Insights into the Sources, Structure, and Action Mechanisms of Quinones on Diabetes: A Review
Abstract
:1. Introduction
2. Types of Quinones
2.1. Benzoquinones
2.2. Naphthoquinones
2.3. Anthraquinones
3. Sources of Quinones
3.1. Plant Sources
3.2. Animal and Marine Sources
3.3. Fermented Sources
4. Role of Quinones’ Physicochemical Properties in Diabetes Control
4.1. Role of Quinones in Redox Reactions
4.1.1. Quinones as Electron Transfer Agents
4.1.2. Quinones as Electrophiles
4.2. Role of Quinones in Non-Covalent Interaction
5. Mechanisms of Anti-Diabetic Activity of Quinones
5.1. ROS Adjustment and Mitochondrial Homeostasis
5.2. Insulin Mimetics
5.3. Regulation of Inflammation
5.4. Regulation of Lipid Profile
5.5. Regulation of Gastrointestinal Absorption
6. Toxicity
6.1. Quinone Toxicity in Metabolism
6.2. Strategies to Reduce Quinone Toxicity
6.3. Artificial Intelligence and Computational Approaches in Toxicology
6.4. Research Challenges and Future Directions of Quinone Toxicity
7. Bioavailability
8. Limitations and Prospects
9. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Newman, D.J. Natural products and drug discovery. Natl. Sci. Rev. 2022, 9, 200–216. [Google Scholar] [CrossRef]
- Bartkowiak-Wieczorek, J.; Mądry, E. Natural Products and Health. Nutrients 2024, 16, 415. [Google Scholar] [CrossRef] [PubMed]
- Sun, C.; Liu, Y.; Zhan, L.; Rayat, G.R.; Xiao, J.; Jiang, H.; Li, X.; Chen, K. Anti-diabetic effects of natural antioxidants from fruits. Trends Food Sci. Technol. 2021, 117, 3–14. [Google Scholar] [CrossRef]
- Akagawa, M.; Nakano, M.; Ikemoto, K. Recent progress in studies on the health benefits of pyrroloquinoline quinone. Biosci. Biotechnol. Biochem. 2016, 80, 13–22. [Google Scholar] [CrossRef] [PubMed]
- Zhou, S.; Mehta, B.M.; Feeney, E.L. A narrative review of vitamin K forms in cheese and their potential role in cardiovascular disease. Int. J. Dairy Technol. 2022, 75, 726–737. [Google Scholar] [CrossRef]
- Semwal, R.B.; Semwal, D.K.; Combrinck, S.; Viljoen, A. Emodin - A natural anthraquinone derivative with diverse pharmacological activities. Phytochemistry 2021, 190, 112854. [Google Scholar] [CrossRef] [PubMed]
- Patel, O.P.S.; Beteck, R.M.; Legoabe, L.J. Antimalarial application of quinones: A recent update. Eur. J. Med. Chem. 2021, 210, 113084. [Google Scholar] [CrossRef]
- Mohammed, A.; Ibrahim, M.A.; Tajuddeen, N.; Aliyu, A.B.; Isah, M.B. Antidiabetic potential of anthraquinones: A review. Phytotherapy Res. 2019, 34, 486–504. [Google Scholar] [CrossRef] [PubMed]
- Mohamad Ishak, N.S.; Ikemoto, K. Pyrroloquinoline-quinone to reduce fat accumulation and ameliorate obesity progression. Front. Mol. Biosci. 2023, 10, 1200025. [Google Scholar] [CrossRef] [PubMed]
- Kumar, N.; Kar, A. Pyrroloquinoline quinone ameliorates oxidative stress and lipid peroxidation in the brain of streptozotocin-induced diabetic mice. Can. J. Physiol. Pharmacol. 2015, 93, 71–79. [Google Scholar] [CrossRef]
- Kumar, N.; Kar, A.J.C.-B.I. Pyrroloquinoline quinone (PQQ) has potential to ameliorate streptozotocin-induced diabetes mellitus and oxidative stress in mice: A histopathological and biochemical study. Chem. Biol. Interact. 2015, 240, 278–290. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.T.; Liu, L.; Wei, C.B.; Wang, X.Y.; Li, R.; Xu, X.Q.; Zhang, Y.F.; Geng, G.N.; Dang, K.K.; Ming, Z.; et al. Vitamin K2 supplementation improves impaired glycemic homeostasis and insulin sensitivity for type 2 diabetes through gut microbiome and fecal metabolites. BMC Med. 2023, 21, 174. [Google Scholar] [CrossRef] [PubMed]
- Simes, D.C.; Viegas, C.S.B.; Araújo, N.; Marreiros, C. Vitamin K as a Diet Supplement with Impact in Human Health: Current Evidence in Age-Related Diseases. Nutrients 2020, 12, 138. [Google Scholar] [CrossRef]
- Ali, M.Y.; Park, S.; Chang, M. Phytochemistry, Ethnopharmacological Uses, Biological Activities, and Therapeutic Applications of Cassia obtusifolia L.: A Comprehensive Review. Molecules 2021, 26, 6252. [Google Scholar] [CrossRef]
- Sun, H.; Saeedi, P.; Karuranga, S.; Pinkepank, M.; Ogurtsova, K.; Duncan, B.B.; Stein, C.; Basit, A.; Chan, J.; Mbanya, J.C. IDF Diabetes Atlas: Global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045. Diabetes Res. Clin. Pract. 2022, 183, 109119. [Google Scholar] [CrossRef] [PubMed]
- International Diabetes Federation. IDF Diabetes Atlas, 10th ed.; International Diabetes Federation: Amsterdam, The Netherlands, 2021. [Google Scholar]
- Heald, A.H.; Stedman, M.; Davies, M.; Livingston, M.; Alshames, R.; Lunt, M.; Rayman, G.; Gadsby, R. Estimating life years lost to diabetes: Outcomes from analysis of National Diabetes Audit and Office of National Statistics data. Cardiovasc. Endocrinol. Metab. 2020, 9, 183–185. [Google Scholar] [CrossRef]
- Bepouka, B.; Odio, O.; Mangala, D.; Mayasi, N.; Mandina, M.; Longokolo, M.; Makulo, J.R.; Mbula, M.; Kayembe, J.M.; Situakibanza, H. Diabetes Mellitus is Associated With Higher COVID-19 Mortality Rates in Sub-Saharan Africa: A Systematic Review and Meta-analysis. Cureus 2022, 14, e26877. [Google Scholar] [CrossRef] [PubMed]
- Hughes, T.B.; Swamidass, S.J. Deep Learning to Predict the Formation of Quinone Species in Drug Metabolism. Chem. Res. Toxicol. 2017, 30, 642–656. [Google Scholar] [CrossRef] [PubMed]
- Dixit, V.A.; Bharatam, P.V. Toxic Metabolite Formation from Troglitazone (TGZ): New Insights from a DFT Study. Chem. Res. Toxicol. 2011, 24, 1113–1122. [Google Scholar] [CrossRef] [PubMed]
- Harjivan, S.G.; Pinheiro, P.F.; Martins, I.L.; Godinho, A.L.; Wanke, R.; Santos, P.P.; Pereira, S.A.; Beland, F.A.; Marques, M.M.; Antunes, A.M.M. Quinoid derivatives of the nevirapine metabolites 2-hydroxy- and 3-hydroxy-nevirapine: Activation pathway to amino acid adducts. Toxicol. Res.-UK 2015, 4, 1565–1577. [Google Scholar] [CrossRef]
- Fei, Z.; Xu, Y.; Zhang, G.; Liu, Y.; Li, H.; Chen, L. Natural products with potential hypoglycemic activity in T2DM: 2019–2023. Phytochemistry 2024, 223, 114130. [Google Scholar] [CrossRef] [PubMed]
- Seigler, D.S. Benzoquinones, Naphthoquinones, and Anthraquinones. In Plant Secondary Metabolism; Seigler, D.S., Ed.; Springer: Boston, MA, USA, 1998; pp. 76–93. [Google Scholar]
- Zhang, S.-Y.; Yang, K.-L.; Zeng, L.-T.; Wu, X.-H.; Huang, H.-Y. Effectiveness of Coenzyme Q10 Supplementation for Type 2 Diabetes Mell itus: A Systematic Review and Meta-Analysis. Int. J. Endocrinol. 2018, 2018, 6484839. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Lilienfeldt, N.; Hekimi, S. Understanding coenzyme Q. Physiol. Rev. 2024, 104, 1533–1610. [Google Scholar] [CrossRef]
- Zhao, L.-L.; Makinde, E.A.; Shah, M.A.; Olatunji, O.J.; Panichayupakaranant, P. Rhinacanthins-rich extract and rhinacanthin C ameliorate oxidative stress and inflammation in streptozotocin-nicotinamide-induced diabetic nephropathy. J. Food Biochem. 2019, 43, e12812. [Google Scholar] [CrossRef] [PubMed]
- Oberg, A.I.; Yassin, K.; Csikasz, R.I.; Dehvari, N.; Shabalina, I.G.; Hutchinson, D.S.; Wilcke, M.; Ostenson, C.G.; Bengtsson, T. Shikonin Increases Glucose Uptake in Skeletal Muscle Cells and Improves Plasma Glucose Levels in Diabetic Goto-Kakizaki Rats. PLoS ONE 2011, 6, e0022510. [Google Scholar] [CrossRef] [PubMed]
- Malik, E.M.; Müller, C.E. Anthraquinones As Pharmacological Tools and Drugs. Med. Res. Rev. 2016, 36, 705–748. [Google Scholar] [CrossRef] [PubMed]
- James, A.M.; Smith, R.A.; Murphy, M.P. Antioxidant and prooxidant properties of mitochondrial Coenzyme Q. Arch. Biochem. Biophys. 2004, 423, 47–56. [Google Scholar] [CrossRef] [PubMed]
- Bule, M.; Nikfar, S.; Amini, M.; Abdollahi, M. The antidiabetic effect of thymoquinone: A systematic review and meta-analysis of animal studies. Food Res. Int. 2020, 127, 108736. [Google Scholar] [CrossRef] [PubMed]
- Dhanasekaran, M.; Ren, J. The Emerging Role of Coenzyme Q-10 in Aging, Neurodegeneration, Cardiovascular Disease, Cancer and Diabetes Mellitus. Curr. Neurovascular Res. 2005, 2, 447–459. [Google Scholar] [CrossRef]
- Naik, S.R.; Niture, N.T.; Ansari, A.A.; Shah, P.D. Anti-diabetic activity of embelin: Involvement of cellular inflammatory mediators, oxidative stress and other biomarkers. Phytomedicine 2013, 20, 797–804. [Google Scholar] [CrossRef]
- Alkahtani, S.; Alarifi, S.; Alkahtane, A.A.; Albasher, G.; AL-Zharani, M.; Alhoshani, N.M.; AL-Johani, N.S.; Aljarba, N.H.; Hasnain, M.S. Pyrroloquinoline quinone alleviates oxidative damage induced by high glucose in HepG2 cells. Saudi. J. Biol. Sci. 2021, 28, 6127–6132. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.S.; Leema, M.; Sridevi, S.; Sreesaila, S.; Anil, L.J.; Mohit, M.; Krishnan, H.; Pillai, Z.S. A review on synthesis and various pharmacological aspects of Rhinacanthin-C with special emphasis on antidiabetic activity. Mater. Today: Proc. 2021, 46, 3084–3088. [Google Scholar] [CrossRef]
- Shah, M.A.; Keach, J.E.; Panichayupakaranant, P. Antidiabetic Naphthoquinones and Their Plant Resources in Thailand. Chem. Pharm. Bull. 2018, 66, 483–492. [Google Scholar] [CrossRef] [PubMed]
- Knüpling, M.; Törring, J.T.; Un, S. The relationship between the molecular structure of semiquinone radicals and their g-values. Chem. Phys. 1997, 219, 291–304. [Google Scholar] [CrossRef]
- Zhang, Y.L.; Ni, G.T.; Yang, H.Y. Plumbagin attenuates high glucose-induced trophoblast cell apoptosis and insulin resistance via activating AKT/mTOR pathway. Qual. Assur. Saf. Crop. 2021, 13, 102–108. [Google Scholar] [CrossRef]
- Saeed, M.; Tasleem, M.; Shoaib, A.; Alabdallah, N.M.; Alam, M.J.; El Asmar, Z.; Jamal, Q.M.S.; Bardakci, F.; Ansari, I.A.; Ansari, M.J.; et al. Investigation of antidiabetic properties of shikonin by targeting aldose reductase enzyme: In silico and in vitro studies. Biomed. Pharmacother. 2022, 150, 112985. [Google Scholar] [CrossRef] [PubMed]
- Koyama, J.; Nisino, Y.; Morita, I.; Kobayashi, N.; Osakai, T.; Tokuda, H. Correlation between reduction potentials and inhibitions of Epstein–Barr virus activation by anthraquinone derivatives. Bioorganic Med. Chem. Lett. 2008, 18, 4106–4109. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Zhang, R.; Lv, P.; Yang, J.; Deng, Y.; Xu, J.; Zhu, R.; Zhang, D.; Yang, Y. Emodin up-regulates glucose metabolism, decreases lipolysis, and attenuates inflammation in vitro. J. Diabetes 2015, 7, 360–368. [Google Scholar] [CrossRef] [PubMed]
- Liu, B.R.; Liu, R.Y.; Liu, Q.F.; Ashby, C.R.; Zhang, H.; Chen, Z.S. The ethnomedicinal and functional uses, phytochemical and pharmacology of compounds from Ardisia species: An updated review. Med. Res. Rev. 2022, 42, 1888–1929. [Google Scholar] [CrossRef]
- Pokharel, P.; Bellinge, J.W.; Dalgaard, F.; Murray, K.; Sim, M.; Yeap, B.; Connolly, E.; Blekkenhorst, L.; Bondonno, C.; Lewis, J.; et al. Vitamin K1 intake and incident diabetes in the Danish Diet Cancer and Health study. Proc. Nutr. Soc. 2023, 82, E177. [Google Scholar] [CrossRef]
- Shah, M.A.; Reanmongkol, W.; Radenahmad, N.; Khalil, R.; Ul-Haq, Z.; Panichayupakaranant, P. Anti-hyperglycemic and anti-hyperlipidemic effects of rhinacanthins-rich extract from Rhinacanthus nasutus leaves in nicotinamide-streptozotocin induced diabetic rats. Biomed. Pharmacother. 2019, 113, 108702. [Google Scholar] [CrossRef] [PubMed]
- Sunil, C.; Duraipandiyan, V.; Agastian, P.; Ignacimuthu, S. Antidiabetic effect of plumbagin isolated from Plumbago zeylanica L. root and its effect on GLUT4 translocation in streptozotocin-induced diabetic rats. Food Chem. Toxicol. 2012, 50, 4356–4363. [Google Scholar] [CrossRef] [PubMed]
- Pillai, P.P.; Nair, A.R. Hypericin biosynthesis in Hypericum hookerianum Wight and Arn: Investigation on biochemical pathways using metabolite inhibitors and suppression subtractive hybridization. Comptes Rendus Biol. 2014, 337, 571–580. [Google Scholar] [CrossRef]
- Alshatwi, A.A.; Subash-Babu, P. Aloe-Emodin Protects RIN-5F (Pancreatic beta-cell) Cell from Glucotoxicity via Regulation of Pro-Inflammatory Cytokine and Downregulation of Bax and Caspase 3. Biomol. Ther. 2016, 24, 49–56. [Google Scholar] [CrossRef] [PubMed]
- Xie, L.; Tang, H.; Song, J.; Long, J.; Zhang, L.; Li, X. Chrysophanol: A review of its pharmacology, toxicity and pharmacokinetics. J. Pharm. Pharmacol. 2019, 71, 1475–1487. [Google Scholar] [CrossRef] [PubMed]
- Jung, H.; Ali, M.; Choi, J. Promising Inhibitory Effects of Anthraquinones, Naphthopyrone, and Naphthalene Glycosides, from Cassia obtusifolia on α-Glucosidase and Human Protein Tyrosine Phosphatases 1B. Molecules 2016, 22, 28. [Google Scholar] [CrossRef]
- Li, Q.Y.; Yu, X.H.; Mao, M.J.; Guo, Y. Correlation analysis of antioxidant activity in vitro and anthraquinone content of traditional Chinese medicine containing anthraquinones. China J. Tradit. Chin. Med. Pharm. 2020, 35, 5743–5747. [Google Scholar]
- Mladěnka, P.; Macáková, K.; Kujovská Krčmová, L.; Javorská, L.; Mrštná, K.; Carazo, A.; Protti, M.; Remião, F.; Nováková, L.; researchers, O.; et al. Vitamin K—sources, physiological role, kinetics, deficiency, detecti on, therapeutic use, and toxicity. Nutr. Rev. 2022, 80, 677–698. [Google Scholar] [CrossRef] [PubMed]
- Pravst, I.; Zmitek, K.; Zmitek, J. Coenzyme Q10 contents in foods and fortification strategies. Crit. Rev. Food Sci. Nutr. 2010, 50, 269–280. [Google Scholar] [CrossRef] [PubMed]
- Kumazawa, T.; Sato, K.; Seno, H.; Ishii, A.; Suzuki, O. Levels of pyrroloquinoline quinone in various foods. Biochem. J. 1995, 307 Pt 2, 331–333. [Google Scholar] [CrossRef] [PubMed]
- Regulska-Ilow, B.; Różańska, D.; Zatońska, K.; Szuba, A. Estimation of Vitamin K Content and Its Sources in the Diet of the Polish Participants of the PURE Study. Nutrients 2022, 14, 1917. [Google Scholar] [CrossRef]
- Dunlop, E.; Cunningham, J.; Adorno, P.; Dabos, G.; Johnson, S.K.; Black, L.J. Vitamin K content of Australian-grown horticultural commodities. Food Chem. 2024, 452, 139382. [Google Scholar] [CrossRef] [PubMed]
- Claussen, F.A.; Taylor, M.L.; Breeze, M.L.; Liu, K. Measurement of Vitamin K1 in Commercial Canola Cultivars from Growing Locations in North and South America Using High-Performance Liquid Chromatography–Tandem Mass Spectrometry. J. Agric. Food Chem. 2015, 63, 1076–1081. [Google Scholar] [CrossRef]
- U.S. Department of Agriculture, Agricultural Research Service. FoodData Central; U.S. Department of Agriculture, Agricultural Research Service: Washington, DC, USA, 2024. Available online: https://fdc.nal.usda.gov/ (accessed on 1 January 2024).
- Kaatabi, H.; Bamosa, A.O.; Badar, A.; Al-Elq, A.; Abou-Hozaifa, B.; Lebda, F.; Al-Khadra, A.; Al-Almaie, S. Nigella sativa Improves Glycemic Control and Ameliorates Oxidative Stress in Patients with Type 2 Diabetes Mellitus: Placebo Controlled Participant Blinded Clinical Trial. PLoS ONE 2015, 10, 15. [Google Scholar] [CrossRef] [PubMed]
- Kamao, M.; Suhara, Y.; Tsugawa, N.; Uwano, M.; Yamaguchi, N.; Uenishi, K.; Ishida, H.; Sasaki, S.; Okano, T. Vitamin K Content of Foods and Dietary Vitamin K Intake in Japanese Young Women. J. Nutr. Sci. Vitaminol. 2007, 53, 464–470. [Google Scholar] [CrossRef] [PubMed]
- Mitchell, A.E.; Jones, A.D.; Mercer, R.S.; Rucker, R.B. Characterization of pyrroloquinoline quinone amino acid derivatives by electrospray ionization mass spectrometry and detection in human milk. Anal. Biochem. 1999, 269, 317–325. [Google Scholar] [CrossRef]
- Tarento, T.D.C.; McClure, D.D.; Talbot, A.M.; Regtop, H.L.; Biffin, J.R.; Valtchev, P.; Dehghani, F.; Kavanagh, J.M. A potential biotechnological process for the sustainable production of vitamin K(1). Crit. Rev. Biotechnol. 2019, 39, 1–19. [Google Scholar] [CrossRef] [PubMed]
- Li, W.-W.; Heinze, J.; Haehnel, W. Site-Specific Binding of Quinones to Proteins through Thiol Addition and Addition−Elimination Reactions. J. Am. Chem. Soc. 2005, 127, 6140–6141. [Google Scholar] [CrossRef] [PubMed]
- El-Najjar, N.; Gali-Muhtasib, H.; Ketola, R.A.; Vuorela, P.; Urtti, A.; Vuorela, H. The chemical and biological activities of quinones: Overview and implications in analytical detection. Phytochem. Rev. 2011, 10, 353–370. [Google Scholar] [CrossRef]
- Bisio, A.; Pedrelli, F.; D’ambola, M.; Labanca, F.; Schito, A.M.; Govaerts, R.; De Tommasi, N.; Milella, L. Quinone diterpenes from Salvia species: Chemistry, botany, and biological activity. Phytochem. Rev. 2019, 18, 665–842. [Google Scholar] [CrossRef]
- Widhalm, J.R.; Rhodes, D. Biosynthesis and molecular actions of specialized 1,4-naphthoquinone natural products produced by horticultural plants. Hortic. Res. 2016, 3, 16046. [Google Scholar] [CrossRef] [PubMed]
- Qin, L.; Zhang, X.; Zhou, X.; Wu, X.; Huang, X.; Chen, M.; Wu, Y.; Lu, S.; Zhang, H.; Xu, X.; et al. Protective Effect of Benzoquinone Isolated from the Roots of Averrhoa carambola L. on Streptozotocin-Induced Diabetic Mice by Inhibiting the TLR4/NF-κB Signaling Pathway. Diabetes Metab. Syndr. Obes. Targets Ther. 2020, 13, 2129–2138. [Google Scholar] [CrossRef] [PubMed]
- Suksawat, T.; Panichayupakaranant, P. Variation of rhinacanthin content in Rhinacanthus nasutus and its health products. J. Pharm. Biomed. Anal. 2023, 224, 115177. [Google Scholar] [CrossRef]
- Adam, S.H.; Giribabu, N.; Rao, P.V.; Sayem, A.M.; Arya, A.; Panichayupakaranant, P.; Korla, P.K.; Salleh, N. Rhinacanthin C ameliorates hyperglycaemia, hyperlipidemia and pancreatic destruction in streptozotocin-nicotinamide induced adult male diabetic rats. Eur. J. Pharmacol. 2016, 771, 173–190. [Google Scholar] [CrossRef] [PubMed]
- Yoo, N.H.; Jang, D.S.; Lee, Y.M.; Jeong, I.H.; Cho, J.H.; Kim, J.H.; Kim, J.S. Anthraquinones from the Roots of Knoxia valerianoides Inhibit the Formation of Advanced Glycation End Products and Rat Lens Aldose Reductase In Vitro. Arch. Pharmacal Res. 2010, 33, 209–214. [Google Scholar] [CrossRef] [PubMed]
- Zhu, T.-T.; Zhu, C.-N.; Huang, N.; Yu, X.; Wan, G.-R.; Wang, S.-X.; Song, P.; Xu, J.; Li, P.; Yin, Y.-L. Tert-Butylhydroquinone alleviates insulin resistance and liver steatosis in diabetes. Indian J. Pharmacol. 2022, 54, 118–125. [Google Scholar] [CrossRef] [PubMed]
- Dong, M.; Ming, X.; Xiang, T.; Feng, N.; Zhang, M.; Ye, X.; He, Y.; Zhou, M.; Wu, Q. Recent research on the physicochemical properties and biological activities of quinones and their practical applications: A comprehensive review. Food Funct. 2024, 15, 8973–8997. [Google Scholar] [CrossRef]
- Giannini, C.; Debitus, C.; Lucas, R.; Úbeda, A.; Payá, M.; Hooper, J.N.A.; D’Auria, M.V. New sesquiterpene derivatives from the sponge Dysidea species with a selective inhibitor profile against human phospholipase A2 and other leukocyte functions. J. Nat. Prod. 2001, 64, 612–615. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Zhang, Y.; Shen, X.; Guo, Y.W. A novel sesquiterpene quinone from Hainan sponge Dysidea villosa. Bioorg. Med. Chem. Lett. 2009, 19, 390–392. [Google Scholar] [CrossRef]
- Bertanha, C.S.; Januario, A.H.; Alvarenga, T.A.; Pimenta, L.P.; Silva, M.L.A.E.; Cunha, W.R.; Pauletti, P.M. Quinone and Hydroquinone Metabolites from the Ascidians of the Genus Aplidium. Mar. Drugs. 2014, 12, 3608–3633. [Google Scholar] [CrossRef]
- Xu, X.Y.; Li, G.; Fu, R.; Lou, H.X.; Peng, X.P. A new anthraquinone derivative from the marine fish-derived fungus Alternaria sp. X112. Nat. Prod. Res. 2023, 39, 151–156. [Google Scholar] [CrossRef] [PubMed]
- Li, N.N.; Wang, Q.R.; Zhou, J.N.; Li, S.Q.; Liu, J.Y.; Chen, H.X. Insight into the Progress on Natural Dyes: Sources, Structural Features, Health Effects, Challenges, and Potential. Molecules 2022, 27, 3291. [Google Scholar] [CrossRef] [PubMed]
- Christiansen, J.V.; Isbrandt, T.; Petersen, C.; Sondergaard, T.E.; Nielsen, M.R.; Pedersen, T.B.; Sørensen, J.L.; Larsen, T.O.; Frisvad, J.C. Fungal quinones: Diversity, producers, and applications of quinones from Aspergillus, Penicillium, Talaromyces, Fusarium, and Arthrinium. Appl. Microbiol. Biotechnol. 2021, 105, 8157–8193. [Google Scholar] [CrossRef] [PubMed]
- Wijesekara, I.; Zhang, C.; Van Ta, Q.; Vo, T.-S.; Li, Y.-X.; Kim, S.-K. Physcion from marine-derived fungus Microsporum sp. induces apoptosis in human cervical carcinoma HeLa cells. Microbiol. Res. 2014, 169, 255–261. [Google Scholar] [CrossRef] [PubMed]
- Hong, S.B.; Yamada, O.; Samson, R.A. Taxonomic re-evaluation of black koji molds. Appl. Microbiol. Biotechnol. 2014, 98, 555–561. [Google Scholar] [CrossRef] [PubMed]
- Ogawa, Y.; Hirose, D.; Akiyama, A.; Ichinoe, M. Examination of the Taxonomic Position of Penicillium Strains Used in Blue Cheese Production Based on the Partial Sequence of β-Tubulin. Food Hyg. Saf. Sci. 2014, 55, 157–161. [Google Scholar] [CrossRef]
- Ellis, J.L.; Karl, J.P.; Oliverio, A.M.; Fu, X.Y.; Soares, J.W.; Wolfe, B.E.; Hernandez, C.J.; Mason, J.B.; Booth, S.L. Dietary vitamin K is remodeled by gut microbiota and influences community composition. Gut. Microbes. 2021, 13, 1887721. [Google Scholar] [CrossRef] [PubMed]
- Morishita, T.; Tamura, N.; Makino, T.; Kudo, S. Production of menaquinones by lactic acid bacteria. J. Dairy Sci. 1999, 82, 1897–1903. [Google Scholar] [CrossRef] [PubMed]
- Erdogan, A.K.; Filiz, B.E. Menaquinone content and antioxidant properties of fermented cabbage products: Effect of different fermentation techniques and microbial cultures. J. Funct. Foods 2023, 102, 105467. [Google Scholar] [CrossRef]
- Shen, Y.Q.; Bonnot, F.; Imsand, E.M.; RoseFigura, J.M.; Sjölander, K.; Klinman, J.P. Distribution and Properties of the Genes Encoding the Biosynthesis of the Bacterial Cofactor, Pyrroloquinoline Quinone. Biochemistry 2012, 51, 2265–2275. [Google Scholar] [CrossRef] [PubMed]
- Kato, C.; Kawai, E.; Shimizu, N.; Mikekado, T.; Kimura, F.; Miyazawa, T.; Nakagawa, K. Determination of pyrroloquinoline quinone by enzymatic and LC-MS/MS methods to clarify its levels in foods. PLoS ONE 2018, 13, e0209700. [Google Scholar] [CrossRef] [PubMed]
- Brunmark, A.; Cadenas, E. Redox and addition chemistry of quinoid compounds and its biological implications. Free Radic. Biol. Med. 1989, 7, 435–477. [Google Scholar] [CrossRef] [PubMed]
- Abe, D.; Saito, T.; Sekiya, K. Sennidin stimulates glucose incorporation in rat adipocytes. Life Sci. 2006, 79, 1027–1033. [Google Scholar] [CrossRef] [PubMed]
- Yuan, X.; Tang, W.; Lin, C.; He, H.; Li, L. Chrysophanol ameliorates oxidative stress and pyroptosis in mice with diabetic nephropathy through the Kelch-like ECH-associated protein 1/n uclear factor erythroid 2-related factor 2 signaling pathway. Acta. Biochim. Pol. 2024, 70, 891–897. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.J.; Chen, Y.; Zhang, X.Y.; Lu, Y.P.; Chen, H.X. New insights in intestinal oxidative stress damage and the health intervention effects of nutrients: A review. J. Funct. Foods 2020, 75, 104248. [Google Scholar] [CrossRef]
- Kumagai, Y.; Shinkai, Y.; Miura, T.; Cho, A.K. The Chemical Biology of Naphthoquinones and Its Environmental Implications. Annu. Rev. Pharmacol. Toxicol. 2012, 52, 221–247. [Google Scholar] [CrossRef]
- Song, Y.; Buettner, G.R. Thermodynamic and kinetic considerations for the reaction of semiquinone radicals to form superoxide and hydrogen peroxide. Free Radic. Biol. Med. 2010, 49, 919–962. [Google Scholar] [CrossRef]
- Yuan, X.; Miller, C.J.; Pham, A.N.; Waite, T.D. Kinetics and mechanism of auto- and copper-catalyzed oxidation of 1,4-naphthohydroquinone. Free Radic. Biol. Med. 2014, 71, 291–302. [Google Scholar] [CrossRef] [PubMed]
- Munday, R. Activation and Detoxification of Naphthoquinones by NAD(P)H: Quinone Oxidoreductase. Methods Enzymol. 2004, 382, 364–380. [Google Scholar]
- Siegel, D.; Yan, C.; Ross, D. NAD(P)H:quinone oxidoreductase 1 (NQO1) in the sensitivity and resistance to antitumor quinones. Biochem. Pharmacol 2012, 83, 1033–1040. [Google Scholar] [CrossRef] [PubMed]
- Koppenol, W.H.; Stanbury, D.M.; Bounds, P.L. Electrode potentials of partially reduced oxygen species, from dioxygen to water. Free Radic. Biol. Med. 2010, 49, 317–322. [Google Scholar] [CrossRef]
- Wardman, P. Bioreductive activation of quinones: Redox properties and thiol reactivity. Free Radic. Res. Commun. 1990, 8, 219–229. [Google Scholar] [CrossRef] [PubMed]
- Han, C.P.; Li, H.F.; Shi, R.Y.; Zhang, T.F.; Tong, J.; Li, J.Q.; Li, B.H. Organic quinones towards advanced electrochemical energy storage: Recent advances and challenges. J. Mater. Chem. A 2019, 7, 23378–23415. [Google Scholar] [CrossRef]
- Murakami, K.; Haneda, M.; Iwata, S.; Yoshino, M. Effect of hydroxy substituent on the prooxidant action of naphthoquinone compounds. Toxicol. Vitr. 2010, 24, 905–909. [Google Scholar] [CrossRef]
- Uchimiya, M.; Stone, A.T. Reversible redox chemistry of quinones: Impact on biogeochemical cycles. Chemosphere 2009, 77, 451–458. [Google Scholar] [CrossRef] [PubMed]
- Munday, R.; Smith, B.L.; Munday, C.M. Structure-activity relationships in the haemolytic activity and nephrotoxicity of derivatives of 1,2- and 1,4-naphthoquinone. J. Appl. Toxicol. 2007, 27, 262–269. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.T.; Qi, H.P.; Fan, M.Q.; Zhu, Z.X.; Zhan, S.J.; Li, L.; Li, B.; Zhang, X.; Zhao, X.L.; Ma, J.J.; et al. Quantifying the efficiency of o-benzoquinones reaction with amino acids and related nucleophiles by cyclic voltammetry. Food Chem. 2020, 317, 126454. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.; Li, H.L.; Meng, P.J.; Li, K.X.; Xiong, Y.M.; Zhang, S.H.; Yang, Y.; Yin, A.H.; Huang, P.L. Interactions between CdTe quantum dots and plasma proteins: Kinetics, thermodynamics and molecular structure changes. Colloid Surf. B 2020, 189, 110881. [Google Scholar] [CrossRef]
- Le Bourvellec, C.; Renard, C.M.G.C. Interactions between Polyphenols and Macromolecules: Quantification Methods and Mechanisms. Crit. Rev. Food Sci. Nutr. 2012, 52, 213–248. [Google Scholar] [CrossRef]
- Chen, X.; Gao, M.; Jian, R.; Hong, W.D.; Tang, X.; Li, Y.; Zhao, D.; Zhang, K.; Chen, W.; Zheng, X.; et al. Design, synthesis and α-glucosidase inhibition study of novel embelin derivatives. J. Enzym. Inhib. Med. Chem. 2020, 35, 565–573. [Google Scholar] [CrossRef] [PubMed]
- Nowicka, B.; Szymańska, R.; Kruk, J. Prenylquinones—Occurrence, biosynthesis and functions. Postep. Biochem. 2009, 55, 307–314. [Google Scholar]
- Tsai, H.J.; Chou, S.Y. A novel hydroxyfuroic acid compound as an insulin receptor activator. Structure and activity relationship of a prenylindole moiety to insulin receptor activation. J. Biomed. Sci. 2009, 16, 68. [Google Scholar] [CrossRef] [PubMed]
- Alexacou, K.-M.; Zhang, Y.Z.; Praly, J.-P.; Zographos, S.E.; Chrysina, E.D.; Oikonomakos, N.G.; Leonidas, D.D. Halogen-substituted (C-β-d-glucopyranosyl)-hydroquinone regioisomers: Synthesis, enzymatic evaluation and their binding to glycogen phosphorylase. Bioorganic Med. Chem. 2011, 19, 5125–5136. [Google Scholar] [CrossRef]
- Sarkar, C.; Jamaddar, S.; Islam, T.; Mondal, M.; Islam, M.T.; Mubarak, M.S. Therapeutic perspectives of the black cumin component thymoquinone: A review. Food Funct. 2021, 12, 6167–6213. [Google Scholar] [CrossRef] [PubMed]
- Stattin, P.; Björ, O.; Ferrari, P.; Lukanova, A.; Lenner, P.; Lindahl, B.; Hallmans, G.; Kaaks, R. Prospective Study of Hyperglycemia and Cancer Risk. Diabetes Care 2007, 30, 561–567. [Google Scholar] [CrossRef] [PubMed]
- Schroeder, M.M.; Belloto, R.J., Jr.; Hudson, R.A.; McInerney, M.F. Effects of antioxidants coenzyme Q10 and lipoic acid on interleukin-1 beta-mediated inhibition of glucose-stimulated insulin release from cultured mouse pancreatic islets. Immunopharmacol. Immunotoxicol. 2005, 27, 109–122. [Google Scholar] [CrossRef]
- Brand, M.D. Mitochondrial generation of superoxide and hydrogen peroxide as the source of mitochondrial redox signaling. Free Radic. Biol. Med. 2016, 100, 14–31. [Google Scholar] [CrossRef] [PubMed]
- Gutiérrez-Fernández, J.; Kaszuba, K.; Minhas, G.S.; Baradaran, R.; Tambalo, M.; Gallagher, D.T.; Sazanov, L.A. Key role of quinone in the mechanism of respiratory complex I. Nat. Commun. 2020, 11, 4135. [Google Scholar] [CrossRef]
- Kampjut, D.; Sazanov, L.A. The coupling mechanism of mammalian respiratory complex I. Science 2020, 370, eabc4209. [Google Scholar] [CrossRef] [PubMed]
- Lodge, M.T.; Ward-Ritacco, C.L.; Melanson, K.J. Considerations of Low Carbohydrate Availability (LCA) to Relative Energy Deficiency in Sport (RED-S) in Female Endurance Athletes: A Narrative Review. Nutrients 2023, 15, 4457. [Google Scholar] [CrossRef] [PubMed]
- Song, P.; Kim, J.H.; Ghim, J.; Yoon, J.H.; Lee, A.; Kwon, Y.; Hyun, H.; Moon, H.Y.; Choi, H.S.; Berggren, P.O.; et al. Emodin Regulates Glucose Utilization by Activating AMP-activated Protein Kinase. J. Biol. Chem. 2013, 288, 5732–5742. [Google Scholar] [CrossRef] [PubMed]
- Niture, S.K.; Khatri, R.; Jaiswal, A.K. Regulation of Nrf2-an update. Free Radic. Biol. Med. 2014, 66, 36–44. [Google Scholar] [CrossRef] [PubMed]
- Leirós, M.; Alonso, E.; Sanchez, J.A.; Rateb, M.E.; Ebel, R.; Houssen, W.E.; Jaspars, M.; Alfonso, A.; Botana, L.M. Mitigation of ROS Insults by Streptomyces Secondary Metabolites in Primary Cortical Neurons. ACS Chem. Neurosci. 2013, 5, 71–80. [Google Scholar] [CrossRef] [PubMed]
- Farmer, E.E.; Davoine, C. Reactive electrophile species. Curr. Opin. Plant. Biol. 2007, 10, 380–386. [Google Scholar] [CrossRef] [PubMed]
- Rauscher, F.M.; Sanders, R.A.; Watkins, J.B., 3rd. Effects of coenzyme Q10 treatment on antioxidant pathways in normal and streptozotocin-induced diabetic rats. J. Biochem. Mol. Toxicol. 2001, 15, 41–46. [Google Scholar] [CrossRef] [PubMed]
- Panday, S.; Talreja, R.; Kavdia, M. The role of glutathione and glutathione peroxidase in regulating cellular level of reactive oxygen and nitrogen species. Microvasc. Res. 2020, 131, 104010. [Google Scholar] [CrossRef] [PubMed]
- Nankar, R.P.; Doble, M. Non-peptidyl insulin mimetics as a potential antidiabetic agent. Drug Discov. Today 2013, 18, 748–755. [Google Scholar] [CrossRef]
- Pirrung, M.C.; Li, Z.; Park, K.; Zhu, J. Total Syntheses of Demethylasterriquinone B1, an Orally Active Insulin Mimetic, and Demethylasterriquinone A1. J. Org. Chem. 2002, 67, 7919–7926. [Google Scholar] [CrossRef] [PubMed]
- He, K.Y.; Chan, C.B.; Liu, X.; Jia, Y.H.; Luo, H.B.R.; France, S.A.; Liu, Y.; Wilson, W.D.; Ye, K.Q. Identification of a Molecular Activator for Insulin Receptor with Potent Anti-diabetic Effects. J. Biol. Chem. 2011, 286, 37379–37388. [Google Scholar] [CrossRef] [PubMed]
- Song, B.; Zhang, H.Q.; Ma, C.Y.; Yu, Y.L.; Wang, J.; Gao, Y.M.; Zheng, H.W.; Liu, X.Z. The Effects of Emodin on Insulin Resistance in KKAy Mice with Diabetes Mellitus. Pharmacogn. Mag. 2018, 14, 344–350. [Google Scholar] [CrossRef]
- Yang, Y.; Tian, J.Y.; Ye, F.; Xiao, Z.Y. Identification of natural products as selective PTP1B inhibitors via virtual screening. Bioorganic Chem. 2020, 98, 103706. [Google Scholar] [CrossRef] [PubMed]
- Elchebly, M.; Payette, P.; Michaliszyn, E.; Cromlish, W.; Collins, S.; Loy, A.L.; Normandin, D.; Cheng, A.; Himms-Hagen, J.; Chan, C.C.; et al. Increased insulin sensitivity and obesity resistance in mice lacking the protein tyrosine phosphatase-1B gene. Science 1999, 283, 1544–1548. [Google Scholar] [CrossRef] [PubMed]
- Ahn, J.H.; Cho, S.Y.; Ha, J.D.; Chu, S.Y.; Jung, S.H.; Jung, Y.S.; Baek, J.Y.; Choi, I.K.; Shin, E.Y.; Kang, S.K.; et al. Synthesis and PTP1B inhibition of 1,2-naphthoquinone derivatives as potent anti-diabetic agents. Bioorg. Med. Chem. Lett. 2002, 12, 1941–1946. [Google Scholar] [CrossRef]
- Fukuda, I.; Kaneko, A.; Nishiumi, S.; Kawase, M.; Nishikiori, R.; Fujitake, N.; Ashida, H. Structure–activity relationships of anthraquinones on the suppression of DNA-binding activity of the aryl hydrocarbon receptor induced by 2,3,7,8-tetrachlorodibenzo-p-dioxin. J. Biosci. Bioeng. 2009, 107, 296–300. [Google Scholar] [CrossRef] [PubMed]
- Verma, S.; Mathew, V.; Farkouh, M.E. Targeting Inflammation in the Prevention and Treatment of Type 2 Diabetes Insights From CANTOS. J. Am. Coll. Cardiol. 2018, 71, 2402–2404. [Google Scholar] [CrossRef] [PubMed]
- Giannoukakis, N.; Rudert, W.A.; Ghivizzani, S.C.; Gambotto, A.; Ricordi, C.; Trucco, M.; Robbins, P.D. Adenoviral gene transfer of the interleukin-1 receptor antagonist protein to human islets prevents IL-1beta-induced beta-cell impairment and activation of islet cell apoptosis in vitro. Diabetes 1999, 48, 1730–1736. [Google Scholar] [CrossRef] [PubMed]
- Eguchi, K.; Nagai, R. Islet inflammation in type 2 diabetes and physiology. J. Clin. Investig. 2017, 127, 14–23. [Google Scholar] [CrossRef]
- Emanuelli, B.; Peraldi, P.; Filloux, C.; Sawka-Verhelle, D.; Hilton, D.; Van Obberghen, E. SOCS-3 Is an Insulin-induced Negative Regulator of Insulin Signaling. J. Biol. Chem. 2000, 275, 15985–15991. [Google Scholar] [CrossRef] [PubMed]
- Cavalcanti Neto, M.P.; Aquino, J.d.S.; Romão da Silva, L.d.F.; de Oliveira Silva, R.; Guimarães, K.S.d.L.; de Oliveira, Y.; de Souza, E.L.; Magnani, M.; Vidal, H.; de Brito Alves, J.L. Gut microbiota and probiotics intervention: A potential therapeutic target for management of cardiometabolic disorders and chronic kidney disease? Pharmacol. Res. 2018, 130, 152–163. [Google Scholar] [CrossRef] [PubMed]
- Malaguti, C.; Vilella, C.A.; Vieira, K.P.; Souza, G.H.; Hyslop, S.; Zollner Rde, L. Diacerhein downregulate proinflammatory cytokines expression and decrease the autoimmune diabetes frequency in nonobese diabetic (NOD) mice. Int. Immunopharmacol. 2008, 8, 782–791. [Google Scholar] [CrossRef]
- Bae, U.-J.; Song, M.-Y.; Jang, H.-Y.; Lim, J.M.; Lee, S.Y.; Ryu, J.-H.; Park, B.-H. Emodin isolated from Rheum palmatum prevents cytokine-induced β-cell damage and the development of type 1 diabetes. J. Funct. Foods 2015, 16, 9–19. [Google Scholar] [CrossRef]
- Wang, Q.; Wang, J.; Li, N.; Liu, J.; Zhou, J.; Zhuang, P.; Chen, H. A Systematic Review of Orthosiphon stamineus Benth. in the Treatment of Diabetes and Its Complications. Molecules 2022, 27, 444. [Google Scholar] [CrossRef] [PubMed]
- Mohammadi, J.; Naik, P.A. Evaluation of hypoglycemic effect of Morus alba in an animal model. Indian. J. Pharmacol. 2008, 40, 15–18. [Google Scholar] [CrossRef] [PubMed]
- Bravo, C.; Cataldo, L.R.; Galgani, J.; Parada, J.; Santos, J.L. Leptin/Adiponectin Ratios Using Either Total Or High-Molecular-Weight Adiponectin as Biomarkers of Systemic Insulin Sensitivity in Normoglycemic Women. J. Diabetes Res. 2017, 2017, 9031079. [Google Scholar] [CrossRef]
- Dagogo-Jack, S. Leptin and Insulin Sensitivity: Endogenous Signals of Metabolic Homeostasis. J. Clin. Endocrinol. Metab. 2023, 109, e1402–e1403. [Google Scholar] [CrossRef] [PubMed]
- Palanivel, R.; Ganguly, R.; Turdi, S.; Xu, A.; Sweeney, G. Adiponectin stimulates Rho-mediated actin cytoskeleton remodeling and glucose uptake via APPL1 in primary cardiomyocytes. Metabolism 2014, 63, 1363–1373. [Google Scholar] [CrossRef] [PubMed]
- Barakat, A.; Islam, M.S.; Al-Majid, A.M.; Ghabbour, H.A.; Yousuf, S.; Ashraf, M.; Shaikh, N.N.; Iqbal Choudhary, M.; Khalil, R.; Ul-Haq, Z. Synthesis of pyrimidine-2,4,6-trione derivatives: Anti-oxidant, anti-cancer, α-glucosidase, β-glucuronidase inhibition and their molecular docking studies. Bioorg. Chem. 2016, 68, 72–79. [Google Scholar] [CrossRef]
- Wang, Z.K.; Yang, L.H.; Fan, H.; Wu, P.; Zhang, F.; Zhang, C.; Liu, W.J.; Li, M. Screening of a natural compound library identifies emodin, a natural compound from Rheum palmatum Linn that inhibits DPP4. PeerJ 2017, 5, e3283. [Google Scholar] [CrossRef]
- Ravindran, R.; Dorairaj, S. Insilico molecular modelling dynamics of chrysophanol and dpp4. World J. Pharm. Pharm. Sci. 2016, 5, 1611. [Google Scholar] [CrossRef]
- Yin, D.L.; Rong, Y.; Sha, P.; Jing, D.; Huo, Y.J.; Zhe, D.; Yau, Y.M.; Liu, J.H.; Liao, D.F.; Chem, C.F. Guanxin Xiaoban capsules could treat atherosclerosis by affecting the gut microbiome and inhibiting the AGE-RAGE signalling pathway. J. Med. Microbiol. 2022, 71. [Google Scholar] [CrossRef]
- Fenn, K.; Strandwitz, P.; Stewart, E.J.; Dimise, E.; Rubin, S.; Gurubacharya, S.; Clardy, J.; Lewis, K. Quinones are growth factors for the human gut microbiota. Microbiome 2017, 5, 161. [Google Scholar] [CrossRef] [PubMed]
- Siraki, A.G.; Chan, T.S.; O’Brien, P.J. Application of Quantitative Structure-Toxicity Relationships for the Comparison of the Cytotoxicity of 14 p-Benzoquinone Congeners in Primary Cultured Rat Hepatocytes Versus PC12 Cells. Toxicol. Sci. 2004, 81, 148–159. [Google Scholar] [CrossRef]
- Dong, X.X.; Fu, J.; Yin, X.B.; Cao, S.L.; Li, X.C.; Lin, L.F.; Huyiligeqi; Ni, J. Emodin: A Review of its Pharmacology, Toxicity and Pharmacokinetics. Phytother. Res. 2016, 30, 1207–1218. [Google Scholar] [CrossRef]
- Ma, X.; Wu, S.M. Oxygenated polycyclic aromatic hydrocarbons in food: Toxicity, occurrence and potential sources. Crit. Rev. Food Sci. Nutr. 2022, 64, 4882–4903. [Google Scholar] [CrossRef] [PubMed]
- Ishihara, Y. Enhancement of Quinone Hepatotoxicity by Cytochrome P450 Inhibition. Yakugaku Zasshi 2013, 133, 873–878. [Google Scholar] [CrossRef]
- Oshida, K.; Hirakata, M.; Maeda, A.; Miyoshi, T.; Miyamoto, Y. Toxicological effect of emodin in mouse testicular gene expression profile. J. Appl. Toxicol. 2011, 31, 790–800. [Google Scholar] [CrossRef]
- Gong, H.; He, Z.; Peng, A.; Zhang, X.; Cheng, B.; Sun, Y.; Zheng, L.; Huang, K. Effects of several quinones on insulin aggregation. Sci. Rep. 2014, 4, srep05648. [Google Scholar] [CrossRef] [PubMed]
- Le, J.; Ji, H.; Zhou, X.; Wei, X.; Chen, Y.; Fu, Y.; Ma, Y.; Han, Q.; Sun, Y.; Gao, Y.; et al. Pharmacology, Toxicology, and Metabolism of Sennoside A, A Medicinal Plant-Derived Natural Compound. Front. Pharmacol. 2021, 12, 714586. [Google Scholar] [CrossRef] [PubMed]
- Chien, S.-C.; Wu, Y.-C.; Chen, Z.-W.; Yang, W.-C. Naturally Occurring Anthraquinones: Chemistry and Therapeutic Potential in Autoimmune Diabetes. Evid.-Based Complement. Altern. Med. 2015, 2015, 357357. [Google Scholar] [CrossRef]
- Guo, X.; Mei, N. Aloe vera: A review of toxicity and adverse clinical effects. J. Environ. Sci. Health C Environ. Carcinog. Ecotoxicol. Rev. 2016, 34, 77–96. [Google Scholar] [CrossRef]
- Michalik, M.; Poliak, P.; Klein, E.; Lukes, V. On the toxicity of para-substituted phenols and their quinone metabolites: Quantum chemical study. Chem. Phys. Lett. 2018, 709, 71–76. [Google Scholar] [CrossRef]
- Maheshwari, R.; Balaraman, R.; Sen, A.K.; Shukla, D.; Seth, A. Effect of concomitant administration of coenzyme Q10 with sitagliptin on experimentally induced diabetic nephropathy in rats. Ren. Fail. 2017, 39, 130–139. [Google Scholar] [CrossRef] [PubMed]
- Dunsmore, L.; Navo, C.D.; Becher, J.; de Montes, E.G.; Guerreiro, A.; Hoyt, E.; Brown, L.; Zelenay, V.; Mikutis, S.; Cooper, J.; et al. Controlled masking and targeted release of redox-cycling ortho-quinones via a C-C bond-cleaving 1,6-elimination. Nat. Chem. 2022, 14, 754–765. [Google Scholar] [CrossRef]
- Yao, Y.; Shao, F.; Peng, X.; Wang, H.; Wang, K.; Zhu, K. Emodin in-situ delivery with Pluronic F-127 hydrogel for myocardial infarction treatment: Enhancing efficacy and reducing hepatotoxicity. Life Sci. 2024, 354, 122963. [Google Scholar] [CrossRef] [PubMed]
- Wei, Q.; Gao, F.; Gao, L.; Gao, H.; Zhang, J.; Bao, R.; Zhang, H.; Wang, J.; Shen, Q.; Gu, M. Construction of chrysophanol loaded nanoparticles with N-octyl-O-sulfa te chitosan for enhanced nephroprotective effect. Eur. J. Pharm. Sci. 2024, 193, 106685. [Google Scholar] [CrossRef] [PubMed]
- Makinde, E.; Ma, L.; Mellick, G.D.; Feng, Y.J.B. A High-Throughput Screening of a Natural Products Library for Mitochondria Modulators. Biomolecules 2024, 14, 440. [Google Scholar] [CrossRef]
- Tang, W.; Chen, J.; Wang, Z.; Xie, H.; Hong, H. Deep learning for predicting toxicity of chemicals: A mini review. J. Environ. Sci. Health C Environ. Carcinog. Ecotoxicol. Rev. 2018, 36, 252–271. [Google Scholar] [CrossRef]
- Capone, P.; Chiarella, P.; Sisto, R. Advanced technologies in genomic toxicology: Current trend and future directions. Curr. Opin. Toxicol. 2023, 37, 100444. [Google Scholar] [CrossRef]
- Jones, T.J.M.; Douglas, C. The Metabolism and Toxicity of Quinones, Quinonimines, Quinone Methides, and Quinone-Thioethers. J. Curr. Drug Metab. 2002, 3, 425–438. [Google Scholar]
- Suksomboon, N.; Poolsup, N.; Juanak, N. Effects of coenzyme Q10 supplementation on metabolic profile in diabetes: A systematic review and meta-analysis. J. Clin. Pharm. Ther. 2015, 40, 413–418. [Google Scholar] [CrossRef] [PubMed]
- Dong, X.; Fu, J.; Yin, X.; Yang, C.; Ni, J. Aloe-emodin Induces Apoptosis in Human Liver HL-7702 Cells through Fas Death Pathway and the Mitochondrial Pathway by Generating Reactive Oxygen Species. Phytother. Res. 2017, 31, 927–936. [Google Scholar] [CrossRef] [PubMed]
- Shia, C.-S.; Juang, S.; Tsai, S.; Chang, P.-H.; Kuo, S.; Hou, Y.-C.; Chao, P. Metabolism and pharmacokinetics of anthraquinones in Rheum palmatum in rats and ex vivo antioxidant activity. Planta Med. 2009, 75, 1386–1392. [Google Scholar] [CrossRef]
- Mueller, S.; Stopper, H.; Dekant, W. Biotransformation of the anthraquinones emodin and chrysophanol by cytochrome P450 enzymes. Bioactivation to genotoxic metabolites. Drug Metab. Dispos. Biol. Fate Chem. 1998, 26, 540–546. [Google Scholar] [PubMed]
- Marcheggiani, F.; Orlando, P.; Silvestri, S.; Cirilli, I.; Riva, A.; Petrangolini, G.; Orsini, F.; Tiano, L. CoQ10Phytosomes Improve Cellular Ubiquinone Uptake in Skeletal Muscle Cells: An Ex Vivo Study Using CoQ10-Enriched Low-Density Lipoproteins Obtained in a Randomized Crossover Study. Antioxidants 2023, 12, 964. [Google Scholar] [CrossRef]
- Niu, Z.; Acevedo-Fani, A.; McDowell, A.; Barnett, A.; Loveday, S.; Singh, H. Nanoemulsion structure and food matrix determine the gastrointestinal fate and in vivo bioavailability of coenzyme Q10. J. Control. Release Off. J. Control. Release Soc. 2020, 327, 444–455. [Google Scholar] [CrossRef] [PubMed]
- Jacobs, D.R.; Tapsell, L.C. Food synergy: The key to a healthy diet. Proc. Nutr. Soc. 2013, 72, 200–206. [Google Scholar] [CrossRef]
- Løhmann, D.J.A.; Abrahamson, J.; Ha, S.Y.; Jónsson, Ó.G.; Koskenvuo, M.; Lausen, B.; Palle, J.; Zeller, B.; Hasle, H. Effect of Age and Weight on Toxicity and Survival in Pediatric Acute Myeloid Leukemia. Blood 2015, 126, 3745. [Google Scholar] [CrossRef]
- Teng, H.; Chen, L. Polyphenols and bioavailability: An update. Crit. Rev. Food Sci. Nutr. 2019, 59, 2040–2051. [Google Scholar] [CrossRef]
- Canovai, A.; Williams, P.A. Pyrroloquinoline quinone: A potential neuroprotective compound for neu rodegenerative diseases targeting metabolism. Neural. Regen. Res. 2025, 20, 41–53. [Google Scholar] [CrossRef] [PubMed]
- Harris, C.; Chowanadisai, W.; Mishchuk, D.; Satre, M.; Slupsky, C.; Rucker, R. Dietary pyrroloquinoline quinone (PQQ) alters indicators of inflammation and mitochondrial-related metabolism in human subjects. J. Nutr. Biochem. 2013, 24, 2076–2084. [Google Scholar] [CrossRef]
- Beyer, R.; Segura-Aguilar, J.; Di Bernardo, S.; Cavazzoni, M.; Fato, R.; Fiorentini, D.; Galli, M.; Setti, M.; Landi, L.; Lenaz, G. The two-electron quinone reductase DT-diaphorase generates and maintains the antioxidant (reduced) form of coenzyme Q in membranes. Mol. Asp. Med. 1997, 18, S15–S23. [Google Scholar] [CrossRef] [PubMed]
- Sato, T.; Inaba, N.; Yamashita, T. MK-7 and Its Effects on Bone Quality and Strength. Nutrients 2020, 12, 965. [Google Scholar] [CrossRef] [PubMed]
- Ingram, B.; Turbyfill, J.; Bledsoe, P.; Jaiswal, A.; Stafford, D. Assessment of the contribution of NAD(P)H-dependent quinone oxidoreductase 1 (NQO1) to the reduction of vitamin K in wild-type and NQO1-deficient mice. Biochem. J. 2013, 456, 47–54. [Google Scholar] [CrossRef]
- Wang, D.; Wang, X.-H.; Yu, X.; Cao, F.; Cai, X.; Chen, P.; Li, M.; Feng, Y.; Li, H.; Wang, X. Pharmacokinetics of Anthraquinones from Medicinal Plants. Front. Pharmacol. 2021, 12, 638993. [Google Scholar] [CrossRef]
- Li, L.; Sheng, X.; Zhao, S.H.; Zou, L.F.; Han, X.Y.; Gong, Y.X.; Yuan, H.L.; Shi, L.R.; Guo, L.L.; Jia, T.Y.; et al. Nanoparticle-encapsulated emodin decreases diabetic neuropathic pain probably via a mechanism involving P2X3 receptor in the dorsal root ganglia. Purinerg. Signal. 2017, 13, 559–568. [Google Scholar] [CrossRef]
- Zhao, W.; Li, R.; Xiao, Z.; Yang, F.; Chen, S.; Miao, J.; Ma, G.; Wang, Y.; Chen, Y.; Fan, S. Rhein-chitosan in situ hydrogel promotes wound healing in diabetic mice. Int. J. Biol. Macromol. 2024, 277, 134472. [Google Scholar] [CrossRef] [PubMed]
- Pastor-Maldonado, C.J.; Suárez-Rivero, J.M.; Povea-Cabello, S.; Álvarez-Córdoba, M.; Villalón-García, I.; Munuera-Cabeza, M.; Suárez-Carrillo, A.; Talaverón-Rey, M.; Sánchez-Alcázar, J.A. Coenzyme Q10: Novel formulations and medical trends. Int. J. Mol. Sci. 2020, 21, 8432. [Google Scholar] [CrossRef]
- López-Lluch, G.; del Pozo-Cruz, J.; Sánchez-Cuesta, A.; Cortés-Rodríguez, A.B.; Navas, P. Bioavailability of coenzyme Q10 supplements depends on carrier lipids and solubilization. Nutrition 2018, 57, 133–140. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.-X.; Wang, Y.; Qiao, S.-L.; An, H.-W.; Zhang, R.-X.; Qiao, Z.-Y.; Rajapaksha, R.P.Y.J.; Wang, L.; Wang, H. pH-Sensitive Polymeric Nanoparticles Modulate Autophagic Effect via Lysosome Impairment. Small 2016, 12, 2921–2931. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Davis, E. Nanoplatforms for Targeted Stimuli-Responsive Drug Delivery: A Review of Platform Materials and Stimuli-Responsive Release and Targeting Mechanisms. Nanomaterials 2021, 11, 746. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Fu, Y.; Li, L.; Liu, Y.; Zhang, C.; Yu, D.; Ma, Y.; Xiao, Y. Pharmacokinetic comparisons of major bioactive components after oral administration of raw and steamed rhubarb by UPLC-MS/MS. J. Pharm. Biomed. Anal. 2019, 171, 43–51. [Google Scholar] [CrossRef] [PubMed]
- Witkamp, R.F.; van Norren, K. Let thy food be thy medicine….when possible. Eur. J. Pharmacol. 2018, 836, 102–114. [Google Scholar] [CrossRef] [PubMed]
- Shiojima, Y.; Takahashi, M.; Takahashi, R.; Moriyama, H.; Bagchi, D.; Bagchi, M.; Akanuma, M. Safety and Efficacy of a Novel Dietary Pyrroloquinoline Quinone Disodium Salt on Cognitive Functions in Healthy Volunteers: A Clinical Investigation. FASEB J. 2022, 36. [Google Scholar] [CrossRef]
- Al-Taie, A.; Victoria, A.O.; Hafeez, A. Potential Therapeutic Use of Coenzyme Q10 in Diabetes Mellitus and Its Complications: An Algorithm of Scoping Clinical Review. SN Compr. Clin. Med. 2021, 3, 989–1001. [Google Scholar] [CrossRef]
- Karamzad, N.; Maleki, V.; Carson-Chahhoud, K.; Azizi, S.; Sahebkar, A.; Gargari, B.P. A systematic review on the mechanisms of vitamin K effects on the complications of diabetes and pre-diabetes. BioFactors 2020, 46, 21–37. [Google Scholar] [CrossRef] [PubMed]
- Tan, Y.; Liu, S.; Huang, M.; Cheng, H.; Xu, B.; Luo, H.; Tang, Q. Efficacy and safety of Gegen Qinlian decoction in the treatment of type II diabetes mellitus: A systematic review and meta-analysis of randomized clinical trials. Front. Endocrinol. 2024, 14, 1316269. [Google Scholar] [CrossRef] [PubMed]
- Fan, L.; Fan, W.; Mei, Y.; Liu, L.; Li, L.; Wang, Z.; Yang, L. Mechanochemical assisted extraction as a green approach in preparation of bioactive components extraction from natural products—A review. Trends Food Sci. Technol. 2022, 129, 98–110. [Google Scholar] [CrossRef]
- Puttarak, P.; Charoonratana, T.; Panichayupakaranant, P. Antimicrobial activity and stability of rhinacanthins-rich Rhinacanthus nasutus extract. Phytomedicine 2010, 17, 323–327. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Yuan, G.; Pan, Y.; Wang, C.; Chen, H. Network Pharmacology Studies on the Bioactive Compounds and Action Mechanisms of Natural Products for the Treatment of Diabetes Mellitus: A Review. Front. Pharmacol. 2017, 8, 74. [Google Scholar] [CrossRef]
- Evert, A.B.; Dennison, M.; Gardner, C.D.; Garvey, W.T.; Lau, K.H.K.; MacLeod, J.; Mitri, J.; Pereira, R.F.; Rawlings, K.; Robinson, S.; et al. Nutrition Therapy for Adults With Diabetes or Prediabetes: A Consensus Report. Diabetes Care 2019, 42, 731–754. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.D.; Hu, F.B. Precision nutrition for prevention and management of type 2 diabetes. Lancet Diabetes Endocrinol. 2018, 6, 416–426. [Google Scholar] [CrossRef] [PubMed]
- Ren, X.; Li, X. Advances in Research on Diabetes by Human Nutriomics. Int. J. Mol. Sci. 2019, 20, 5375. [Google Scholar] [CrossRef] [PubMed]
- Mita, T. Do Digital Health Technologies Hold Promise for Preventing Progression to Type 2 Diabetes? J. Clin. Endocrinol. Metab. 2024, 109, e1667–e1668. [Google Scholar] [CrossRef] [PubMed]
- Cores, Á.; Carmona-Zafra, N.; Clerigué, J.; Villacampa, M.; Menéndez, J.C. Quinones as Neuroprotective Agents. Antioxidants 2023, 12, 1464. [Google Scholar] [CrossRef] [PubMed]
- Cai, W.; Ma, S.; Zhu, L.; Li, K.; Liu, M.; Liu, K. Anti-cancer Research on Arnebiae radix-derived Naphthoquinone in Recent Five Years. Recent Pat. Anti-Cancer Drug Discov. 2022, 17, 218–230. [Google Scholar] [CrossRef]
- dos S. Moreira, C.; Santos, T.B.; Freitas, R.H.C.N.; Pacheco, P.A.F.; da Rocha, D.R. Juglone: A Versatile Natural Platform for Obtaining New Bioactive Compounds. Curr. Top. Med. Chem. 2021, 21, 2018–2045. [Google Scholar] [CrossRef] [PubMed]
Num. | Compound | Structure | Source | Research Model | Antidiabetic Effects | Reference | (Q/SQ•−)/mV |
---|---|---|---|---|---|---|---|
1 | Coenzyme Q10 | Corn, peanut, sardines, animal offal, and so on. | STZ-induced rat. | IGF-1 ↑, eNOS ↓, myocardial relaxation ↑, ROS ↓, mitochondrial function ↑. | [29] | −230 | |
2 | Thymoquinone | Nigella sativa L. | STZ-induced diabetes rats, diabetic mice during gestation and lactation. | Serum glucose ↓, serum insulin level ↑, body weight ↑; TAC ↑, MDA ↓, COX-2 ↓, SOD ↑, GST ↑, GPx ↑, CAT ↑, GSH ↑; IL-1β ↓, IL-6 ↓, TNF-α ↓. | [30,31] | −70 | |
3 | Embelin | Fruit of Embelia basal. | α-glucosidase activity, high-fat diet (HFD) + streptozotocin (STZ) diabetic rats. | α-Glucosidase ↓; Body weight ↑, plasma glucose ↓, HbA1c ↓; IL 6↓, TNF α ↓; GSH ↑, SOD ↑, CAT ↑, MDA ↓; TC ↓, TG ↓, VLDL ↓, LDL ↓, HDL ↑. | [32] | - | |
4 | Pyrroloquinoline quinone (PQQ) | Fermented soy beans (natto), tea, green peppers, parsley, kiwi fruit, and human milk. | Diabetic KK-A(y) mice, diabetic UCD-T2DM rats, mouse C2C12 myotubes, HepG2 cells, brain of STZ-induced diabetic mice. | Regulate CREB-PGC-1α pathway; MDA ↓, GSH ↑, SOD ↑, CAT ↑, GPx ↑, LPO ↓, LOOH ↓; Regulate PTP1B/IRS-1/GLUT4 pathway; AGEs formation ↓, RAGE expression ↓; Regulate NF-κB/pyroptosis pathway, TNF-α ↓, IL-6 ↓, IL-1β ↓. | [4,33] | 90 | |
5 | Rhinacanthin C | Rhinacanthus nasuta Kurz. | α-glucosidase inhibition, PTP1B inhibition, STZ-induced diabetic rats, 3T3 L-1 cells, STZ–nicotinamide induced male diabetic rats. | α-glucosidase ↓; PTP1B ↓; PPARγ ↑; FBG ↓, HbA1c ↓; LPO ↓, MDA ↓, SOD ↑, CAT ↑, GPx ↑; HDL ↑, TC↓, LDL ↓, VLDL ↓, HOMA-IR ↑; RAGE ↓, regulate NF-κB signaling pathway, TNFα ↓, Ikkβ ↓, caspase-3 ↓; GLUT4 translocation ↑, GLUT2 translocation ↑, glucose uptake ↑; AST ↓, ALT ↓, BUN ↓, creatinine ↓; G6PDH ↑, GDH ↑, SDH ↑; GK ↑, PFK ↑, PK ↑. | [34,35] | - | |
6 | Plumbagin | Diospyros kaki L., Plumbago zeylanica L. | STZ induced diabetic rats, high-glucose-induced HTR8/SVneo cell. | TGFβ1 via Nox4 pathway ↓; Glucose uptake ↑, GLUT4 translocation ↑; Regulate AKT/mTOR pathway; Bcl-2 ↑, Bax ↓, cleaved caspase-3 ↓, cleaved caspase-9 ↓. | [35,36,37] | −156 | |
7 | Shikonin | Lithospermum erythrorhizon SIEBOLD & ZUCC. | PTP1B inhibition, aldose reductase inhibition, L6 myotubes, 3T3-L1 cells. | PTP1B↓; Aldose reductase↓; FABP4↓, LPL↓, SREBP1C↓, PPARγ↓, C/EBPα↓; Glucose uptake↑, Akt↑, GLUT4 translocation↑. | [35,38] | - | |
8 | Emodin | Rheum palmatum, Polygonum cuspidatum, Polygonum multiflorum. | PTP1B inhibition, aldose reductase inhibition, α-Glucosidase inhibition, DPP-4 inhibition, high-fat-diet-fed STZ- induced C57/BL6J diabetic mice, C2C12 myotubes, 3T3-L1 adipocytes, STZ- induced diabetic rats. | PTP1B↓; Aldose reductase↓; α-Glucosidase↓; DPP-4 ↓; PPARγ ↑; Regulate AKT/GSK-3β signaling pathway; Regulate the p38 MAPK pathway; FBG ↓, Glucose uptake ↑, translocation of GLUT2 and GLUT4 ↑; AGEs ↓, 11β-HSD1 ↓; Perilipin ↑. | [8,39,40] | −460 | |
9 | Aloe-emodin | Cassia occidentalis, Rheum palmatum L., Aloe vera, Polygonum multiflorum Thunb. | PTP1B inhibition, α-Glucosidase inhibition, high glucose induced RIN-5F and L6 myotubes cells. | α-Glucosidase ↓; PTP1B ↓; Glucotoxicity ↓, ROS ↓; IL-1β ↓, IFN-γ ↓; Bax ↓, Fas ↓, Fadd ↓, caspase-3 ↓, Bcl-2 ↑, regulate NF-κB signaling pathway. | [8,39] | −405 | |
10 | Chrysophanol | Radix et Rhizoma Rhei, Cassia obtusifolia L., Polygonum multiflorum, Aloe vera, Senna septemtrionalis. | PTP1B inhibition, α-Glucosidase inhibition, DPP-4 inhibition, STZ-induced diabetic mice, high-fat diet-induced obese mice. | α-Glucosidase ↓; PTP1B ↓; DPP-4 ↓; FBG ↓, activate SIRT6/AMPK signaling pathway. | [8,39] | −425 |
Source Category | Specific Food/Organism | Quinone Type | Content (Examples) | Ref. |
---|---|---|---|---|
Plant Sources | Spinach, Kale, Broccoli, Lettuce, Cabbage, Vegetable oils, Green powdered tea | Vitamin K1 (VK1) | Spinach: 240–1220 µg/100 g Kale: 250–1139 µg/100 g Soybean oil: 180 μg/100 g Green powdered tea: 28.54–32.44 μg/g | [50,58] |
Parsley, Green Pepper, Spinach, Kiwi fruit, Papaya | PQQ | Parsley: 34.2 ± 11.6 ng/g Green pepper: 28.2 ± 13.7 ng/g Kiwi fruit: 27.4 ± 2.64 ng/g | [52] | |
Black Cumin Seeds (Nigella sativa) | Thymoquinone | 18–24% in seed oil | [57] | |
Animal and Marine | Heart, Liver, Shoulder, Sirloin, Thigh, Tenderloin, Fish | CoQ10 | Beef heart: 113.3 mg/kg Pork heart: 118.1–282 mg/kg Chicken liver: 116.2–132.2 mg/kg Herring heart: 120.0–148.4 mg/kg | [51] |
Milk | PQQ | Breast milk: 140–180 ng/ml | [59] | |
Butter | Vitamin K2 (VK2) | Butter: 15 µg/100 g | [5] | |
Wakame, Laver | VK1 | Wakame: 12,930 ng/g Laver: 4130 ng/g | [60] | |
Fermented Sources | Natto | PQQ, VK2 | PQQ: 61.0 ± 31.3 ng/g VK2: 10 µg/g | [13,52] |
Parmesan cheese, Emmental cheese, Gouda cheese | VK2 | Parmesan: 7.1–76.5 µg/100 g Emmental, 43.3 μg/100 g | [5] | |
Pickles | VK2 | Menaquinone-7: 5.55–14.48 µg/100 g Menaquinone-4: 1.00–4.63 µg/100 g | [61] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, T.; Li, M.; Lu, J.; Wang, J.; Zhang, M.; Panichayupakaranant, P.; Chen, H. Insights into the Sources, Structure, and Action Mechanisms of Quinones on Diabetes: A Review. Molecules 2025, 30, 665. https://doi.org/10.3390/molecules30030665
Zhang T, Li M, Lu J, Wang J, Zhang M, Panichayupakaranant P, Chen H. Insights into the Sources, Structure, and Action Mechanisms of Quinones on Diabetes: A Review. Molecules. 2025; 30(3):665. https://doi.org/10.3390/molecules30030665
Chicago/Turabian StyleZhang, Tingting, Mingyue Li, Jingyang Lu, Jia Wang, Min Zhang, Pharkphoom Panichayupakaranant, and Haixia Chen. 2025. "Insights into the Sources, Structure, and Action Mechanisms of Quinones on Diabetes: A Review" Molecules 30, no. 3: 665. https://doi.org/10.3390/molecules30030665
APA StyleZhang, T., Li, M., Lu, J., Wang, J., Zhang, M., Panichayupakaranant, P., & Chen, H. (2025). Insights into the Sources, Structure, and Action Mechanisms of Quinones on Diabetes: A Review. Molecules, 30(3), 665. https://doi.org/10.3390/molecules30030665