neuroscience 2003, 120, 677–694. [Google Scholar] [CrossRef]
- Duan, J.X.; Zhou, Y.; Zhou, A.Y.; Guan, X.X.; Liu, T.; Yang, H.H.; Xie, H.; Chen, P. Calcitonin gene-related peptide exerts anti-inflammatory property through regulating murine macrophages polarization in vitro. Mol. Immunol. 2017, 91, 105–113. [Google Scholar] [CrossRef]
- Russell, F.A.; King, R.; Smillie, S.-J.; Kodji, X.; Brain, S. Calcitonin gene-related peptide: Physiology and pathophysiology. Physiol. Rev. 2014, 94, 1099–1142. [Google Scholar] [CrossRef] [PubMed]
- De Corato, A.; Lisi, L.; Capuano, A.; Tringali, G.; Tramutola, A.; Navarra, P.; Russo, C.D. Trigeminal satellite cells express functional calcitonin gene-related peptide receptors, whose activation enhances interleukin-1β pro-inflammatory effects. J. Neuroimmunol. 2011, 237, 39–46. [Google Scholar] [CrossRef] [PubMed]
- Jakob, M.O.; Kofoed-Branzk, M.; Deshpande, D.; Murugan, S.; Klose, C.S. An integrated view on neuronal subsets in the peripheral nervous system and their role in immunoregulation. Front. Immunol. 2021, 12, 679055. [Google Scholar] [CrossRef]
- Mikami, N.; Sueda, K.; Ogitani, Y.; Otani, I.; Takatsuji, M.; Wada, Y.; Watanabe, K.; Yoshikawa, R.; Nishioka, S.; Hashimoto, N. Calcitonin Gene-Related Peptide Regulates Type IV Hypersensitivity through Dendritic Cell Functions. PLoS ONE 2014, 9, e86367. [Google Scholar] [CrossRef]
- Peng, L.-H.; Qin, X.-Q.; Tan, R.-R.; Liu, C.; Liu, H.-J.; Qu, X. Calcitonin gene-related peptide regulates the potential antigen uptake ability of human bronchial epithelial cells. J. Interferon Cytokine Res. 2018, 38, 463–468. [Google Scholar] [CrossRef]
- Mikami, N.; Watanabe, K.; Hashimoto, N.; Miyagi, Y.; Sueda, K.; Fukada, S.-I.; Yamamoto, H.; Tsujikawa, K. Calcitonin gene-related peptide enhances experimental autoimmune encephalomyelitis by promoting Th17-cell functions. Int. Immunol. 2012, 24, 681–691. [Google Scholar] [CrossRef] [PubMed]
- Chang, M.M.; Leeman, S.E.; Niall, H.D. Amino-acid sequence of substance P. Nat. New Biol. 1971, 232, 86–87. [Google Scholar] [CrossRef]
- O’Connor, T.M.; O’Connell, J.; O’Brien, D.I.; Goode, T.; Bredin, C.P.; Shanahan, F. The role of substance P in inflammatory disease. J. Cell. Physiol. 2004, 201, 167–180. [Google Scholar] [CrossRef]
- Alcaide, C.; Perez, F.; Esteban, F.; Muñoz, M. Substance P and Neurokinin-1 receptor are overexpressed in adamantinomatous craniopharyngioma than in the pituitary gland. Pituitary 2024, 28, 5. [Google Scholar] [CrossRef] [PubMed]
- Piao, J.; Hong, H.S.; Son, Y. Substance P ameliorates tumor necrosis factor-alpha-induced endothelial cell dysfunction by regulating eNOS expression in vitro. Microcirculation 2018, 25, 12443. [Google Scholar] [CrossRef] [PubMed]
- Alalikhan, A.; Ebrahimi, S.; Aliee, A.; Mirzavi, F.; Hashemy, S.I. The combined anti-tumor effects of 5-fluorouracil and neurokinin receptor inhibitor, aprepitant, against colorectal cancer: In vitro and in vivo study. Med. Oncol. 2024, 41, 70. [Google Scholar] [CrossRef] [PubMed]
- Martín-García, D.; Téllez, T.; Redondo, M.; García-Aranda, M. The use of SP/Neurokinin-1 as a Therapeutic Target in Colon and Rectal Cancer. Curr. Med. Chem. 2024, 31, 6487–6509. [Google Scholar] [CrossRef] [PubMed]
- Tatemoto, K.; Carlquist, M.; Mutt, V. Neuropeptide Y-a novel brain peptide with structural similarities to peptide YY and pancreatic polypeptide. Nature 1982, 296, 659–660. [Google Scholar] [CrossRef]
- Dimitrijević, M.; Stanojević, S. The intriguing mission of neuropeptide Y in the immune system. Amino Acids 2013, 45, 41–53. [Google Scholar] [CrossRef] [PubMed]
- Choi, B.; Shin, M.-K.; Kim, E.-Y.; Park, J.-E.; Lee, H.; Kim, S.W.; Song, J.-K.; Chang, E.-J. Elevated neuropeptide Y in endothelial dysfunction promotes macrophage infiltration and smooth muscle foam cell formation. Front. Immunol. 2019, 10, 1701. [Google Scholar] [CrossRef] [PubMed]
- Yi, M.; Li, H.; Wu, Z.; Yan, J.; Liu, Q.; Ou, C.; Chen, M. A Promising Therapeutic Target for Metabolic Diseases: Neuropeptide Y Receptors in Humans. Cell. Physiol. Biochem. 2018, 45, 88–107. [Google Scholar] [CrossRef] [PubMed]
- Wheway, J.; Mackay, C.R.; Newton, R.A.; Sainsbury, A.; Boey, D.; Herzog, H.; Mackay, F. A fundamental bimodal role for neuropeptide Y1 receptor in the immune system. J. Exp. Med. 2005, 202, 1527–1538. [Google Scholar] [CrossRef]
- Buttari, B.; Profumo, E.; Domenici, G.; Tagliani, A.; Ippoliti, F.; Bonini, S.; Businaro, R.; Elenkov, I.; Riganò, R. Neuropeptide Y induces potent migration of human immature dendritic cells and promotes a Th2 polarization. Faseb. J. 2014, 28, 3038–3049. [Google Scholar] [CrossRef]
- Voltolini, C.; Battersby, S.; Novembri, R.; Torricelli, M.; Severi, F.M.; Petraglia, F.; Norman, J.E. Urocortin 2 role in placental and myometrial inflammatory mechanisms at parturition. Endocrinology 2015, 156, 670–679. [Google Scholar] [CrossRef] [PubMed]
- Deussing, J.M.; Chen, A. The corticotropin-releasing factor family: Physiology of the stress response. Physiol. Rev. 2018, 98, 2225–2286. [Google Scholar] [CrossRef] [PubMed]
- Corsetti, G.; Yuan, Z.; Romano, C.; Chen-Scarabelli, C.; Fanzani, A.; Pasini, E.; Dioguardi, F.S.; Onorati, F.; Linardi, D.; Knight, R. Urocortin induces phosphorylation of distinct residues of signal transducer and activator of transcription 3 (STAT3) via different signaling pathways. Med. Sci. Monit. Basic Res. 2019, 25, 139. [Google Scholar] [CrossRef] [PubMed]
- Mahata, S.K.; O’Connor, D.T.; Mahata, M.; Yoo, S.H.; Taupenot, L.; Wu, H.; Gill, B.M.; Parmer, R.J. Novel autocrine feedback control of catecholamine release. A discrete chromogranin a fragment is a noncompetitive nicotinic cholinergic antagonist. J. Clin. Investing. 1997, 100, 1623–1633. [Google Scholar] [CrossRef]
- Bourebaba, Y.; Mularczyk, M.; Marycz, K.; Bourebaba, L. Catestatin peptide of chromogranin A as a potential new target for several risk factors management in the course of metabolic syndrome. Biomed. Pharmacother. 2021, 134, 111113. [Google Scholar] [CrossRef] [PubMed]
- Chu, S.-Y.; Peng, F.; Wang, J.; Liu, L.; Meng, L.; Zhao, J.; Han, X.-N.; Ding, W.-H. Catestatin in defense of oxidative-stress-induced apoptosis: A novel mechanism by activating the beta2 adrenergic receptor and PKB/Akt pathway in ischemic-reperfused myocardium. Peptides 2020, 123, 170200. [Google Scholar] [CrossRef] [PubMed]
- Moran, S.P.; Maksymetz, J.; Conn, P.J. Targeting muscarinic acetylcholine receptors for the treatment of psychiatric and neurological disorders. Trends. Pharmacol. Sci. 2019, 40, 1006–1020. [Google Scholar] [CrossRef] [PubMed]
- Yu, J.; Xiao, K.; Chen, X.; Deng, L.; Zhang, L.; Li, Y.; Gao, A.; Gao, J.; Wu, C.; Yang, X. Neuron-derived neuropeptide Y fine-tunes the splenic immune responses. Neuron 2022, 110, 1327–1339.e6. [Google Scholar] [CrossRef]
- Klose, C.S.; Mahlakõiv, T.; Moeller, J.B.; Rankin, L.C.; Flamar, A.-L.; Kabata, H.; Monticelli, L.A.; Moriyama, S.; Putzel, G.G.; Rakhilin, N. The neuropeptide neuromedin U stimulates innate lymphoid cells and type 2 inflammation. Nature 2017, 549, 282–286. [Google Scholar] [CrossRef]
- Wallrapp, A.; Riesenfeld, S.J.; Burkett, P.R.; Abdulnour, R.-E.E.; Nyman, J.; Dionne, D.; Hofree, M.; Cuoco, M.S.; Rodman, C.; Farouq, D. The neuropeptide NMU amplifies ILC2-driven allergic lung inflammation. Nature 2017, 549, 351–356. [Google Scholar] [CrossRef]
Name | Amino Acid Sequences | Immune Source | Immune Function | Receptor: Immune Cell | Receptor Type | Receptor Expression | Refs. |
---|---|---|---|---|---|---|---|
PACAP/VIP | HSDGIFTDSYSRYRKQMAVKKYLAAVLGKRYKQRVKNK-NH2 | PACAP: Thymus cells, Lymphocytes, Plasma cells; VIP: Mast cells, Granulocytes, Lymphocytes | Inhibit IL-6, TNFα, NO; promote IL-10 | Lymphocytes, monocytes, mast cells | VPAC1 VPAC2 PAC1 | VPAC1: monocytes, T cells VPAC2: thymic cells, mast cells PAC1: macrophages and lung dendritic cells | [32,33] |
α-MSH | HADGVFTSDFSKLLGQLSAKKYLESLM-NH2 | Lymphocytes, Monocytes, Dendritic cells, and Islet cells | Inhibit IL-1, IL-6, TNFα, IL-2, IFNγ, IL-4, IL-13; promote IL-10 | Lymphocytes, monocytes, dendritic cells, endothelial cells | MC-1R MC-2R MC-3R MC-4R MC-5R | MC-1R: monocytes, macrophages, dendritic cells (DCs), fibroblasts, inflammatory cells; MC-3R: central nervous system; MC-5R: macrophages, lymphocytes; | [34,35,36] |
Ghrelin | GSSFLSPEHQRVQQRKESKKPPAKLQPR | Human P/D1 cells in rat X/A-like | Inhibit TNFα, IL-1β, IL-6 | T lymphocytes, B lymphocytes, and neutrophils | GHS-R1a GHS-R1b | GHS-R1a: mononuclear cells; GHS-R1b: mononuclear cells | [37,38,39] |
AM | YRQSMNNFQGLRSFGCRFGTCTVQKLAHQIYQFTDKDKDNVAPRSKISPQGY-NH2 | Macrophages, Monocytes, and T cells; Lymphatic organs and Gastrointestinal tract | Inhibit TNFα, IL-6, IL-12, IL-1β, and NO | Macrophages | CRLR/RAMP2(AM1), CRLR/RAMP3(AM2) | AM1: fibroblasts | [40,41,42] |
CGRP | ACDTATCVTHRLAGLLSRSGGVVKNNFVPTNVGSKAF-NH2 | Nerve cell | Inhibit TNFα, IL-12, IFNγ; promote IL-4, IL-8, IL-10 | Macrophages, dendritic cells (DCs), T cells, etc. | CRLR/RAMP1 | Macrophages, dendritic cells (DCs), T cells, etc. | [43,44,45] |
SP | RPKPQQFFGLM-NH2 | Nerve cell, Inflammatory cells (e.g., Macrophages, Dendritic cells, etc.) | Inhibit IL-10; promote IL-1β, TNF, MIP-1β, IL-6 | Microglia, macrophages, dendritic cells, etc. | NK1R | Microglia, macrophages, dendritic cells, etc. | [46,47,48] |
NPY | YPSKPDNPGEDAPAEDMARYYSALRHYINLITRQRY-NH2 | Activated Macrophages and Epithelial cells | Inhibit microglial cell TNFα, IL-1β; inhibit DCs IFNγ; promote human monocyte IL-1β | Monocytes, lymphocytes, granulocytes, etc. | Y1R Y2R Y3R Y4R Y5R Y6R | Y1: All types of immune cells; Y2R, Y4R, Y5R: neutrophile granulocytes; Y6R: mice | [49,50,51,52] |
UCN II | VILSLDVPIGLLRILLEQARYKAARNQAATNAQILAHV-NH2 (mouse) | Nerve cell | Inhibit TNFα; promote IL-10 | Immune cells (such as macrophages), endothelial cells, and fibroblasts | CRH-R2 | CRH-R2: macrophages | [53,54] |
CST | SSMKLSFRARAYGFRGPGPQL | Nerve cell, Immune cell, Neuroendocrine cell | Inhibit TNFα, IL-1β; promote IL-4, IL-10 | Mononuclear cells, macrophages, etc. | Type 2 muscarinic acetylcholine receptor | Mononuclear cells, macrophages, etc. | [55,56,57] |
Selective Receptor | Specific Ligand | Antagonist | Agonist | Disease |
---|---|---|---|---|
VPAC1 | PACAP, VIP | PG 97-269 ([Acetyl-His1,D-Phe2,Lys15,Arg16,Leu17]VIP(3-7)/GRF(8-27)) [58] | [R16]-PACAP(1-23)[L22]-VIP, [Lys15,Arg16,Leu27]-VIP(1-7)-GRF(8-27)-NH2 [59,60] | Migraine [59] Colitis [61] |
VPAC2 | PACAP, VIP | PG99-465 [62], VIpep-3 [62] | LBT-3627 [63], RO25-1553 [62], RO25-1392 [62], BAY55-9837 [62] | PD (Parkinson’s disease) [63] |
PAC1 | VIP | PACAP 6-38 [64] | Maxadilan [65] | |
MC-1R | α-MSH | [Ac-DPhe(pI)-DArg-Nal(2′)-Arg-NH2] [66], ASIP [67] | PL8177 (Ac-Nle1-cyclo (Glu2-L-His3-D-Phe4-Arg5-Dap6)-Trp7-NH2) [68], MT-7117 [69], BMS-470539 [70] | Arthrophlogosis [68]; Systemic sclerosis [69] |
MC-3R | α-MSH | SHU-9119 (Ac-Nle-c[Asp-His-D-Nal(2′)-Arg-Trp-Lys]-NH2) [71], | g-2-MSH [72], [D-Trp8]-γ-MSH [73] | |
MC-5R | α-MSH | x-Cha-DPhe-Arg-Trp-y, x-His-Nal(2′)-Arg-Trp-y [70] | SHU-9119 [71], PG-901 (Ac-Nle4-c[Asp5-Pro6-DNal(2′)7-Arg8-Trp9-Lys10]-NH2) [74] | |
GHS-R1a | Ghrelin | [D-Lys3]-GHRP-6 [75], L-756867 (H2N,D-Arg,Pro,Lys,Pro,D-Phe,Gln,D-Trp,Phe,D-Trp,Leu, Leu,NH2) [76] | MK-0677 [77], Capromorelin [78], LY444711 [79], GHRP-2 [80] | Alzheimer’s Disease [79]; Arthrophlogosis [80]; fat [81] |
CRLR/RAMP1 | CGRP | Olcegepant [82], Telcagepant (MK-0974) ((3R,6S)-3-Amino-6-(2,3-difluorophenyl) azepan-2-one) [83], MK-3207 (2-[(8R)-8-(3,5-difluorophenyl)-10-oxo-6,9-diazaspiro [4.5]dec-9-yl]-N-[(2R)-2′-oxo-1,1′,2′,3-tetrahydrospiro[indene-2,3′-pyrrolo [2,3-b]pyridin]-5-yl]acetamide) [84], BMS-694153 ((R)-4-(8-Fluoro-2-oxo-1, 2-dihydroquinazolin-3(4 H)-yl)-N-(3-(7-methyl-1H-indazol-5-yl)-1-oxo-1-(4-(piperidin-1-yl)piperidin-1-yl)propan-2-yl)piperidine-1-carboxamide) [85] | KBP-042, KBP-088, KBP-089 [86] | Migraine [87] |
Y1R | NPY | BIBP3226 (N-[(1R)]-4-[(Aminoiminomethyl)amino-1-[[[(4-hydroxyphenyl)methyl]amino]carbonyl]butyl-α-henylbenzeneacetamide trifluoroacetate) [88], BIB03304 [89], 1229U91 [90] | [Leu31,Pro34]NPY [89], [Pro30,Nle31,Bpa32,Leu34]NPY(28-36) [91] | Gastric diseases [89] |
Y2R | NPY | SF-11 ([N-(4-ethoxyphenyl)-4-(hydroxydiphenylmethyl)-1-piperidinecarbothioamide]) [92], JNJ-31020028 [93], BIIE0246 ((S)-N2-[[1-[2-[4-[(R,S)-5,11-dihydro-6(6h)-oxodibenz[b,e]azepin-11-yl]-1-piperazinyl]-2-oxoethyl]cyclopentyl]acetyl]-N-[2-[1,2-dihydro-3,5(4H)-dioxo-1,2-diphenyl-3H-1,2,4-triazol-4-yl]ethyl]-argininamide) [94] | PYY(3-36) [89,95], NPY(13-36) [89], Obinepitide (TM30338) [96] | Acute pancreatitis and colitis [89,95] |
AM1 | AM | Olcegepant [82], Telcagepant (MK-0974) [83], MK-3207 [84], BMS-694153 [85], AM22-52 [97], CGRP8-37 [97] | hAM1-52 [98] | Migraine [87] |
AM2 | AM | Olcegepant [82], Telcagepant (MK-0974) [83], MK-3207 [84], BMS-694153 [85], SHF-638 [99] | AM2/IMD [86] | Migraine [87] |
CRFR2 | UCN II | Anti-sauvagine30 [100], Astressin 2B [101] | CT38s [102] | Intestinal inflammation [101] |
NK1R | SP | Aprepitant [103], L-733060 [104], Lanepitant [105], Befetupitant [105] | GR73632 (δAva[l-Pro9, N-MeLeu10]SP-(7-11)), septide ([pGlu6,Pro9]SP-(6-11)) [106] | Cerebral hemorrhage [103] |
M2 | CST | Trospium chloride [107] | Iperoxo [108], Xanomeline [107] | Alzheimer’s Disease [107]; overactive bladder [107] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, K.; Wu, X.; Li, X.; Pan, H.; Zhang, W.; Shang, J.; Di, Y.; Liu, R.; Zheng, Z.; Hou, X. Antimicrobial Neuropeptides and Their Receptors: Immunoregulator and Therapeutic Targets for Immune Disorders. Molecules 2025, 30, 568. https://doi.org/10.3390/molecules30030568
Chen K, Wu X, Li X, Pan H, Zhang W, Shang J, Di Y, Liu R, Zheng Z, Hou X. Antimicrobial Neuropeptides and Their Receptors: Immunoregulator and Therapeutic Targets for Immune Disorders. Molecules. 2025; 30(3):568. https://doi.org/10.3390/molecules30030568
Chicago/Turabian StyleChen, Kaiqi, Xiaojun Wu, Xiaoke Li, Haoxuan Pan, Wenhui Zhang, Jinxi Shang, Yinuo Di, Ruonan Liu, Zhaodi Zheng, and Xitan Hou. 2025. "Antimicrobial Neuropeptides and Their Receptors: Immunoregulator and Therapeutic Targets for Immune Disorders" Molecules 30, no. 3: 568. https://doi.org/10.3390/molecules30030568
APA StyleChen, K., Wu, X., Li, X., Pan, H., Zhang, W., Shang, J., Di, Y., Liu, R., Zheng, Z., & Hou, X. (2025). Antimicrobial Neuropeptides and Their Receptors: Immunoregulator and Therapeutic Targets for Immune Disorders. Molecules, 30(3), 568. https://doi.org/10.3390/molecules30030568