Recent Progress of Chemical Reactions Induced by Contact Electrification
Abstract
:1. Introduction
2. Theoretical Model of Charge Transfer for CE
3. CE-Chemistry Induced by S–S CE
4. Chemical Reactions Induced by S–L CE
4.1. S–L CE
4.2. Chemical Reactions Induced by S–L CE
4.3. Alternative Approaches to S–L CE
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hansen, L.; Wollmann, A.; Weers, M.; Benker, B.; Weber, A.P. Triboelectric Charging and Separation of Fine Powder Mixtures. Chem. Eng. Technol. 2020, 43, 933–941. [Google Scholar] [CrossRef]
- Zhang, W.; Shi, Y.; Li, Y.; Chen, X.; Shen, H. A Review: Contact Electrification on Special Interfaces. Front. Mater. 2022, 9, 909746. [Google Scholar] [CrossRef]
- Xu, Y.; Wu, S.; Zhu, Y.; Wu, J. An Adhesion Model for Contact Electrification. Int. J. Mech. Sci. 2024, 272, 109280. [Google Scholar] [CrossRef]
- Li, H.; Fang, X.; Li, R.; Liu, B.; Tang, H.; Ding, X.; Xie, Y.; Zhou, R.; Zhou, G.; Tang, Y. All-Printed Soft Triboelectric Nanogenerator for Energy Harvesting and Tactile Sensing. Nano Energy 2020, 78, 105288. [Google Scholar] [CrossRef]
- Mannerbro, R.; Ranlöf, M.; Robinson, N.; Forchheimer, R. Inkjet Printed Electrochemical Organic Electronics. Synth. Met. 2008, 158, 556–560. [Google Scholar] [CrossRef]
- Huang, S.; Yao, W.; Hu, J.; Xu, X. Tribological Performance and Lubrication Mechanism of Contact-Charged Electrostatic Spray Lubrication Technique. Tribol. Lett. 2015, 59, 28. [Google Scholar] [CrossRef]
- Su, Y.; Zhang, D.; Wang, B.; Chu, Z.; Liu, Z. Numerical Analysis of Droplet Transport Process in Composite Electrostatic Spraying (CES) Milling. J. Manuf. Process. 2022, 76, 236–250. [Google Scholar] [CrossRef]
- Pan, S.; Zhang, Z. Fundamental Theories and Basic Principles of Triboelectric Effect: A Review. Friction 2019, 7, 2–17. [Google Scholar] [CrossRef]
- Mitolo, M.; Di Lorenzo, G.; Stracqualursi, E.; Araneo, R. Electrostatic Hazards in Power Systems. In Proceedings of the 2024 IEEE International Conference on Environment and Electrical Engineering and 2024 IEEE Industrial and Commercial Power Systems Europe (EEEIC/I&CPS Europe), Roma, Italy, 17–20 June 2024; IEEE: Rome, Italy, 2024; pp. 1–6. [Google Scholar]
- Michael, J.B. Assessing the Trustworthiness of Electronic Systems. Computer 2019, 52, 80–83. [Google Scholar] [CrossRef]
- Niu, Y.; Li, Z.; Kong, B.; Wang, E.; Lou, Q.; Qiu, L.; Kong, X.; Wang, J.; Dong, M.; Li, B. Similar Simulation Study on the Characteristics of the Electric Potential Response to Coal Mining. J. Geophys. Eng. 2018, 15, 42–50. [Google Scholar] [CrossRef]
- Glor, M. Electrostatic Ignition Hazards in the Process Industry. J. Electrost. 2005, 63, 447–453. [Google Scholar] [CrossRef]
- Cai, C.; Luo, B.; Liu, Y.; Fu, Q.; Liu, T.; Wang, S.; Nie, S. Advanced Triboelectric Materials for Liquid Energy Harvesting and Emerging Application. Mater. Today 2022, 52, 299–326. [Google Scholar] [CrossRef]
- Qian, H.; Peng, P.; Fan, H.; Yang, Z.; Yang, L.; Zhou, Y.; Tan, D.; Yang, F.; Willatzen, M.; Amaratunga, G.; et al. Horizontal Transport in Ti3 C2 Tx MXene for Highly Efficient Osmotic Energy Conversion from Saline-Alkali Environments. Angew. Chem. Int. Ed. 2024, 63, e202414984. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.L. Triboelectric Nanogenerators as New Energy Technology for Self-Powered Systems and as Active Mechanical and Chemical Sensors. ACS Nano 2013, 7, 9533–9557. [Google Scholar] [CrossRef] [PubMed]
- Duque, M.; Murillo, G. Tapping-Actuated Triboelectric Nanogenerator with Surface Charge Density Optimization for Human Motion Energy Harvesting. Nanomaterials 2022, 12, 3271. [Google Scholar] [CrossRef]
- Mohamadbeigi, N.; Shooshtari, L.; Fardindoost, S.; Vafaiee, M.; Iraji Zad, A.; Mohammadpour, R. Self-Powered Triboelectric Nanogenerator Sensor for Detecting Humidity Level and Monitoring Ethanol Variation in a Simulated Exhalation Environment. Sci. Rep. 2024, 14, 1562. [Google Scholar] [CrossRef]
- Li, S.; Liu, J.; Wang, Z.L.; Wei, D. Mechano-Driven Chemical Reactions. Green. Energy Environ. 2024. [Google Scholar] [CrossRef]
- Mi, Q.; Dong, Y.; Ge, D.; Xie, S.; Tian, Y.; Zou, F.; Yu, H.-Y.; Tam, K.C. Scalable Manufacture of Efficient, Highly Stable, and Compact 3D Imitation Skin-Based Elastic Triboelectric Nanogenerator for Energy Harvesting and Self-Powered Sensing. Nano Energy 2024, 131, 110283. [Google Scholar] [CrossRef]
- Barkas, D.A.; Psomopoulos, C.S.; Papageorgas, P.; Kalkanis, K.; Piromalis, D.; Mouratidis, A. Sustainable Energy Harvesting through Triboelectric Nano—Generators: A Review of Current Status and Applications. Energy Procedia 2019, 157, 999–1010. [Google Scholar] [CrossRef]
- Wang, Y.; Jin, X.; Wang, W.; Niu, J.; Zhu, Z.; Lin, T. Efficient Triboelectric Nanogenerator (TENG) Output Management for Improving Charge Density and Reducing Charge Loss. ACS Appl. Electron. Mater. 2021, 3, 532–549. [Google Scholar] [CrossRef]
- Zhang, Q.; Jin, T.; Cai, J.; Xu, L.; He, T.; Wang, T.; Tian, Y.; Li, L.; Peng, Y.; Lee, C. Wearable Triboelectric Sensors Enabled Gait Analysis and Waist Motion Capture for IoT-Based Smart Healthcare Applications. Adv. Sci. 2022, 9, 2103694. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Dong, J.; Zhou, H.; Yang, X.; Xu, C.; Yao, Y.; Zhou, G.; Zhang, S.; Song, Q. Real-Time Acid Rain Sensor Based on a Triboelectric Nanogenerator Made of a PTFE–PDMS Composite Film. ACS Appl. Electron. Mater. 2021, 3, 4162–4171. [Google Scholar] [CrossRef]
- Hassan, Q.; Viktor, P.J.; Al-Musawi, T.; Mahmood Ali, B.; Algburi, S.; Alzoubi, H.M.; Khudhair Al-Jiboory, A.; Zuhair Sameen, A.; Salman, H.M.; Jaszczur, M. The Renewable Energy Role in the Global Energy Transformations. Renew. Energy Focus 2024, 48, 100545. [Google Scholar] [CrossRef]
- Beretta, D.; Neophytou, N.; Hodges, J.M.; Kanatzidis, M.G.; Narducci, D.; Martin- Gonzalez, M.; Beekman, M.; Balke, B.; Cerretti, G.; Tremel, W.; et al. Thermoelectrics: From History, a Window to the Future. Mater. Sci. Eng. R Rep. 2019, 138, 100501. [Google Scholar] [CrossRef]
- Zhao, Z.; Dai, Y.; Liu, D.; Zhou, L.; Li, S.; Wang, Z.L.; Wang, J. Rationally Patterned Electrode of Direct-Current Triboelectric Nanogenerators for Ultrahigh Effective Surface Charge Density. Nat. Commun. 2020, 11, 6186. [Google Scholar] [CrossRef]
- Lacks, D.J.; Mohan Sankaran, R. Contact Electrification of Insulating Materials. J. Phys. D Appl. Phys. 2011, 44, 453001. [Google Scholar] [CrossRef]
- Williams, M.W. Triboelectric Charging of Insulators—Evidence for Electrons Versus Ions. IEEE Trans. Ind. Applicat. 2011, 47, 1093–1099. [Google Scholar] [CrossRef]
- Harper, W.R. The Volta Effect as a Cause of Static Electrification. Proc. R. Soc. Lond. A 1951, 205, 83–103. [Google Scholar] [CrossRef]
- Wang, Z.L.; Wang, A.C. On the Origin of Contact-Electrification. Mater. Today 2019, 30, 34–51. [Google Scholar] [CrossRef]
- Xu, C.; Li, S.; Yang, Z.; Willatzen, M.; Lin Wang, Z.; Wei, D. Contact-Electro-Luminescence Triggered by Triboelectric Charge. Chem. Eng. J. 2024, 501, 157754. [Google Scholar] [CrossRef]
- Ouyang, Y.; Li, X.; Li, S.; Wang, Z.L.; Wei, D. Ionic Rectification by Dynamic Regulation of the Electric Double Layer at the Hydrogel Interface. ACS Appl. Mater. Interfaces 2024, 16, 18236–18244. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Coote, M.L.; Ciampi, S. Electrostatics and Electrochemistry: Mechanism and Scope of Charge-Transfer Reactions on the Surface of Tribocharged Insulators. J. Am. Chem. Soc. 2021, 143, 3019–3032. [Google Scholar] [CrossRef] [PubMed]
- Pandey, R.K.; Kakehashi, H.; Nakanishi, H.; Soh, S. Correlating Material Transfer and Charge Transfer in Contact Electrification. J. Phys. Chem. C 2018, 122, 16154–16160. [Google Scholar] [CrossRef]
- Chen, Z.; Lu, Y.; Li, R.; Orlando, R.J.; Manica, R.; Liu, Q. Liquid-Solid Triboelectric Nanogenerators for a Wide Operation Window Based on Slippery Lubricant-Infused Surfaces (SLIPS). Chem. Eng. J. 2022, 439, 135688. [Google Scholar] [CrossRef]
- McCarty, L.S.; Whitesides, G.M. Electrostatic Charging Due to Separation of Ions at Interfaces: Contact Electrification of Ionic Electrets. Angew. Chem. Int. Ed. 2008, 47, 2188–2207. [Google Scholar] [CrossRef]
- Grzybowski, B.A.; Fialkowski, M.; Wiles, J.A. Kinetics of Contact Electrification between Metals and Polymers. J. Phys. Chem. B 2005, 109, 20511–20515. [Google Scholar] [CrossRef]
- Toulemonde, M.; Dufour, C.; Meftah, A.; Paumier, E. Transient Thermal Processes in Heavy Ion Irradiation of Crystalline Inorganic Insulators. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 2000, 166–167, 903–912. [Google Scholar] [CrossRef]
- Song, F.; Wang, Z.; Ma, T.; Chen, L.; Li, H.; Wu, F. Enhanced Electron Cloud through π-π Interaction in Charge-Transfer Complexes for All-Solid-State Lithium Batteries. Nano Energy 2023, 117, 108893. [Google Scholar] [CrossRef]
- Ye, C.; Zhang, D.-S.; Chen, B.; Tung, C.-H.; Wu, L.-Z. Interfacial Charge Transfer Regulates Photoredox Catalysis. ACS Cent. Sci. 2024, 10, 529–542. [Google Scholar] [CrossRef]
- Baharfar, M.; Hillier, A.C.; Mao, G. Charge-Transfer Complexes: Fundamentals and Advances in Catalysis, Sensing, and Optoelectronic Applications. Adv. Mater. 2024, 36, 2406083. [Google Scholar] [CrossRef]
- Šutka, A.; Mālnieks, K.; Lapčinskis, L.; Timusk, M.; Kalniņš, K.; Kovaļovs, A.; Bitenieks, J.; Knite, M.; Stevens, D.; Grunlan, J. Contact Electrification between Identical Polymers as the Basis for Triboelectric/Flexoelectric Materials. Phys. Chem. Chem. Phys. 2020, 22, 13299–13305. [Google Scholar] [CrossRef] [PubMed]
- Xu, C.; Zhang, B.; Wang, A.C.; Zou, H.; Liu, G.; Ding, W.; Wu, C.; Ma, M.; Feng, P.; Lin, Z.; et al. Contact-Electrification between Two Identical Materials: Curvature Effect. ACS Nano 2019, 13, acsnano.8b08533. [Google Scholar] [CrossRef] [PubMed]
- Sobolev, Y.I.; Adamkiewicz, W.; Siek, M.; Grzybowski, B.A. Charge Mosaics on Contact-Electrified Dielectrics Result from Polarity-Inverting Discharges. Nat. Phys. 2022, 18, 1347–1355. [Google Scholar] [CrossRef]
- Baytekin, H.T.; Patashinski, A.Z.; Branicki, M.; Baytekin, B.; Soh, S.; Grzybowski, B.A. The Mosaic of Surface Charge in Contact Electrification. Science 2011, 333, 308–312. [Google Scholar] [CrossRef]
- Nie, J.; Ren, Z.; Xu, L.; Lin, S.; Zhan, F.; Chen, X.; Wang, Z.L. Probing Contact-Electrification-Induced Electron and Ion Transfers at a Liquid–Solid Interface. Adv. Mater. 2020, 32, 1905696. [Google Scholar] [CrossRef]
- Qin, C.; Wang, D.; Liu, Y.; Yang, P.; Xie, T.; Huang, L.; Zou, H.; Li, G.; Wu, Y. Tribo-Electrochemistry Induced Artificial Solid Electrolyte Interface by Self-Catalysis. Nat. Commun. 2021, 12, 7184. [Google Scholar] [CrossRef]
- Liu, C.; Bard, A.J. Electrostatic Electrochemistry: Nylon and Polyethylene Systems. Chem. Phys. Lett. 2010, 485, 231–234. [Google Scholar] [CrossRef]
- Melentiev, R.; Tao, R.; Fatta, L.; Tevtia, A.K.; Verghese, N.; Lubineau, G. Towards Decoupling Chemical and Mechanical Adhesion at the Electroplated Metal/Polymer Interface via Precision Surface Texturing. Surf. Interfaces 2023, 38, 102875. [Google Scholar] [CrossRef]
- Ochoa-Putman, C.; Vaidya, U.K. Mechanisms of Interfacial Adhesion in Metal–Polymer Composites—Effect of Chemical Treatment. Compos. Part A Appl. Sci. Manuf. 2011, 42, 906–915. [Google Scholar] [CrossRef]
- Melentiev, R.; Yudhanto, A.; Tao, R.; Vuchkov, T.; Lubineau, G. Metallization of Polymers and Composites: State-of-the-Art Approaches. Mater. Des. 2022, 221, 110958. [Google Scholar] [CrossRef]
- Wang, Z.; Berbille, A.; Feng, Y.; Li, S.; Zhu, L.; Tang, W.; Wang, Z.L. Contact-Electro-Catalysis for the Degradation of Organic Pollutants Using Pristine Dielectric Powders. Nat. Commun. 2022, 13, 130. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Berbille, A.; Wang, T.; Zhao, X.; Li, S.; Su, Y.; Li, H.; Zhang, G.; Wang, Z.; Zhu, L.; et al. Defect Passivation Toward Designing High-Performance Fluorinated Polymers for Liquid–Solid Contact-Electrification and Contact-Electro-Catalysis. Adv. Funct. Mater. 2024, 34, 2315817. [Google Scholar] [CrossRef]
- Su, Y.; Berbille, A.; Li, X.-F.; Zhang, J.; PourhosseiniAsl, M.; Li, H.; Liu, Z.; Li, S.; Liu, J.; Zhu, L.; et al. Reduction of Precious Metal Ions in Aqueous Solutions by Contact-Electro-Catalysis. Nat. Commun. 2024, 15, 4196. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Zhang, Z.; Peng, P.; Li, X.; Wang, Z.L.; Wei, D. A Green Approach to Induce and Steer Chemical Reactions Using Inert Solid Dielectrics. Nano Energy 2024, 122, 109286. [Google Scholar] [CrossRef]
- Xia, X.; Wang, H.; Guo, H.; Xu, C.; Zi, Y. On the Material-Dependent Charge Transfer Mechanism Of The Contact Electrification. Nano Energy 2020, 78, 105343. [Google Scholar] [CrossRef]
- Helseth, L.E. The Influence of Microscale Surface Roughness on Water-Droplet Contact Electrification. Langmuir 2019, 35, 8268–8275. [Google Scholar] [CrossRef]
- Nie, J.; Wang, Z.; Ren, Z.; Li, S.; Chen, X.; Lin Wang, Z. Power Generation from the Interaction of a Liquid Droplet and a Liquid Membrane. Nat. Commun. 2019, 10, 2264. [Google Scholar] [CrossRef]
- Xiao, S.; Wu, H.; Li, N.; Tan, X.; Deng, H.; Zhang, X.; Tang, J.; Li, Y. Triboelectric Mechanism of Oil-Solid Interface Adopted for Self-Powered Insulating Oil Condition Monitoring. Adv. Sci. 2023, 10, 2207230. [Google Scholar] [CrossRef]
- Yoo, D.; Kim, S.J.; Joung, Y.; Jang, S.; Choi, D.; Kim, D.S. Lotus Leaf-Inspired Droplet-Based Electricity Generator with Low-Adhesive Superhydrophobicity for a Wide Operational Droplet Volume Range and Boosted Electricity Output. Nano Energy 2022, 99, 107361. [Google Scholar] [CrossRef]
- Li, W.; Ma, L.; Xu, X.; Luo, J. Bidirectional Electron Transfer in Triboelectrification Caused by Friction-Induced Change in Surface Electronic Structure. Nano Energy 2023, 114, 108667. [Google Scholar] [CrossRef]
- Hu, J.; Iwamoto, M.; Chen, X. A Review of Contact Electrification at Diversified Interfaces and Related Applications on Triboelectric Nanogenerator. Nano-Micro Lett. 2024, 16, 7. [Google Scholar] [CrossRef] [PubMed]
- Xu, C.; Zi, Y.; Wang, A.C.; Zou, H.; Dai, Y.; He, X.; Wang, P.; Wang, Y.; Feng, P.; Li, D.; et al. On the Electron-Transfer Mechanism in the Contact-Electrification Effect. Adv. Mater. 2018, 30, 1706790. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Zhou, L.; Cheng, P.; Yin, X.; Liu, D.; Li, X.; Guo, H.; Wang, Z.L.; Wang, J. Surface Charge Density of Triboelectric Nanogenerators: Theoretical Boundary and Optimization Methodology. Appl. Mater. Today 2020, 18, 100496. [Google Scholar] [CrossRef]
- Bai, P.; Bazant, M.Z. Charge Transfer Kinetics at the Solid–Solid Interface in Porous Electrodes. Nat. Commun. 2014, 5, 3585. [Google Scholar] [CrossRef] [PubMed]
- Senna, M. Charge Transfer and Hetero-Bonding across the Solid–Solid Interface at Room Temperature. Mater. Sci. Eng. A 2001, 304–306, 39–44. [Google Scholar] [CrossRef]
- Wu, X.; Chen, X.; Zhang, Q.M.; Tan, D.Q. Advanced Dielectric Polymers for Energy Storage. Energy Storage Mater. 2022, 44, 29–47. [Google Scholar] [CrossRef]
- Diao, C.; Wang, H.; Wang, B.; He, Y.; Hou, Y.; Zheng, H. Overviews of Dielectric Energy Storage Materials and Methods to Improve Energy Storage Density. J. Mater. Sci. Mater. Electron. 2022, 33, 21199–21222. [Google Scholar] [CrossRef]
- Pattipaka, S.; Lim, Y.; Son, Y.H.; Bae, Y.M.; Peddigari, M.; Hwang, G.-T. Ceramic-Based Dielectric Materials for Energy Storage Capacitor Applications. Materials 2024, 17, 2277. [Google Scholar] [CrossRef]
- Nag, A.; Baksi, A.; Ghosh, J.; Kumar, V.; Bag, S.; Mondal, B.; Ahuja, T.; Pradeep, T. Tribochemical Degradation of Polytetrafluoroethylene in Water and Generation of Nanoplastics. ACS Sustain. Chem. Eng. 2019, 7, 17554–17558. [Google Scholar] [CrossRef]
- Liu, C.; Bard, A.J. Electrostatic Electrochemistry at Insulators. Nat. Mater. 2008, 7, 505–509. [Google Scholar] [CrossRef]
- Zhao, J.; Zhang, X.; Xu, J.; Tang, W.; Lin Wang, Z.; Ru Fan, F. Contact-electro-catalysis for Direct Synthesis of H2O2 under Ambient Conditions. Angew. Chem. Int. Ed. 2023, 62, e202300604. [Google Scholar] [CrossRef] [PubMed]
- Berbille, A.; Li, X.; Su, Y.; Li, S.; Zhao, X.; Zhu, L.; Wang, Z.L. Mechanism for Generating H2O2 at Water-Solid Interface by Contact-Electrification. Adv. Mater. 2023, 35, 2304387. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Bard, A.J. Electrons on Dielectrics and Contact Electrification. Chem. Phys. Lett. 2009, 480, 145–156. [Google Scholar] [CrossRef]
- Baytekin, B.; Baytekin, H.T.; Grzybowski, B.A. What Really Drives Chemical Reactions on Contact Charged Surfaces? J. Am. Chem. Soc. 2012, 134, 7223–7226. [Google Scholar] [CrossRef]
- Zhang, J.; Rogers, F.J.M.; Darwish, N.; Gonçales, V.R.; Vogel, Y.B.; Wang, F.; Gooding, J.J.; Peiris, M.; Chandramalika, R.; Jia, G.; et al. Electrochemistry on Tribocharged Polymers Is Governed by the Stability of Surface Charges Rather than Charging Magnitude. J. Am. Chem. Soc. 2019, 141, 5863–5870. [Google Scholar] [CrossRef]
- Suh, I.-Y.; Jeon, J.; Park, M.J.; Ryu, H.; Park, Y.J.; Kim, S.-W. Recent Studies on Solid–Liquid Contact Electrification. ACS Appl. Electron. Mater. 2024, 6, 4826–4842. [Google Scholar] [CrossRef]
- Byun, K.-E.; Cho, Y.; Seol, M.; Kim, S.; Kim, S.-W.; Shin, H.-J.; Park, S.; Hwang, S. Control of Triboelectrification by Engineering Surface Dipole and Surface Electronic State. ACS Appl. Mater. Interfaces 2016, 8, 18519–18525. [Google Scholar] [CrossRef]
- Xu, W.; Zheng, H.; Liu, Y.; Zhou, X.; Zhang, C.; Song, Y.; Deng, X.; Leung, M.; Yang, Z.; Xu, R.X.; et al. A Droplet-Based Electricity Generator with High Instantaneous Power Density. Nature 2020, 578, 392–396. [Google Scholar] [CrossRef]
- Kwak, S.S.; Lin, S.; Lee, J.H.; Ryu, H.; Kim, T.Y.; Zhong, H.; Chen, H.; Kim, S.-W. Triboelectrification-Induced Large Electric Power Generation from a Single Moving Droplet on Graphene/Polytetrafluoroethylene. ACS Nano 2016, 10, 7297–7302. [Google Scholar] [CrossRef]
- EI-Kazzaz, A.; Rose-lnnes, A.C. Contact charging of insulators by liquid metals. J. Electrost. 1985, 16, 157–163. [Google Scholar] [CrossRef]
- Yatsuzuka, K.; Higashiyama, Y.; Asano, K. Electrification of Polymer Surface Caused by Sliding Ultrapure Water. J. Electrost. 1994, 3, 157–171. [Google Scholar] [CrossRef]
- Burgo, T.A.L.; Galembeck, F.; Pollack, G.H. Where Is Water in the Triboelectric Series? J. Electrost. 2016, 80, 30–33. [Google Scholar] [CrossRef]
- Lin, S.; Xu, L.; Chi Wang, A.; Wang, Z.L. Quantifying Electron-Transfer in Liquid-Solid Contact Electrification and the Formation of Electric Double-Layer. Nat. Commun. 2020, 11, 399. [Google Scholar] [CrossRef]
- Lin, S.; Xu, L.; Zhu, L.; Chen, X.; Wang, Z.L. Electron Transfer in Nanoscale Contact Electrification: Photon Excitation Effect. Adv. Mater. 2019, 31, 1901418. [Google Scholar] [CrossRef]
- Willatzen, M.; Lew Yan Voon, L.C.; Wang, Z.L. Quantum Theory of Contact Electrification for Fluids and Solids. Adv. Funct. Mater. 2020, 30, 1910461. [Google Scholar] [CrossRef]
- Lin, S.; Chen, X.; Wang, Z.L. Contact Electrification at the Liquid–Solid Interface. Chem. Rev. 2022, 122, 5209–5232. [Google Scholar] [CrossRef]
- Loh, Z.-H.; Doumy, G.; Arnold, C.; Kjellsson, L.; Southworth, S.H.; Al Haddad, A.; Kumagai, Y.; Tu, M.-F.; Ho, P.J.; March, A.M.; et al. Observation of the Fastest Chemical Processes in the Radiolysis of Water. Science 2020, 367, 179–182. [Google Scholar] [CrossRef]
- Gauduel, Y.; Pommeret, S. Some Evidence of Ultrafast H2O+-Water Molecule Reaction in Femtosecond Photoionization of Pure Liquid Water: Influence on Geminate Pair Recombination Dynamics. Chem. Phys. 1990, 149, 1–10. [Google Scholar] [CrossRef]
- Chen, B.; Xia, Y.; He, R.; Sang, H.; Zhang, W.; Li, J.; Chen, L.; Wang, P.; Guo, S.; Yin, Y.; et al. Water–Solid Contact Electrification Causes Hydrogen Peroxide Production from Hydroxyl Radical Recombination in Sprayed Microdroplets. Proc. Natl. Acad. Sci. USA 2022, 119, e2209056119. [Google Scholar] [CrossRef]
- Zhang, J.; Lin, S.; Wang, Z.L. Electrostatic Charges Regulate Chemiluminescence by Electron Transfer at the Liquid–Solid Interface. J. Phys. Chem. B 2022, 126, 2754–2760. [Google Scholar] [CrossRef]
- Lui, T.-Y.; Chen, X.; Zhang, S.; Hu, D.; Dominic Chan, T.-W. Peptide Oxidation Induced by Liquid–Solid Contact Electrification as Revealed in Liquid Microjunction-Surface Sampling Probe Mass Spectrometry. Anal. Chem. 2023, 95, 9060–9067. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Liu, Y.; Wang, Y.; Li, S.; Liu, Y.; Wang, Z.L.; Jiang, P. The Process of Free Radical Generation in Contact Electrification at Solid-Liquid Interface. Nano Energy 2023, 112, 108464. [Google Scholar] [CrossRef]
- Chen, X.; Liu, Z.; Wang, Z. The process of interfacial electron transfer in liquid-solid contact and the two-step mechanism model of EDL structure. Sci. Sin. Tech. 2023, 53, 844–859. [Google Scholar] [CrossRef]
- Liu, C.; Bard, A.J. Chemical Redox Reactions Induced by Cryptoelectrons on a PMMA Surface. J. Am. Chem. Soc. 2009, 131, 6397–6401. [Google Scholar] [CrossRef]
- Liu, J.; Yang, Z.; Li, S.; Du, Y.; Zhang, Z.; Shao, J.; Willatzen, M.; Wang, Z.L.; Wei, D. Nonaqueous Contact-Electro-Chemistry via Triboelectric Charge. J. Am. Chem. Soc. 2024, 146, 31574–31584. [Google Scholar] [CrossRef]
- Gao, N.; Ren, G.; Zhang, M.; Mao, L. Electroless Deposition of Palladium Nanoparticles on Graphdiyne Boosts Electrochemiluminescence. J. Am. Chem. Soc. 2024, 146, 3836–3843. [Google Scholar] [CrossRef]
- Peng, Y.; Yu, L.; Sheng, M.; Wang, Q.; Jin, Z.; Huang, J.; Yang, X. Room-Temperature Synthesized Iron/Cobalt Metal–Organic Framework Nanosheets with Highly Efficient Catalytic Activity toward Luminol Chemiluminescence Reaction. Anal. Chem. 2023, 95, 18436–18442. [Google Scholar] [CrossRef]
- Willatzen, M.; Wang, Z.L. Contact Electrification by Quantum-Mechanical Tunneling. Research 2019, 2019, 6528689. [Google Scholar] [CrossRef]
- Zhang, D.L.; Shi, J.M.; Wang, Z.L.; Tang, W. Probing Polymer Contact Electrification by Gamma-Ray Radiation. Front. Mater. 2022, 9, 878885. [Google Scholar] [CrossRef]
- Wang, Z.; Dong, X.; Li, X.-F.; Feng, Y.; Li, S.; Tang, W.; Wang, Z.L. A Contact-Electro-Catalysis Process for Producing Reactive Oxygen Species by Ball Milling of Triboelectric Materials. Nat. Commun. 2024, 15, 757. [Google Scholar] [CrossRef]
- Zhang, M.; Song, W.-Z.; Chen, T.; Sun, D.-J.; Zhang, D.-S.; Li, C.-L.; Li, R.; Zhang, J.; Ramakrishna, S.; Long, Y.-Z. Rotation-Mode Liquid-Solid Triboelectric Nanogenerator for Efficient Contact-Electro-Catalysis and Adsorption. Nano Energy 2023, 110, 108329. [Google Scholar] [CrossRef]
- Xu, C.; Li, S.; Zhang, Y.; Wang, Z.; Wang, Z.L.; Wei, D. Contact-Electro-Chemistry Induced by Flow Electrification in Dielectric Tubes. Nano Energy 2025, 134, 110526. [Google Scholar] [CrossRef]
- Jiang, B.; Xue, X.; Mu, Z.; Zhang, H.; Li, F.; Liu, K.; Wang, W.; Zhang, Y.; Li, W.; Yang, C.; et al. Contact-Piezoelectric Bi-Catalysis of an Electrospun ZnO@PVDF Composite Membrane for Dye Decomposition. Molecules 2022, 27, 8579. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Lu, Y.; Liu, X.; Li, J.; Liu, Q. Novel Magnetic Catalysts for Organic Pollutant Degradation via Contact Electro-Catalysis. Nano Energy 2023, 108, 108198. [Google Scholar] [CrossRef]
- Zhang, Y.; Kang, T.; Han, X.; Yang, W.; Gong, W.; Li, K.; Guo, Y. Molecular-Functionalized Metal-Organic Frameworks Enabling Contact-Electro-Catalytic Organic Decomposition. Nano Energy 2023, 111, 108433. [Google Scholar] [CrossRef]
Property | S–S CE | S–L CE |
---|---|---|
Charge Transfer Efficiency | Moderate to High, depends on surface interaction | High, influenced by solvent and interfacial properties |
Reaction Rate | Faster in dry conditions, limited by surface area | Can be enhanced by solvent properties and humidity |
Interfacial Dynamics | Primarily surface charge transfer, limited by surface roughness and contact force | Affected by solvent composition, ionic mobility, and surface wettability |
Material Requirements | Requires high surface quality, minimal contamination | Requires compatible solvents for optimal performance |
Merits | Simple system, potential for robust materials | High control over reaction rates, adaptable to various environments |
Demerits | Limited scalability, sensitive to surface degradation | Dependent on solvent stability, possible side reactions with solvent |
Applications | Triboelectric energy harvesting, sensors, coatings | catalytic reactions, green chemistry |
Challenges | Surface degradation, difficulty in controlling charge transfer | Solvent-induced variations, material compatibility issues |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huo, X.; Li, S.; Sun, B.; Wang, Z.L.; Wei, D. Recent Progress of Chemical Reactions Induced by Contact Electrification. Molecules 2025, 30, 584. https://doi.org/10.3390/molecules30030584
Huo X, Li S, Sun B, Wang ZL, Wei D. Recent Progress of Chemical Reactions Induced by Contact Electrification. Molecules. 2025; 30(3):584. https://doi.org/10.3390/molecules30030584
Chicago/Turabian StyleHuo, Xinyi, Shaoxin Li, Bing Sun, Zhong Lin Wang, and Di Wei. 2025. "Recent Progress of Chemical Reactions Induced by Contact Electrification" Molecules 30, no. 3: 584. https://doi.org/10.3390/molecules30030584
APA StyleHuo, X., Li, S., Sun, B., Wang, Z. L., & Wei, D. (2025). Recent Progress of Chemical Reactions Induced by Contact Electrification. Molecules, 30(3), 584. https://doi.org/10.3390/molecules30030584