Oxazolo[5,4-d]pyrimidines as Anticancer Agents: A Comprehensive Review of the Literature Focusing on SAR Analysis
Abstract
:1. Introduction
2. Oxazolo[5,4-d]pyrimidines as Anticancer Agents with Targeted Mechanism of Action
2.1. VEGFR2 and/or EGFR Inhibitors
2.2. Angiogenesis Inhibitors
2.3. FGFR1 Inhibitors
2.4. CB2 Receptor Neutral Antagonist
2.5. AURKA Inhibitors
2.6. JAKs Inhibitors
2.7. NAE Inhibitors
2.8. HGPRT Inhibitors
2.9. Apoptosis Inducers
2.9.1. Antiapoptotic Proteins Inhibitors
2.9.2. Caspase Cascade Activators
3. Oxazolo[5,4-d]pyrimidines as Anticancer Agents with Undefined Mechanism of Action
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- International Agency for Research on Cancer. Available online: https://www.iarc.who.int/wp-content/uploads/2024/02/pr345_E.pdf (accessed on 14 October 2024).
- Brown, J.S.; Amend, S.R.; Austin, R.H.; Gatenby, R.A.; Hammarlund, E.U.; Pienta, K.J. Updating the Definition of Cancer. Mol. Cancer Res. 2023, 21, 1142–1147. [Google Scholar] [CrossRef] [PubMed]
- Nishida, N.; Yano, H.; Nishida, T.; Kamura, T.; Kojiro, M. Angiogenesis in cancer. Vasc. Health Risk Manag. 2006, 2, 213–219. [Google Scholar] [CrossRef]
- Hossain, M.; Habib, I.; Singha, K.; Kumar, A. FDA-approved heterocyclic molecules for cancer treatment: Synthesis, dosage, mechanism of action and their adverse effect. Heliyon 2023, 10, e23172. [Google Scholar] [CrossRef]
- Liang, X.; Wu, P.; Yang, Q.; Xie, Y.; He, C.; Yin, L.; Yin, Z.; Yue, G.; Zou, Y.; Li, L.; et al. An update of new small-molecule anticancer drugs approved from 2015 to 2020. Eur. J. Med. Chem. 2021, 220, 113473. [Google Scholar] [CrossRef]
- Karran, P. Thiopurines, DNA damage, DNA repair and therapy-related cancer. Br. Med. Bull. 2006, 79–80, 153–170. [Google Scholar] [CrossRef] [PubMed]
- Block, M.H.; Harrison, A.; Hargreaves, R.B. Preparation of Furyl-Substituted Purines, Oxazolopyrimidines and Pteridines as Adenosine Antagonist. European Patent EP544445A2, 2 June 1993. [Google Scholar]
- Fleck, M.; Nosse, B.; Roth, G.J. Preparation of New Azetidine Derivatives as Acetyl CoA Carboxylase Inhibitors, Pharmaceutical Compositions and Uses Thereof. WO2013098375A1, 28 December 2012. [Google Scholar]
- L’Heureux, A.; Hiebert, S.; Hu, C.; Lam, P.Y.S.; Lloyd, J.; Pi, Z.; Qiao, J.X.; Thibeault, C.; Tora, G.O.; Yang, W.; et al. Preparation of Hydroxyindoline Derivatives for Use as P2Y1 Receptor Antagonists. WO2014022343A1, 6 February 2014. [Google Scholar]
- Branstetter, B.J.; Breitenbucher, J.G.; Lebsack, A.D.; Liu, J.; Rech, J.C.; Xiao, W. Preparation of Imidazolo-, Oxazolo-, and Thiazolopyrimidine Compounds as Modulators of Transient Receptor Potential Protein Vanilloid Receptor 1 (TRPV1) Activity. U.S.20090156599A1, 18 June 2009. [Google Scholar]
- Zydowsky, T.M.; Winn, M.; De, B.; Condon, S.L.; Altenbach, R.J.; Basha, F.Z.; Boyd, S.A.; Buckner, S.A.; Hancock, A.A.; Lee, J.Y.; et al. Synthesis and in vitro evaluation of fused ring heterocyle-containing angiotensin II antagonists. Bioorg. Med. Chem. Lett. 1994, 4, 173–176. [Google Scholar] [CrossRef]
- Jang, M.-Y.; Lin, Y.; De Jonghe, S.; Gao, L.-J.; Vanderhoydonck, B.; Froeyen, M.; Rozenski, J.; Herman, J.; Louat, T.; Van Belle, K.; et al. Discovery of 7-N-piperazinylthiazolo[5,4-d]pyrimidine analogues as a novel class of immunosuppressive agents with in vivo biological activity. J. Med. Chem. 2011, 54, 655–668. [Google Scholar] [CrossRef] [PubMed]
- Miller, D.J.; Ravikumar, K.; Shen, H.; Suh, J.-K.; Kerwin, S.M.; Robertus, J.D. Structure-based design and characterization of novel platforms for ricin and Shiga toxin inhibition. J. Med. Chem. 2002, 45, 90–98. [Google Scholar] [CrossRef] [PubMed]
- Zhirnov, V.V.; Velihina, Y.S.; Mitiukhin, O.P.; Brovarets, V.S. Intrinsic drug potential of oxazolo[5,4-d]pyrimidines and oxazolo[4,5-d]pyrimidines. Chem. Biol. Drug Des. 2021, 98, 561–581. [Google Scholar] [CrossRef] [PubMed]
- De Coen, L.M.; Roman, B.I.; Movsisyan, M.; Heugebaert, T.S.A.; Stevens, C.V. Synthesis and biological activity of oxazolopyrimidines. Eur. J. Org. Chem. 2018, 19, 2148–2166. [Google Scholar] [CrossRef]
- Mieczkowski, A.; Bieszczad, B. Recent advances in the synthesis and applications of oxazolo[5,4-d]pyrimidines (microreview). Chem. Heterocycl. Comp. 2016, 52, 782–784. [Google Scholar] [CrossRef]
- Wang, X.; Bove, A.M.; Simone, G.; Ma, B. Molecular Bases of VEGFR-2-Mediated Physiological Function and Pathological Role. Front. Cell Dev. Biol. 2020, 8, 599281. [Google Scholar] [CrossRef] [PubMed]
- Uribe, M.L.; Marrocco, I.; Yarden, Y. EGFR in Cancer: Signaling Mechanisms, Drugs, and Acquired Resistance. Cancers 2021, 13, 2748. [Google Scholar] [CrossRef] [PubMed]
- Sigismund, S.; Avanzato, D.; Lanzetti, L. Emerging functions of the EGFR in cancer. Mol. Oncol. 2018, 12, 3–20. [Google Scholar] [CrossRef] [PubMed]
- Martin-Kohler, A.; Widmer, J.; Bold, G.; Meyer, T.; Séquin, U.; Traxler, P. Furo[2,3-d]pyrimidines and oxazolo[5,4-d]pyrimidines as inhibitors of receptor tyrosine kinases (RTK). Helv. Chim. Acta 2004, 87, 956–975. [Google Scholar] [CrossRef]
- Wedge, S.R.; Ogilvie, D.J.; Dukes, M.; Kendrew, J.; Chester, R.; Jackson, J.A.; Boffey, S.J.; Valentine, P.J.; Curwen, J.O.; Musgrove, H.L.; et al. ZD6474 inhibits vascular endothelial growth factor signaling, angiogenesis, and tumor growth following oral administration. Cancer Res. 2002, 62, 4645–4655. [Google Scholar] [PubMed]
- Caravatti, G.; Bruggen, J.; Buchdunger, E.; Cozens, R.; Furet, P.; Lydon, N.; O’Reilly, T.; Traxler, P. Pyrrolo[2,3-d]Pyrimidine and Pyrazolo[3,4-d] Pyrimidine Derivatives as Selective Inhibitors of the EGF Receptor Tyrosine Kinase. In Anticancer Agents; ACS Symposium Series; Oxford University Press: Oxford, MS, USA, 2001; Volume 796, pp. 231–244. [Google Scholar]
- Deng, Y.-H.; Xu, D.; Su, Y.-X.; Cheng, Y.-J.; Yang, Y.-L.; Wang, X.-Y.; Zhang, J.; You, Q.-D.; Sun, L.-P. Synthesis and biological evaluation of novel oxazolo[5,4-d]pyrimidines as potent VEGFR-2 inhibitors. Chem. Biodivers. 2015, 12, 528–537. [Google Scholar] [CrossRef] [PubMed]
- Roskoski, R., Jr. Sunitinib: A VEGF and PDGF receptor protein kinase and angiogenesis inhibitor. Biochem. Biophys. Res. Commun. 2007, 356, 323–328. [Google Scholar] [CrossRef] [PubMed]
- Sochacka-Ćwikła, A.; Regiec, A.; Czyżnikowska, Ż.; Śliwińska-Hill, U.; Kwiecień, A.; Wiatrak, B.; Rusak, A.; Krawczyńska, K.; Mrozowska, M.; Borska, S.; et al. Synthesis and structural proof of novel oxazolo[5,4-d]pyrimidine derivatives as potential VEGFR2 inhibitors. In vitro study of their anticancer activity. Bioorg. Chem. 2024, 153, 107958. [Google Scholar] [CrossRef] [PubMed]
- Nakamura, K.; Taguchi, E.; Miura, T.; Yamamoto, A.; Takahashi, K.; Bichat, F.; Guilbaud, N.; Hasegawa, K.; Kubo, K.; Fujiwara, Y.; et al. KRN951, a highly potent inhibitor of vascular endothelial growth factor receptor tyrosine kinases, has antitumor activities and affects functional vascular properties. Cancer Res. 2006, 66, 9134–9142. [Google Scholar] [CrossRef]
- Blank, B.R.; Gibbons, P.A.; Ndubaku, C.; Romero, F.A.; Chang, J.H.; Pham, J.D.; Roberts, T.C.; Vekariya, R.H.; Jeanneret, A.D.M.; Silva, H.A.; et al. Inhibitors of Epidermal Growth Factor Receptor. WIPO Patent WO2023076849A1, 4 May 2023. [Google Scholar]
- Liu, Z.L.; Chen, H.H.; Zheng, L.L.; Sun, L.-P.; Shi, L. Angiogenic signaling pathways and anti-angiogenic therapy for cancer. Sig. Transduct. Target. Ther. 2023, 8, 198. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Deng, Y.-H.; Yang, L.; Chen, Y.; Lawali, M.; Sun, L.-P.; Liu, Y. CPU-12, a novel synthesized oxazolo[5,4-d]pyrimidine derivative, showed superior anti-angiogenic activity. J. Pharmacol. Sci. 2015, 129, 9–17. [Google Scholar] [CrossRef] [PubMed]
- Deng, Y.-H.; Liu, J.-P.; Cheng, Y.-J.; Liu, Y.; Sun, L.-P. Diarylureas and Diarylamides with Oxazolo[5,4-d]pyrimidine Scaffold as Angiogenesis Inhibitors. Chem. Biodiver. 2016, 13, 1230–1239. [Google Scholar] [CrossRef] [PubMed]
- Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2020/021923s023lbl.pdf (accessed on 19 December 2024).
- Turner, N.; Grose, R. Fibroblast growth factor signalling: From development to cancer. Nat. Rev. Cancer 2010, 10, 116–129. [Google Scholar] [CrossRef]
- Ye, F.; Wang, Y.; Nian, S.; Wang, Y.; Chen, D.; Yu, S.; Wang, S. Synthesis and evaluation of biological and antitumor activities of 5,7-dimethyl- oxazolo[5,4-d]pyrimidine-4,6(5H,7H)-dione derivatives as novel inhibitors of FGFR1. J. Enzyme Inhib. Med. Chem. 2015, 30, 961–966. [Google Scholar] [CrossRef]
- Sun, L.; Tran, N.; Liang, C.; Tang, F.; Rice, A.; Schreck, R.; Waltz, K.; Shawver, L.K.; McMahon, G.; Tang, C. Design, synthesis, and evaluations of substituted 3-[(3- or 4-carboxyethylpyrrol-2-yl)methylidenyl]indolin-2-ones as inhibitors of VEGF, FGF, and PDGF receptor tyrosine kinases. J. Med. Chem. 1999, 42, 5120–5130. [Google Scholar] [CrossRef] [PubMed]
- Bie, B.; Wu, J.; Foss, J.F.; Naguib, M. An overview of the cannabinoid type 2 receptor system and its therapeutic potential. Curr. Opin. Anaesthesiol. 2018, 31, 407–414. [Google Scholar] [CrossRef] [PubMed]
- Xu, S.; Ma, H.; Bo, Y.; Shao, M. The oncogenic role of CB2 in the progression of non-small-cell lung cancer. Biomed. Pharmacother. 2019, 117, 109080. [Google Scholar] [CrossRef] [PubMed]
- Tuo, W.; Bollier, M.; Leleu-Chavain, N.; Lemaire, L.; Barczyk, A.; Dezitter, X.; Klupsch, F.; Szczepanski, F.; Spencer, J.; Chavatte, P.; et al. Development of novel oxazolo[5,4-d]pyrimidines as competitive CB2 neutral antagonists based on scaffold hopping. Eur. J. Med. Chem. 2018, 146, 68–78. [Google Scholar] [CrossRef]
- Hollinshead, S.P.; Tidwell, M.W.; Palmer, J.; Guidetti, R.; Sanderson, A.; Johnson, M.P.; Chambers, M.G.; Oskins, J.; Stratford, R.; Astles, P.C. Selective cannabinoid receptor type 2 cb2 agonists optimization of a series of purines leading to the identification of a clinical candidate for the treatment of osteoarthritic pain. J. Med. Chem. 2013, 56, 5722–5733. [Google Scholar] [CrossRef]
- Li, M.; Gao, K.; Chu, L.; Zheng, J.; Yang, J. The role of Aurora-A in cancer stem cells. Int. J. Biochem. Cell. Biol. 2018, 98, 89–92. [Google Scholar] [CrossRef] [PubMed]
- Hsieh, H.-P.; Coumar, S.M.; Chao, Y.-S. Preparation of Fused Multicyclic Compounds as Protein Kinase Inhibitors. WIPO Patent WO2010036629A, 1 April 2010. [Google Scholar]
- Merchant, S. The JAK2 mutation. Int. Rev. Cell Mol. Biol. 2021, 365, 117–162. [Google Scholar] [CrossRef] [PubMed]
- Hu, X.; Li, J.; Fu, M.; Zhao, X.; Wang, W. The JAK/STAT signaling pathway: From bench to clinic. Signal. Transduct. Target Ther. 2021, 6, 402. [Google Scholar] [CrossRef] [PubMed]
- Wehde, B.L.; Rädler, P.D.; Shrestha, H.; Johnson, S.J.; Triplett, A.A.; Wagner, K.U. Janus Kinase 1 Plays a Critical Role in Mammary Cancer Progression. Cell. Rep. 2018, 25, 2192–2207.e5. [Google Scholar] [CrossRef]
- Rodgers, J.D.; Shepard, S.; Arvanitis, A.G.; Wang, H.; Storace, L.; Folmer, B.; Shao, L.; Zhu, W.; Glenn, J.P. Preparation of N-(Hetero)arylpyrrolidine Derivatives of Pyrazol-4-ylpyrrolo[2,3-D]pyrimidines and Pyrrol-3-ylpyrrolo[2,3-D]-Pyrimidines as Janus Kinase JAK1 Inhibitors. WIPO Patent WO2010135650A1, 25 November 2010. [Google Scholar]
- Liang, Q.; Liu, M.; Li, J.; Tong, R.; Hu, Y.; Bai, L.; Shi, J. NAE modulators: A potential therapy for gastric carcinoma. Eur. J. Med. Chem. 2022, 231, 114156. [Google Scholar] [CrossRef]
- Zhang, S.; Yu, Q.; Li, Z.; Zhao, Y.; Sun, Y. Protein neddylation and its role in health and diseases. Sig. Transduct. Target Ther. 2024, 9, 85. [Google Scholar] [CrossRef]
- Fu, D.J.; Wang, T. Targeting NEDD8-activating enzyme for cancer therapy: Developments, clinical trials, challenges and future research directions. J. Hematol. Oncol. 2023, 16, 87. [Google Scholar] [CrossRef]
- Claiborne, C.F.; Critchley, S.; Langston, S.P.; Olhava, E.J.; Peluso, S.; Weatherhead, G.S.; Vyskocil, S.; Visiers, I.; Mizutani, H.; Cullis, C. Heteroaryl Compounds Useful as Inhibitors of E1 Activating Enzymes. WIPO Patent WO2008019124A1, 14 February 2008. [Google Scholar]
- Townsend, M.H.; Robison, R.A.; O’Neill, K.L. A review of HPRT and its emerging role in cancer. Med. Oncol. 2018, 35, 89. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Wang, Y.; Han, N.; Wang, X.; Ruan, M. HPRT promotes proliferation and metastasis in head and neck squamous cell carcinoma through direct interaction with STAT3. Exp. Cell Res. 2021, 399, 112424. [Google Scholar] [CrossRef] [PubMed]
- Townsend, M.H.; Ence, Z.E.; Cox, T.P.; Lattin, J.E.; Burrup, W.; Boyer, M.K.; Piccolo, S.R.; Robison, R.A.; O’Neill, K.L. Evaluation of the upregulation and surface expression of hypoxanthine guanine phosphoribosyltransferase in acute lymphoblastic leukemia and Burkitt’s B cell lymphoma. Cancer Cell Int. 2020, 20, 375. [Google Scholar] [CrossRef]
- Jadhav, A.L.; Townsend, L.B.; Nelson, J.A. Inhibition of hypoxanthine-guanine phosphoribosyl transferase. Biochem. Pharmacol. 1979, 28, 1057–1062. [Google Scholar] [CrossRef] [PubMed]
- Qian, S.; Wei, Z.; Yang, W.; Huang, J.; Yang, Y.; Wang, J. The role of BCL-2 family proteins in regulating apoptosis and cancer therapy. Front Oncol. 2022, 12, 985363. [Google Scholar] [CrossRef] [PubMed]
- Kale, J.; Osterlund, E.; Andrews, D. BCL-2 family proteins: Changing partners in the dance towards death. Cell Death Differ. 2018, 25, 65–80. [Google Scholar] [CrossRef]
- Sochacka-Ćwikła, A.; Regiec, A.; Zimecki, M.; Artym, J.; Zaczyńska, E.; Kocięba, M.; Kochanowska, I.; Bryndal, I.; Pyra, A.; Mączyński, M. Synthesis and Biological Activity of New 7-Amino-oxazolo[5,4-d]Pyrimidine Derivatives. Molecules 2020, 25, 3558. [Google Scholar] [CrossRef] [PubMed]
- Sochacka-Ćwikła, A.; Mączyński, M.; Czyżnikowska, Ż.; Wiatrak, B.; Jęśkowiak, I.; Czerski, A.; Regiec, A. New oxazolo[5,4-d]pyrimidines as potential anticancer agents: Their design, synthesis, and in vitro biological activity research. Int. J. Mol. Sci. 2022, 23, 11694. [Google Scholar] [CrossRef] [PubMed]
- Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2024/040278s027lbl.pdf (accessed on 28 December 2024).
- Fennell, D.A.; Summers, Y.; Cadranel, J.; Benepal, T.; Christoph, D.C.; Lal, R.; Das, M.; Maxwell, F.; Visseren-Grul, C.; Ferry, D. Cisplatin in the modern era: The backbone of first-line chemotherapy for non-small cell lung cancer. Cancer Treat. Rev. 2016, 44, 42–50. [Google Scholar] [CrossRef]
- Van Opdenbosch, N.; Lamkanfi, M. Caspases in Cell Death, Inflammation, and Disease. Immunity. 2019, 50, 1352–1364. [Google Scholar] [CrossRef] [PubMed]
- Boice, A.; Bouchier-Hayes, L. Targeting apoptotic caspases in cancer. Biochim. Biophys. Acta Mol. Cell. Res. 2020, 1867, 118688. [Google Scholar] [CrossRef]
- Cai, S.X.; Kemnitzer, W.E.; Sirisoma, S.; Zhang, H.-Z. N-Aryl-Isoxazolopyrimidin-4-Amines and Related Compounds as Activators of Caspases and Inducers of Apoptosis and the Use Thereof. WIPO Patent WO2008057402A2, 15 May 2008. [Google Scholar]
- Patil, V.D.; Wise, D.S.; Townsend, L.B.; Bloch, A. Synthesis and biological activity of selected 2-substituted 6-(.beta.-D-ribofuranosyl)oxazolo[5,4-d]pyrimidin-7-ones. J. Med. Chem. 1974, 17, 1282–1285. [Google Scholar] [CrossRef] [PubMed]
- Perupogu, N.; Kumar, R.D.; Ramachandran, D. Anticancer activity of newly synthesized 1,2,4-oxadiazole linked 4-oxazolo[5,4-d]pyrimidine derivatives. Chem. Data Collect. 2020, 27, 100363. [Google Scholar] [CrossRef]
- Zhang, W.; Gou, P.; Dupret, J.M.; Chomienne, C.; Rodrigues-Lima, F. Etoposide, an anticancer drug involved in therapy-related secondary leukemia: Enzymes at play. Transl. Oncol. 2021, 14, 101169. [Google Scholar] [CrossRef] [PubMed]
- Velihina, Y.; Gesese, R.; Zhirnov, V.; Kobzar, O.; Bui, B.; Pilyo, S.; Vovk, A.; Shen, H.Y.; Brovarets, V. Design, synthesis and evaluation of the anti-breast cancer activity of 1,3-oxazolo[4,5-d]pyrimidine and 1,3-oxazolo[5,4-d]pyrimidine derivatives. RSC Med. Chem. 2023, 14, 692–699. [Google Scholar] [CrossRef]
- Lakshmi, S.; Shanitha, A.; Shiny, D.; Rahul, B.; Saikant, R.; Sharaf, S.; Abi, S.; Rajmohan, G. Comparative differential cytotoxicity of clinically used SERMs in human cancer lines of different origin and its predictive molecular docking studies of key target genes involved in cancer progression and treatment responses. Curr. Res. Pharmacol. Drug Discov. 2022, 3, 100080. [Google Scholar] [CrossRef]
- Hajji, N.; Mateos, S.; Pastor, N.; Domínguez, I.; Cortés, F. Induction of genotoxic and cytotoxic damage by aclarubicin, a dual topoisomerase inhibitor. Mutat. Res. 2005, 583, 26–35. [Google Scholar] [CrossRef]
- Velihina, Y.; Scattolin, T.; Bondar, D.; Pil’o, S.; Obernikhina, N.; Kachkovskyi, O.; Semenyuta, I.; Caligiuri, I.; Rizzolio, F.; Brovarets, V.; et al. Synthesis, in silico and in vitro Evaluation of Novel Oxazolopyrimidines as Promising Anticancer Agents. Helv. Chim. Acta 2020, 103, e2000169. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sochacka-Ćwikła, A.; Mączyński, M. Oxazolo[5,4-d]pyrimidines as Anticancer Agents: A Comprehensive Review of the Literature Focusing on SAR Analysis. Molecules 2025, 30, 666. https://doi.org/10.3390/molecules30030666
Sochacka-Ćwikła A, Mączyński M. Oxazolo[5,4-d]pyrimidines as Anticancer Agents: A Comprehensive Review of the Literature Focusing on SAR Analysis. Molecules. 2025; 30(3):666. https://doi.org/10.3390/molecules30030666
Chicago/Turabian StyleSochacka-Ćwikła, Aleksandra, and Marcin Mączyński. 2025. "Oxazolo[5,4-d]pyrimidines as Anticancer Agents: A Comprehensive Review of the Literature Focusing on SAR Analysis" Molecules 30, no. 3: 666. https://doi.org/10.3390/molecules30030666
APA StyleSochacka-Ćwikła, A., & Mączyński, M. (2025). Oxazolo[5,4-d]pyrimidines as Anticancer Agents: A Comprehensive Review of the Literature Focusing on SAR Analysis. Molecules, 30(3), 666. https://doi.org/10.3390/molecules30030666