Antimicrobial Lobophorins from Endophytic Strain Streptomyces sp. R6 Obtained from Azadirachta indica
Abstract
:1. Introduction
2. Results
2.1. Elucidation of Chemical Structures
2.2. In Vitro Antimicrobial Activity Assay
2.3. Antifungal Activity Against Botrytis Cinerea In Vivo
3. Discussion
4. Materials and Methods
4.1. Isolation of Streptomyces sp. R6
4.2. Production and Extraction of Antimicrobial Compounds
4.3. Purification
4.4. In Vitro Antimicrobial Assay
4.5. In Vivo Antifungal Activity Against Botrytis Cinerea by Greenhouse Pot Experiments
4.6. Data Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gai, Y.P.; Wang, H.K. Plant disease: A growing threat to global food security. Agronomy 2024, 14, 1615. [Google Scholar] [CrossRef]
- Savary, S.; Ficke, A.; Aubertot, J.N.; Hollier, C. Crop losses due to diseases and their implications for global food production losses and food security. Food Sec. 2012, 4, 519–537. [Google Scholar] [CrossRef]
- Syed Ab Rahman, S.F.; Singh, E.; Pieterse, C.M.J.; Schenk, P.M. Emerging microbial biocontrol strategies for plant pathogens. Plant Sci. 2018, 267, 102–111. [Google Scholar] [CrossRef]
- Chakraborty, S.; Newton, A.C. Climate change, plant diseases and food security: An overview. Plant Pathol. 2011, 60, 2–14. [Google Scholar] [CrossRef]
- Savary, S.; Willocquet, L.; Pethybridge, S.J.; Esker, P.; McRoberts, N.; Nelson, A. The global burden of pathogens and pests on major food crops. Nat. Ecol. Evol. 2019, 3, 430–439. [Google Scholar] [CrossRef]
- Shafiq, M.; Okoye, C.O.; Nazar, M.; Khattak, W.A.; Algammal, A.M. Ecological consequences of antimicrobial residues and bioactive chemicals on antimicrobial resistance in agroecosystems. J. Adv. Res. 2024, in press. [CrossRef]
- Lucas, J.A.; Hawkins, N.J.; Fraaije, B.A. The evolution of fungicide resistance. Adv. Appl. Microbiol. 2015, 90, 29–92. [Google Scholar]
- Elnahal, A.S.; El-Saadony, M.T.; Saad, A.M.; Desoky, E.S.M.; El-Tahan, A.M.; Rady, M.M.; AbuQamar, S.F.; El-Tarabily, K.A. The use of microbial inoculants for biological control, plant growth promotion, and sustainable agriculture: A review. Eur. J. Plant Pathol. 2022, 162, 759–792. [Google Scholar] [CrossRef]
- Bosso, L.; Scelza, R.; Varlese, R.; Meca, G.; Testa, A.; Rao, M.A.; Gristinzio, G. Assessing the effectiveness of Byssochlamys nivea and Scopulariopsis brumptii in pentachlorophenol removal and biological control of two Phytophthora species. Fungal Biol. 2016, 120, 645–653. [Google Scholar] [CrossRef]
- Sharma, M.; Tarafdar, A.; Ghosh, R.; Gopalakrishanan, S. Biological control as a tool for eco-friendly management of plant pathogens. Advances in Soil Microbiology: Recent Trends and Future Prospects; Springer: Berlin/Heidelberg, Germany, 2017; Volume 2, pp. 153–188. [Google Scholar]
- Strobel, G.A. Endophytes as sources of bioactive products. Microbes Infect. 2003, 5, 535–544. [Google Scholar] [CrossRef]
- Strobel, G.; Daisy, B. Bioprospecting for microbial endophytes and their natural products. Microbiol. Mol. Biol. Rev. 2003, 67, 491–502. [Google Scholar] [CrossRef]
- Berdy, J. Bioactive microbial metabolites. J. Antibiot. 2005, 58, 1–26. [Google Scholar] [CrossRef] [PubMed]
- Jakubiec-Krzesniak, K.; Rajnisz-Mateusiak, A.; Guspiel, A.; Ziemska, J.; Solecka, J. Secondary metabolites of actinomycetes and their antibacterial, antifungal and antiviral properties. Pol. J. Microbiol. 2018, 67, 259–272. [Google Scholar] [CrossRef] [PubMed]
- Newman, D.J.; Cragg, G.M. Natural products as sources of new drugs from 1981 to 2014. J. Nat. Prod. 2016, 79, 629–661. [Google Scholar] [CrossRef]
- Genilloud, O. Actinomycetes: Still a source of novel antibiotics. Nat. Prod. Rep. 2017, 34, 1203–1232. [Google Scholar] [CrossRef]
- Bernardi, D.I.; das Chagas, F.O.; Monteiro, A.F.; dos Santos, G.F.; de Souza Berlinck, R.G. Secondary metabolites of endophytic actinomycetes: Isolation, synthesis, biosynthesis, and biological activities. In Progress in the Chemistry of Organic Natural Products; Kinghorn, A.D., Falk, H., Gibbons, S., Kobayashi, J., Asakawa, Y., Liu, J.K., Eds.; Springer: Berlin/Heidelberg, Germany, 2019; Volume 108, pp. 207–296. [Google Scholar]
- Lin, Z.J.; Koch, M.; Pond, C.D.; Mabeza, G.; Seronay, R.A.; Concepcion, G.P.; Barrows, L.R.; Olivera, B.M.; Schmidt, E.W. Structure and activity of lobophorins from a turrid mollusk-associated Streptomyces sp. J. Antibiot. 2014, 67, 121–126. [Google Scholar] [CrossRef]
- Jiang, Z.D.; Jensen, P.R.; Fenical, W. Lobophorins A and B, new antiinflammatory macrolides produced by a tropical marine bacterium. Bioorg. Med. Chem. Lett. 1999, 9, 2003–2006. [Google Scholar] [CrossRef]
- Niu, S.W.; Li, S.M.; Chen, Y.C.; Tian, X.P.; Zhang, H.B.; Zhang, G.T.; Zhang, W.M.; Yang, X.H.; Zhang, S.; Ju, J.H.; et al. Lobophorins E and F, new spirotetronate antibiotics from a South China sea-derived Streptomyces sp. SCSIO 01127. J. Antibiot. 2011, 64, 711–716. [Google Scholar] [CrossRef]
- Chen, Y.; Shafi, J.; Li, M.H.; Fu, D.N.; Ji, M.S. Insecticidal activity of endophytic actinomycetes isolated from Azadirachta indica against Myzus persicae. Arch. Biol. Sci. 2018, 70, 52. [Google Scholar] [CrossRef]
- Ding, L.; Maier, A.; Fiebig, H.H.; Gorls, H.; Lin, W.H.; Peschel, G.; Hertweck, C. Divergolides A–D from a mangrove endophyte reveal an unparalleled plasticity in ansa-macrolide biosynthesis. Angw. Chem. Int. Ed. 2011, 50, 1630–1634. [Google Scholar] [CrossRef]
- Li, S.M.; Xiao, J.; Zhu, Y.G.; Zhang, G.T.; Yang, C.F.; Zhang, H.B.; Ma, L.; Zhang, C.S. Dissecting glycosylation steps in lobophorin biosynthesis implies an iterative glycosyltransferase. Org. Lett. 2013, 15, 1374–1377. [Google Scholar] [CrossRef] [PubMed]
- Tan, B.; Chen, S.Q.; Zhang, Q.B.; Chen, Y.H.; Zhu, Y.G.; Khan, I.; Zhang, W.M.; Zhang, C.S. Heterologous expression leads to discovery of diversified lobophorin analogues and a flexible glycosyltransferase. Org. Lett. 2020, 22, 1062–1066. [Google Scholar] [CrossRef]
- Tian, H.; Shafi, J.; Ji, M.S.; Bi, Y.H.; Yu, Z.G. Antimicrobial metabolites from Streptomyces sp. SN0280. J. Nat. Prod. 2017, 80, 1015–1019. [Google Scholar] [CrossRef]
- Wang, J.F.; He, W.J.; Huang, X.L.; Tian, X.P.; Liao, S.R.; Yang, B.; Wang, F.; Zhou, X.J.; Liu, Y.H. Antifungal new oxepine-containing alkaloids and xanthones from the deep-sea-derived fungus Aspergillus versicolor SCSIO 05879. J. Agric. Food Chem. 2016, 64, 2910–2916. [Google Scholar] [CrossRef]
- Le Dang, Q.; Shin, T.S.; Park, M.S.; Choi, Y.H.; Choi, G.J.; Jang, K.S.; Kim, I.S.; Kim, J.C. Antimicrobial activities of novel mannosyl lipids isolated from the biocontrol fungus Simplicillium lamellicola BCP against phytopathogenic bacteria. J. Agric. Food Chem. 2014, 62, 3363–3370. [Google Scholar] [CrossRef]
- Song, J.; Ling, L.; Xu, X.; Jiang, M.Q.; Guo, L.F.; Pang, Q.Y.; Xiang, W.S.; Zhao, J.W.; Wang, X.J. Biological control of gray mold of tomato by Bacillus altitudinis B1-15. Biol. Control. 2023, 183, 105247. [Google Scholar] [CrossRef]
- Toral, L.; Rodríguez, M.; Béjar, V.; Sampedro, I. Crop protection against Botrytis cinerea by rhizhosphere biological control agent Bacillus velezensis XT1. Microorganisms 2024, 8, 992. [Google Scholar] [CrossRef]
- Zhang, H.; White-Phillip, J.A.; Melancon, C.E.; Kwon, H.J.; Yu, W.L.; Liu, H.W. Elucidation of the kijanimicin gene cluster: Insights into the biosynthesis of spirotetronate antibiotics and nitrosugars. J. Am. Chem. Soc. 2007, 129, 14670–14683. [Google Scholar] [CrossRef]
- Vieweg, L.; Reichau, S.; Schobert, R.; Leadlay, P.F.; Süssmuth, R.D. Recent advances in the field of bioactive tetronates. Nat. Prod. Rep. 2014, 31, 1554–1584. [Google Scholar] [CrossRef]
- Euanorasetr, J.; Intra, B.; Thunmrongsiri, N.; Limthongkul, J.; Ubol, S.; Anuegoonpipat, A.; Kurosu, T.; Ikuta, K.; Nihira, T.; Panbangred, W. In vitro antiviral activity of spirotetronate compounds against dengue virus serotype 2. J. Gen. Appl. Microbiol. 2019, 65, 197–203. [Google Scholar] [CrossRef]
- Wei, R.B.; Xi, T.; Li, J.; Wang, P.; Li, F.C.; Lin, Y.C.; Qin, S. Lobophorin C and D, new kijanimicin derivatives from a marine sponge-associated actinomycetal strain AZS17. Mar. Drugs. 2011, 9, 359–368. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.X.; Wang, J.; Guo, H.; Hou, W.Y.; Yang, N.; Ren, B.; Liu, M.; Dai, H.Q.; Liu, X.T.; Song, F.H.; et al. Three antimycobacterial metabolites identified from a marine-derived Streptomyces sp. MS100061. Appl. Microbiol. Biotechnol. 2013, 97, 3885–3892. [Google Scholar] [CrossRef] [PubMed]
- Pan, H.Q.; Zhang, S.Y.; Wang, N.; Li, Z.L.; Hua, H.M.; Hu, J.C.; Wang, S.J. New spirotetronate antibiotics, lobophorins H and I, from a South China Sea-derived Streptomyces sp. 12A35. Mar. Drugs. 2013, 11, 3891–3901. [Google Scholar] [CrossRef]
- Cruz, P.G.; Fribley, A.M.; Miller, J.R.; Larsen, M.J.; Schultz, P.J.; Jacob, R.T.; Castillo, G.T.; Kaufman, R.J.; Sherman, D.H. Novel lobophorins inhibit oral cancer cell growth and induce Atf4- and Chop-dependent cell death in murine fibroblasts. ACS Med. Chem. Lett. 2015, 6, 877–881. [Google Scholar] [CrossRef]
- Braña, A.F.; Sarmientovizcaíno, A.; Osset, M.; Pérez-Victoria, I.; Martín, J.; Pedro, D.N.; Díaz, C.; Vicente, F.; Reyes, F.; García, L.A.; et al. Lobophorin K, a new natural product with cytotoxic activity produced by Streptomyces sp. M-207 associated with the deep-sea coral Lophelia pertusa. Mar. Drugs. 2017, 15, 144. [Google Scholar] [CrossRef]
- Luo, M.H.; Tang, L.J.; Dong, Y.L.; Huang, H.B.; Deng, Z.X.; Sun, Y.H. Antibacterial natural products lobophorin L and M from the marine-derived Streptomyces sp. 4506. Nat. Prod. Res. 2020, 27, 5581–5587. [Google Scholar] [CrossRef]
- Bosso, L.; Lacatena, F.; Varlese, R.; Nocerino, S.; Cristinzio, G.; Russo, D. Plant pathogens but not antagonists change in soil fungal communities across a land abandonment gradient in a mediterranean landscape. Acta Oecol. 2017, 78, 1–6. [Google Scholar] [CrossRef]
- Vurukonda, S.S.K.P.; Davide, G.; Stefani, E. Plant growth promoting and biocontrol activity of Streptomyces spp. as endophytes. Int. J. Mol. Sci. 2018, 19, 952. [Google Scholar] [CrossRef]
- Nakajima, M.; Akutsu, K. Virulence factors of Botrytis cinerea. J. Gen. Plant Pathol. 2014, 80, 15–23. [Google Scholar] [CrossRef]
- De Miccolis Angelini, R.M.; Rotolo, C.; Masiello, M.; Pollastro, S.; Ishii, H.; Faretra, F. Genetic analysis and molecular characterisation of laboratory and field mutants of Botryotinia fuckeliana (Botrytis cinerea) resistant to QoI fungicides. Pest Manage. Sci. 2012, 68, 1231–1240. [Google Scholar] [CrossRef]
- Dean, R.; Van Kan, J.A.L.; Pretorius, Z.A.; Hammond-Kosack, K.E.; Di Pietro, A.; Spanu, P.D.; Rudd, J.J.; Dickman, M.; Kahmann, R.; Ellis, J.; et al. The Top 10 fungal pathogens in molecular plant pathology. Mol. Plant Pathol. 2012, 13, 414–430. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.L.; Du, Y.; Liu, C.H.; Yang, X.L.; Qin, P.W.; Qi, Z.Q.; Ji, M.S.; Li, X.H. Development of novel 2-substituted acylaminoethylsulfonamide derivatives as fungicides against Botrytis cinerea. Bioorg. Chem. 2019, 87, 56–69. [Google Scholar] [CrossRef]
- Harris, C.A.; Renfrew, M.J.; Woolridge, M.W. Assessing the risks of pesticide residues to consumers: Recent and future developments. Food Addit. Contam. 2001, 18, 1124–1129. [Google Scholar] [CrossRef]
- Pimentel, D.; Mclaughlin, L.; Zepp, A.; Lakitan, B.; Kraus, T.; Kleinman, P.; Vancini, F.; Roach, W.J.; Graap, E.; Keeton, W.S.; et al. Environmental and economic effects of reducing pesticide use in agriculture. Agric. Ecosyst. Environ. 1993, 46, 273–288. [Google Scholar] [CrossRef]
- McDaniel, R.; Ebert-Khosa, S.; Hopwood, D.A.; Khosla, C. Engineered biosynthesis of novel polyke-tides. Science 1993, 262, 1546–1550. [Google Scholar] [CrossRef]
- Shi, J.; Peng, D.; Peng, F.F.; Zhang, Q.B.; Duan, Y.W.; Huang, Y. The isolation and structure elucidation of spirotetronate lobophorins A, B, and H8 from Streptomyces sp. CB09030 and their biosynthetic gene cluster. Molecules 2023, 28, 3597. [Google Scholar] [CrossRef]
- Seiber, J.N.; Coats, J.; Duke, S.O.; Gross, A.D. Biopesticides: State of the art and future opportunities. J. Agric. Food Chem. 2014, 62, 11613–11619. [Google Scholar] [CrossRef]
- Stierle, A.; Strobel, G.; Stierle, D. Taxol and taxane production by taxomyces andreanae, an endophytic fungus of pacific yew. Science 1993, 260, 214–216. [Google Scholar] [CrossRef]
- Huang, Y.J.; Wang, J.F.; Li, G.L.; Zheng, Z.G.; Su, W.J. Antitumor and antifungal activities in endophytic fungi isolated from pharmaceutical plants Taxus mairei, Cephalataxus fortunei, and Torreya grandis. Fems. Immunol. Med. Mic. 2001, 31, 163–167. [Google Scholar] [CrossRef]
- Bi, Y.H.; Yu, Z.G. Diterpenoids from Streptomyces sp. SN194 and their antifungal activity against Botrytis cinerea. J. Agric. Food Chem. 2016, 64, 8525–8529. [Google Scholar] [CrossRef]
No. | 1 | No. | 2 | ||
---|---|---|---|---|---|
δH, (mult, J in Hz) | δC, mult | δH, (mult, J in Hz) | δC, mult | ||
1 | - | 167.2 C | 1 | - | 167.1 C |
2 | - | 102.2 C | 2 | - | 102.1 C |
3 | - | 206.4 C | 3 | - | 206.1 C |
4 | - | 50.9 C | 4 | - | 50.8 C |
5 | 2.01 (t-like, 9.1) | 42.7 CH | 5 | 2.01 (t-like, 9.5) | 43.2 CH |
6 | 1.60 (m) | 31.1 CH | 6 | 1.62 (m) | 31.2 CH |
7 | 1.60 (overlap), 1.54 (m) | 41.6 CH2 | 7 | 1.64 (m), 1.54 (m) | 41.7 CH2 |
8 | 2.26 (m) | 34.6 CH | 8 | 2.27 (m) | 34.0 CH |
9 | 3.66 (dd, 10.5, 5.3) | 76.1 CH | 9 | 3.57 (m) | 85.6 CH |
10 | 2.07 (td, 10.0, 2.4) | 39.1 C | 10 | 2.18 (m) | 38.3 CH |
11 | 6.03 (br d, 10.0) | 125.3 CH | 11 | 5.74 (br d, 10.0) | 124.7 CH |
12 | 5.43 (m) | 126.6 CH | 12 | 5.45 (m) | 127.3 CH |
13 | 3.53 (m) | 53.1 CH | 13 | 3.56 (m) | 52.9 CH |
14 | - | 135.7 C | 14 | - | 135.2 C |
15 | 5.22 (d, 10.0) | 122.9 CH | 15 | 5.23 (d, 10.0) | 123.2 CH |
16 | 2.37 (overlap), 2.22 (m) | 31.8 CH2 | 16 | 2.37 (overlap), 2.20 (m) | 31.8 CH2 |
17 | 4.19 (br s) | 72.9 CH | 17 | 4.19 (br s) | 72.9 CH |
18 | - | 140.7 C | 18 | - | 140.7 C |
19 | 5.26 (d, 10.5) | 118.2 CH | 19 | 5.27 (d, 10.5) | 118.2 CH |
20 | 3.58 (br d, 10.5) | 40.2 CH | 20 | 3.58 (br d, 10.5) | 40.2 CH |
21 | 5.14 (br s) | 120.6 CH | 21 | 5.14 (br s) | 120.5 CH |
22 | - | 137.6 C | 22 | - | 137.7 C |
23 | 2.37 (overlap) | 31.8 CH | 23 | 2.37 (overlap) | 31.8 CH |
24 | 2.37 (m), 1.80 (m) | 35.2 CH2 | 24 | 2.38 (m), 1.80 (m) | 35.2 CH2 |
25 | - | 83.0 C | 25 | - | 83.0 C |
26 | - | 201.1 C | 26 | - | 201.0 C |
27 | 1.61 (s) | 15.1 CH3 | 27 | 1.60 (s) | 15.0 CH3 |
28 | 0.65 (d, 7.0) | 22.2 CH3 | 28 | 0.65 (d, 7.0) | 22.1 CH3 |
29 | 1.04 (d, 6.8) | 12.9 CH3 | 29 | 1.08 (d, 6.8) | 14.4 CH3 |
30 | 1.38 (s) | 13.7 CH3 | 30 | 1.36 (s) | 13.7 CH3 |
31 | 1.38 (s) | 14.7 CH3 | 31 | 1.39 (s) | 14.8 CH3 |
32 | 1.77 (s) | 21.8 CH3 | 32 | 1.77 (s) | 21.8 CH3 |
33 | 1.28 (d, 6.8) | 20.1 CH3 | 33 | 1.29 (d, 6.8) | 20.1 CH3 |
- | 1′ | 4.95 (d, 3.6) | 99.6 CH | ||
- | 2′ | 2.37 (m), 1.94 (dt, 14.6, 3.5) | 34.9 CH2 | ||
- | 3′ | 3.99 (m) | 67.1 CH | ||
- | 4′ | 3.16 (br d, 7.0) | 72.6 CH | ||
- | 5′ | 3.83 (m) | 65.3 CH | ||
- | 6′ | 1.34 (d, 6.8) | 17.7 CH3 |
Compounds | Minimum Inhibitory Concentration (MIC, μg/mL) | |||
---|---|---|---|---|
PsL | PsT | Cm | Ec | |
Lobophorin H8 (1) | 15.63 | 7.81 | 250 | 3.91 |
Lobophorin S (2) | 62.5 | 15.63 | 500 | 62.5 |
Divergolide C (3) | 250 | 125 | 500 | 31.25 |
Streptomycin | 7.81 | 3.91 | 500 | 31.25 |
Compounds | Minimum Inhibitory Concentration (MIC, μg/mL) | |||||||
---|---|---|---|---|---|---|---|---|
So | Ff | Bc | As | Pa | Pg | Fo | Cc | |
Lobophorin H8 (1) | 62.5 | 31.25 | 1.95 | 62.5 | >500 | 500 | 62.5 | 500 |
Lobophorin S (2) | 250 | 62.5 | 7.81 | 250 | 500 | >500 | 250 | 500 |
Divergolide C (3) | 250 | 31.25 | 15.63 | 125 | 62.5 | 500 | 62.5 | 125 |
Amphotericin B | 500 | 125 | 125 | 500 | 62.5 | >500 | 125 | 125 |
Carbendazim | 500 | 62.5 | 31.25 | 125 | 15.63 | 31.25 | 15.63 | >500 |
Polyoxin B | 125 | 31.25 | 3.91 | 31.25 | 250 | 500 | 125 | 62.5 |
Treatment | Dilute Multiple (µg/mL) | Disease Index | Control Effect (%) a |
---|---|---|---|
Lobophorin H8 (1) | 0.49 | 38.00 | 35.22 ± 1.90 e |
0.98 | 28.67 | 51.16 ± 3.25 d | |
1.95 | 12.63 | 78.51 ± 3.80 b | |
3.91 | 11.33 | 80.73 ± 2.42 ab | |
7.81 | 8.44 | 85.44 ± 3.29 a | |
Polyoxin B | 1.95 | 17.23 | 70.70 ± 3.81 c |
CK | - | 58.63 | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, X.; Du, Y.; Ma, Y.; Liu, P.; Chen, Y. Antimicrobial Lobophorins from Endophytic Strain Streptomyces sp. R6 Obtained from Azadirachta indica. Molecules 2025, 30, 586. https://doi.org/10.3390/molecules30030586
Chen X, Du Y, Ma Y, Liu P, Chen Y. Antimicrobial Lobophorins from Endophytic Strain Streptomyces sp. R6 Obtained from Azadirachta indica. Molecules. 2025; 30(3):586. https://doi.org/10.3390/molecules30030586
Chicago/Turabian StyleChen, Xinyuan, Ying Du, Yunlong Ma, Peibin Liu, and Yan Chen. 2025. "Antimicrobial Lobophorins from Endophytic Strain Streptomyces sp. R6 Obtained from Azadirachta indica" Molecules 30, no. 3: 586. https://doi.org/10.3390/molecules30030586
APA StyleChen, X., Du, Y., Ma, Y., Liu, P., & Chen, Y. (2025). Antimicrobial Lobophorins from Endophytic Strain Streptomyces sp. R6 Obtained from Azadirachta indica. Molecules, 30(3), 586. https://doi.org/10.3390/molecules30030586