Aggregachromic Fluorogenic Asymmetric Cyanine Probes for Sensitive Detection of Heparin and Protamine
Abstract
:1. Introduction
2. Results and Discussion
2.1. Photophysical Properties
2.2. Circular Dichroism Properties of Heparin–Probe Aggregates
2.3. Heparin Quantification
2.4. Protamine Quantification
3. Experimental Section
3.1. Materials and Methods
3.2. Synthesis of Compounds
3.3. Heparin Sensing
3.4. Protamine Sensing
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Guo, J.; Amemiya, S. Voltammetric Heparin-Selective Electrode Based on Thin Liquid Membrane with Conducting Polymer-Modified Solid Support. Anal. Chem. 2006, 78, 6893–6902. [Google Scholar] [CrossRef] [PubMed]
- Gemene, K.L.; Meyerhoff, M.E. Reversible Detection of Heparin and other Polyanions by Pulsed Chronopotentiometric Polymer Membrane Electrode. Anal. Chem. 2010, 80, 1612–1615. [Google Scholar] [CrossRef]
- Linhardt, R.J. 2003 Claude S. Hudson Award Address in Carbohydrate Chemistry. Heparin: Structure and Activity. J. Med. Chem. 2003, 46, 2551–2564. [Google Scholar] [CrossRef]
- Ginsberg, J.S. Management of Venous Thromboembolism. N. Engl. J. Med. 1996, 335, 1816–1829. [Google Scholar] [CrossRef] [PubMed]
- Warkentin, T.E.; Levine, M.N.; Hirsh, J.; Horsewood, P.; Roberts, R.S.; Gent, M.; Kelton, J.G. Heparin-Induced Thrombocytopenia in Patients Treated with Low-Molecular-Weight Heparin or Unfractionated Heparin. N. Engl. J. Med. 1995, 332, 1330–1336. [Google Scholar] [CrossRef] [PubMed]
- Girolami, B.; Girolami, A. Heparin-Induced Thrombocytopenia: A Review. Semin. Thromb. Hemost. 2006, 32, 803–809. [Google Scholar] [CrossRef] [PubMed]
- Meng, F.; Liang, W.; Sun, H.; Wu, L.; Hong, X.; Miao, P. A Peptide-Based Electrochemical Biosensor for Facile Measurement of Whole-Blood Heparin. ChemElectroChem 2017, 4, 472–475. [Google Scholar] [CrossRef]
- Fu, X.; Chen, L.; Li, J.; Lin, M.; You, H.; Wang, W. Label-free Colorimetric Sensor for Ultrasensitive Detection of Heparin Based on Color Quenching of Gold Nanorods by Graphene Oxide. Biosens. Bioelectron. 2012, 34, 227–231. [Google Scholar] [CrossRef] [PubMed]
- Qu, F.; Liu, Y.; Lao, H.; Wang, Y.; You, J. Colorimetric Detection of Heparin with High Sensitivity Based on the Aggregation of Gold Nanoparticles Induced by Polymer Nanoparticles. New J. Chem. 2017, 41, 10592–10597. [Google Scholar] [CrossRef]
- Hu, L.; Liao, H.; Feng, L.; Wang, M.; Fu, W. Accelerating the Peroxidase-like Activity of Gold Nanoclusters at Neutral pH for Colorimetric Detection of Heparin and Heparinase Activity. Anal. Chem. 2018, 90, 6247–6252. [Google Scholar] [CrossRef] [PubMed]
- Chen, Q.; Li, X.; Wang, R.; Zeng, F.; Zhai, J.; Xie, X. Rapid Equilibrated Colorimetric Detection of Protamine and Heparin: Recognition at the Nanoscale Liquid-Liquid Interface. Anal. Chem. 2019, 91, 10390–10394. [Google Scholar] [CrossRef] [PubMed]
- Fu, X.; Chen, L.; Li, J. Ultrasensitive Colorimetric Detection of Heparin Based on Self-Assembly of Gold Nanoparticles on Graphene Oxide. Analyst 2012, 137, 3653–3658. [Google Scholar] [CrossRef] [PubMed]
- Qu, G.; Zhang, G.; Wu, Z.; Shen, A.; Wang, J.; Hu, J. A “Turn-off” SERS Assay of Heparin with High Selectivity Based on Heparin-Peptide Complex and Raman Labelled Gold Nanoparticles. Biosens. Bioelectron. 2014, 60, 124–129. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Chen, L.; Fu, X.; Chen, L.; Ding, Y. Highly Sensitive Surface-enhanced Raman Scattering Sensing of Heparin Based on Antiaggregation of Functionalized Silver Nanoparticles. ACS Appl. Mater. Interfaces 2013, 5, 11059–11065. [Google Scholar] [CrossRef]
- Nguyen, T.A.; Do, A.N.K.; Lo, T.N.H.; Park, I.; Vo, K.Q. Single-step Controlled Synthesis of Flower-like Gold Nanoparticles Stabilized by Chitosan for Sensitive Detection of Heparin Using a Surface-enhanced Raman Scattering Method. RSC Adv. 2022, 12, 34831–34842. [Google Scholar] [CrossRef]
- Patel, R.; Narkowicz, C.; Hutchinson, J.; Hilder, E.; Jacobson, G. A Simple Capillary Electrophoresis Method for the Rapid Separation and Determination of Intact Low Molecular Weight and Unfractionated Heparins. J. Pharm. Biom. Anal. 2008, 46, 30–35. [Google Scholar] [CrossRef] [PubMed]
- Qi, H.; Zhang, L.; Yang, L.; Yu, P.; Mao, L. Anion-exchange-based Amperometric Assay for Heparin Using Polyimidazolium as Synthetic Receptor. Anal. Chem. 2013, 85, 3439–3445. [Google Scholar] [CrossRef]
- Mehta, P.K.; Lee, H.; Lee, K.-H. Highly Sensitive Ratiometric Detection of Heparin and its Oversulfated Chondroitin Sulfate Contaminant by Fluorescent Peptidyl Probe. Biosens. Bioelectron. 2017, 97, 545–552. [Google Scholar] [CrossRef]
- Liu, J.; Liu, G.; Liu, W.; Wang, Y. Turn-on Fluorescence Sensor for the Detection of Heparin Based on Rhodamine B-modified Polyethyleneimine-graphene oxide complex. Biosens. Bioelectron. 2015, 64, 300–305. [Google Scholar] [CrossRef]
- Yukawa, H.; Watanabe, M.; Kaji, N.; Okamoto, Y.; Tokeshi, M.; Miyamoto, Y.; Noguchi, H.; Baba, Y.; Hayashi, S. Monitoring Transplanted Adipose Tissue-Derived Stem Cells Combined with Heparin in the Liver by Fluorescence Imaging Using Quantum Dots. Biomaterials 2012, 33, 2177–2186. [Google Scholar] [CrossRef] [PubMed]
- Sun, W.; Bandmann, H.; Schrader, T. A Fluorescent Polymeric Heparin Sensor. Chem. Eur. J. 2007, 13, 7701–7707. [Google Scholar] [CrossRef]
- Zheng, J.; Ye, T.; Chen, J.; Xu, L.; Ji, X.; Yang, C.; He, Z. Highly Emissive Fluorescence Detection of Heparin Based on Aggregation-Induced Emission of a Tetraphenylethene Derivative. Biosens. Bioelectron. 2017, 90, 245–250. [Google Scholar] [CrossRef]
- Pang, S.; Liu, S.; Su, X. A Fluorescence Assay for the Trace Detection of Protamine and Heparin. RSC Adv. 2014, 4, 25857–25862. [Google Scholar] [CrossRef]
- Cao, Y.; Shi, S.; Wang, L.; Yao, J.; Yao, T. Ultrasensitive Fluorescence Detection of Heparin Based on Quantum Dots and a Functional Ruthenium Polypiridyl Complex. Biosens. Bioelectron. 2014, 55, 174–179. [Google Scholar] [CrossRef]
- Pandey, S.; Jha, P.; Singh, P. An Ultrasensitive and Selective Method for Visual Detection of Heparin in 100% Human Plasma. Talanta 2023, 253, 124040. [Google Scholar] [CrossRef]
- Jiang, R.; Zhao, S.; Chen, L.; Zhao, M.; Qi, W.; Fu, W.; Hu, L.; Zhang, Y. Fluorescence Detection of Protamine, Heparin and Heparinase II Based on a Novel AIE Molecule with Four Carboxyl. Int. J. Biol. Macromol. 2020, 156, 1153–1159. [Google Scholar] [CrossRef]
- Gao, Y.; Wei, K.; Li, J.; Li, Y.; Hu, J. A Facile Four-armed AIE Fluorescent Sensor for Heparin and Protamine. Sens. Actuators B Chem. 2018, 277, 408–414. [Google Scholar] [CrossRef]
- Ding, Y.; Li, X.; Li, T.; Zhu, W.; Xie, Y. α-Monoacylated and α,α‘- and α,β‘-Diacylated Dipyrrins as Highly Sensitive Fluorescence “Turn-on” Zn2+ Probes. J. Org. Chem. 2013, 78, 5328–5338. [Google Scholar] [CrossRef]
- Yan, D.; He, Y.; Ge, Y.; Song, G. Fluorescence “Turn on-off” Detection of Heparin and Heparinase I Based on the Near-infrared Emission Polyethyleneimine Capped Ag2S Quantum Dots. Sens. Actuators B Chem. 2017, 240, 863–869. [Google Scholar] [CrossRef]
- Jun, M.E.; Roy, B.; Ahn, K.H. “Turn-on” Fluorescent Sensing with “Reactive” Probes. Chem. Commun. 2011, 47, 7583–7601. [Google Scholar] [CrossRef]
- Berova, N.; Gargiulo, D.; Derguini, F.; Nakanishi, K.; Harada, N. Unique Ultraviolet-vis Absorption and Circular Dichroic Exciton-Split Biscyanine Dye: Origin and Nature. J. Am. Chem. Soc. 1993, 115, 4769–4775. [Google Scholar] [CrossRef]
- Boiadjiev, S.E.; Lightner, D.A. Exciton Chirality. (A) Origins of and (B) Applications from Strongly Fluorescent Dipyrrinone Chromophores. Monatsch. Chem. 2005, 136, 489–508. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kostadinov, A.; Vasilev, A.; Baluschev, S.; Landfester, K. Aggregachromic Fluorogenic Asymmetric Cyanine Probes for Sensitive Detection of Heparin and Protamine. Molecules 2025, 30, 570. https://doi.org/10.3390/molecules30030570
Kostadinov A, Vasilev A, Baluschev S, Landfester K. Aggregachromic Fluorogenic Asymmetric Cyanine Probes for Sensitive Detection of Heparin and Protamine. Molecules. 2025; 30(3):570. https://doi.org/10.3390/molecules30030570
Chicago/Turabian StyleKostadinov, Anton, Aleksey Vasilev, Stanislav Baluschev, and Katharina Landfester. 2025. "Aggregachromic Fluorogenic Asymmetric Cyanine Probes for Sensitive Detection of Heparin and Protamine" Molecules 30, no. 3: 570. https://doi.org/10.3390/molecules30030570
APA StyleKostadinov, A., Vasilev, A., Baluschev, S., & Landfester, K. (2025). Aggregachromic Fluorogenic Asymmetric Cyanine Probes for Sensitive Detection of Heparin and Protamine. Molecules, 30(3), 570. https://doi.org/10.3390/molecules30030570