Synthesis and Characterization of Lignocellulose-Based Carbon Quantum Dots (CQDs) and Their Antimicrobial and Antioxidant Functionalities
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. Materials
3.2. Synthesis of CQDs
3.3. Characterization
3.4. Antimicrobial Property
3.5. Antioxidant Activity
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ezati, P.; Priyadarshi, R.; Rhim, J.-W. Prospects of sustainable and renewable source-based carbon quantum dots for food packaging applications. Sustain. Mater. Technol. 2022, 33, e00494. [Google Scholar] [CrossRef]
- Chu, H.-W.; Unnikrishnan, B.; Anand, A.; Lin, Y.-W.; Huang, C.-C. Carbon quantum dots for the detection of antibiotics and pesticides. J. Food Drug Anal. 2020, 28, 539. [Google Scholar] [CrossRef] [PubMed]
- Lim, S.Y.; Shen, W.; Gao, Z. Carbon quantum dots and their applications. Chem. Soc. Rev. 2015, 44, 362–381. [Google Scholar] [CrossRef] [PubMed]
- Das, S.; Mondal, S.; Ghosh, D. Carbon quantum dots in bioimaging and biomedicines. Front. Bioeng. Biotechnol. 2024, 11, 1333752. [Google Scholar] [CrossRef]
- Yin, H.; Truskewycz, A.; Cole, I.S. Quantum dot (QD)-based probes for multiplexed determination of heavy metal ions. Microchim. Acta 2020, 187, 1–25. [Google Scholar] [CrossRef]
- Wang, Z.; Yao, B.; Xiao, Y.; Tian, X.; Wang, Y. Fluorescent quantum dots and its composites for highly sensitive detection of heavy metal ions and pesticide residues: A review. Chemosensors 2023, 11, 405. [Google Scholar] [CrossRef]
- Salimi, F.; Moradi, M.; Tajik, H.; Molaei, R. Optimization and characterization of eco-friendly antimicrobial nanocellulose sheet prepared using carbon dots of white mulberry (L.). J. Sci. Food Agric. 2021, 101, 3439–3447. [Google Scholar] [CrossRef]
- Bijoy, G.; Sangeetha, D. Biomass derived carbon quantum dots as potential tools for sustainable environmental remediation and eco-friendly food packaging. J. Environ. Chem. Eng. 2024, 12, 113727. [Google Scholar] [CrossRef]
- Hao, X.; Huang, L.; Zhao, C.; Chen, S.; Lin, W.; Lin, Y.; Zhang, L.; Miao, C.; Lin, X.; Chen, M. Antibacterial activity of positively charged carbon quantum dots without detectable resistance for wound healing with mixed bacteria infection. Mater. Sci. Eng. C 2021, 123, 111971. [Google Scholar] [CrossRef]
- Akash, K.; Winston, A.J.P.P.; Mohamed, K.; Sagayaraj, P.; Madhavan, J.; Kumar, S.R.; Jayanthi, S.A.; Vijaya, J.J. Efficacy of anti-inflammatory and antioxidant activities of carbon quantum dots synthesized from sugarcane bagasse and pith. Inorg. Chem. Commun. 2024, 169, 113046. [Google Scholar] [CrossRef]
- Singh, A.K.; Itkor, P.; Lee, M.; Saenjaiban, A.; Lee, Y.S. Synergistic Integration of Carbon Quantum Dots in Biopolymer Matrices: An Overview of Current Advancements in Antioxidant and Antimicrobial Active Packaging. Molecules 2024, 29, 5138. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.; Lu, K.-Q.; Tang, Z.-R.; Xu, Y.-J. Recent progress in carbon quantum dots: Synthesis, properties and applications in photocatalysis. J. Mater. Chem. A 2017, 5, 3717–3734. [Google Scholar] [CrossRef]
- Feng, Z.; Adolfsson, K.H.; Xu, Y.; Fang, H.; Hakkarainen, M.; Wu, M. Carbon dot/polymer nanocomposites: From green synthesis to energy, environmental and biomedical applications. Sustain. Mater. Technol. 2021, 29, e00304. [Google Scholar] [CrossRef]
- Shaik, S.A.; Sengupta, S.; Varma, R.S.; Gawande, M.B.; Goswami, A. Syntheses of N-doped carbon quantum dots (NCQDs) from bioderived precursors: A timely update. ACS Sustain. Chem. Eng. 2020, 9, 3–49. [Google Scholar] [CrossRef]
- Song, X.; Zhao, S.; Xu, Y.; Chen, X.; Wang, S.; Zhao, P.; Pu, Y.; Ragauskas, A.J. Preparation, Properties, and Application of Lignocellulosic-Based Fluorescent Carbon Dots. ChemSusChem 2022, 15, e202102486. [Google Scholar] [CrossRef]
- Jiang, Z.; Zhang, X.; Sun, W.; Yang, D.; Duchesne, P.N.; Gao, Y.; Wang, Z.; Yan, T.; Yuan, Z.; Yang, G. Building a bridge from papermaking to solar fuels. Angew. Chem. Int. Ed. 2019, 58, 14850–14854. [Google Scholar] [CrossRef]
- Thangaraj, B.; Solomon, P.R.; Ranganathan, S. Synthesis of carbon quantum dots with special reference to biomass as a source-a review. Curr. Pharm. Des. 2019, 25, 1455–1476. [Google Scholar] [CrossRef]
- Wang, F.; Ouyang, D.; Zhou, Z.; Page, S.J.; Liu, D.; Zhao, X. Lignocellulosic biomass as sustainable feedstock and materials for power generation and energy storage. J. Energy Chem. 2021, 57, 247–280. [Google Scholar] [CrossRef]
- Luo, N.; Montini, T.; Zhang, J.; Fornasiero, P.; Fonda, E.; Hou, T.; Nie, W.; Lu, J.; Liu, J.; Heggen, M. Visible-light-driven coproduction of diesel precursors and hydrogen from lignocellulose-derived methylfurans. Nat. Energy 2019, 4, 575–584. [Google Scholar] [CrossRef]
- Bakshi, M.I.; Nazir, S.; Restu, W.K.; Rajamanickam, R.; Selvasembian, R.; Hua, L.S.; Antov, P.; Yadav, K.K.; Abbas, M.; Farobie, O.; et al. Recent advances in lignin from forest residue for hydrogel application. Biomass Conv. Bioref. 2024. [Google Scholar] [CrossRef]
- Tripathi, N.; Hills, C.D.; Singh, R.S.; Atkinson, C.J. Biomass waste utilisation in low-carbon products: Harnessing a major potential resource. NPJ Clim. Atmos. Sci. 2019, 2, 35. [Google Scholar] [CrossRef]
- Chen, X.; Zhu, J.; Song, W.; Xiao, L.-P. Integrated Cascade Biorefinery Processes to Transform Woody Biomass Into Phenolic Monomers and Carbon Quantum Dots. Front. Bioeng. Biotechnol. 2021, 9, 803138. [Google Scholar] [CrossRef] [PubMed]
- Zhao, S.; Song, X.; Chai, X.; Zhao, P.; He, H.; Liu, Z. Green production of fluorescent carbon quantum dots based on pine wood and its application in the detection of Fe3+. J. Clean. Prod. 2020, 263, 121561. [Google Scholar] [CrossRef]
- Quaid, T.; Ghalandari, V.; Reza, T. Effect of synthesis process, synthesis temperature, and reaction time on chemical, morphological, and quantum properties of carbon dots derived from loblolly pine. Biomass 2022, 2, 250–263. [Google Scholar] [CrossRef]
- Carvalho, J.; Santos, L.R.; Germino, J.C.; Terezo, A.J.; Moreto, J.A.; Quites, F.J.; Freitas, R.G. Hydrothermal synthesis to water-stable luminescent carbon dots from acerola fruit for photoluminescent composites preparation and its application as sensors. Mater. Res. 2019, 22, e20180920. [Google Scholar] [CrossRef]
- Liu, Y.; Guo, D.; Gao, Y.; Tong, B.; Li, Y.; Zhu, Y. Non-thermal effect of microwave on the chemical structure and luminescence properties of biomass-derived carbon dots via hydrothermal method. Appl. Surf. Sci. 2021, 552, 149503. [Google Scholar] [CrossRef]
- Wu, Y.; Li, Y.; Pan, X.; Hu, C.; Zhuang, J.; Zhang, X.; Lei, B.; Liu, Y. Hemicellulose-triggered high-yield synthesis of carbon dots from biomass. New J. Chem. 2021, 45, 5484–5490. [Google Scholar] [CrossRef]
- Gan, J.; Chen, L.; Chen, Z.; Zhang, J.; Yu, W.; Huang, C.; Wu, Y.; Zhang, K. Lignocellulosic Biomass-Based Carbon Dots: Synthesis Processes, Properties, and Applications. Small 2023, 19, 2304066. [Google Scholar] [CrossRef]
- Wang, Y.; Hu, Y.-J.; Hao, X.; Peng, P.; Shi, J.-Y.; Peng, F.; Sun, R.-C. Hydrothermal synthesis and applications of advanced carbonaceous materials from biomass: A review. Adv. Compos. Hybrid. Mater. 2020, 3, 267–284. [Google Scholar] [CrossRef]
- Abraham, J.E.; Balachandran, M. Fluorescent Mechanism in Zero-Dimensional Carbon Nanomaterials: A Review. J. Fluoresc. 2022, 32, 887–906. [Google Scholar] [CrossRef]
- Das, S.K.; Kesh, A.; Panda, S.K.; Sahu, A.K. Morphological Evolution of Carbon Quantum Dots to Carbon Nanoneedles and N/F Codoping as an Efficient Catalyst for Oxygen Electrochemistry. ACS Appl. Eng. Mater. 2024, 2, 1894–1907. [Google Scholar] [CrossRef]
- Jia, Z.; Hu, J.; Lu, P.; Wang, Y. Carbon quantum dots from carbohydrate-rich residue of birch obtained following lignin-first strategy. Bioresour. Technol. 2024, 408, 131206. [Google Scholar] [CrossRef] [PubMed]
- Ramanan, V.; Subray, S.H.; Ramamurthy, P. A Green synthesis of highly luminescent carbon dots from itaconic acid and its application as an efficient sensor for Fe3+ ions in aqueous medium. New J. Chem. 2018, 42, 8933–8942. [Google Scholar] [CrossRef]
- Yang, Q.; Duan, J.; Yang, W.; Li, X.; Mo, J.; Yang, P.; Tang, Q. Nitrogen-doped carbon quantum dots from biomass via simple one-pot method and exploration of their application. Appl. Surf. Sci. 2018, 434, 1079–1085. [Google Scholar] [CrossRef]
- Li, X.; Liu, X.; Su, Y.; Jiang, T.; Li, D.; Ma, X. Green synthesis of carbon quantum dots from wasted enzymatic hydrolysis lignin catalyzed by organic acids for UV shielding and antioxidant fluorescent flexible film. Ind. Crops Prod. 2022, 188, 115568. [Google Scholar] [CrossRef]
- Zhu, L.; Wu, H.; Xie, S.; Yang, H.; Shen, D. Multicolor lignin-derived carbon quantum dots: Controllable synthesis and photocatalytic applications. Appl. Surf. Sci. 2024, 662, 160126. [Google Scholar] [CrossRef]
- Wongrerkdee, S.; Pimpang, P. Ultraviolet-shielding and water resistance properties of graphene quantum dots/polyvinyl alcohol composite-based film. J. Met. Mater. Miner. 2020, 30, 90–96. [Google Scholar] [CrossRef]
- Zhao, S.; Chen, X.; Su, J.; Zhao, P.; Si, C.; Xu, T.; Huang, C.; Song, X. Interaction of lignin and xylan in the hydrothermal synthesis of lignocellulose-based carbon quantum dots and their application in in-vivo bioimaging. Int. J. Biol. Macromol. 2022, 222, 1876–1887. [Google Scholar] [CrossRef]
- Zhao, L.; Zhang, M.; Wang, H.; Devahastin, S. Effects of carbon dots in combination with rosemary-inspired carnosic acid on oxidative stability of deep frying oils. Food Control 2021, 125, 107968. [Google Scholar] [CrossRef]
- Yu, Q.; Zhang, M.; Mujumdar, A.S.; Huang, M. Evaluation of antioxidant, antimicrobial and bacterial labeling capacities of four plant byproduct carbon dots. Food Biosci. 2023, 56, 103091. [Google Scholar] [CrossRef]
- Wu, Q.; Li, W.; Wu, Y.; Huang, Z.; Liu, S. Pentosan-derived water-soluble carbon nano dots with substantial fluorescence: Properties and application as a photosensitizer. Appl. Surf. Sci. 2014, 315, 66–72. [Google Scholar] [CrossRef]
- Li, P.; Sun, L.; Xue, S.; Qu, D.; An, L.; Wang, X.; Sun, Z. Recent advances of carbon dots as new antimicrobial agents. SmartMat 2022, 3, 226–248. [Google Scholar] [CrossRef]
- Ma, Y.; Zhang, M.; Wang, H.; Wang, B.; Huang, H.; Liu, Y.; Kang, Z. N-doped carbon dots derived from leaves with low toxicity via damaging cytomembrane for broad-spectrum antibacterial activity. Mater. Today Commun. 2020, 24, 101222. [Google Scholar] [CrossRef]
- Esmaeili Koutamehr, M.; Moradi, M.; Tajik, H.; Molaei, R.; Khakbaz Heshmati, M.; Alizadeh, A. Sour whey-derived carbon dots; synthesis, characterization, antioxidant activity and antimicrobial performance on foodborne pathogens. LWT 2023, 184, 114978. [Google Scholar] [CrossRef]
- Aouadi, A.; Saoud, D.H.; Bouafia, A.; Mohammed, H.A.; Gamal, H.G.; Achouri, A.; Laouini, S.E.; Abdullah, M.M.S.; Al-maswari, B.M.; Al-Lohedan, H.A. Unveiling the antioxidant power: Synthesis and characterization of lemon and orange peel-derived carbon quantum dots with exceptional free radical scavenging activity. Biomass Conv. Bioref. 2024. [Google Scholar] [CrossRef]
- Ruiz, V.; Yate, L.; García, I.; Cabanero, G.; Grande, H.-J. Tuning the antioxidant activity of graphene quantum dots: Protective nanomaterials against dye decoloration. Carbon 2017, 116, 366–374. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, W.; Ko, S. Synthesis and Characterization of Lignocellulose-Based Carbon Quantum Dots (CQDs) and Their Antimicrobial and Antioxidant Functionalities. Molecules 2025, 30, 667. https://doi.org/10.3390/molecules30030667
Lee W, Ko S. Synthesis and Characterization of Lignocellulose-Based Carbon Quantum Dots (CQDs) and Their Antimicrobial and Antioxidant Functionalities. Molecules. 2025; 30(3):667. https://doi.org/10.3390/molecules30030667
Chicago/Turabian StyleLee, Wooseok, and Seonghyuk Ko. 2025. "Synthesis and Characterization of Lignocellulose-Based Carbon Quantum Dots (CQDs) and Their Antimicrobial and Antioxidant Functionalities" Molecules 30, no. 3: 667. https://doi.org/10.3390/molecules30030667
APA StyleLee, W., & Ko, S. (2025). Synthesis and Characterization of Lignocellulose-Based Carbon Quantum Dots (CQDs) and Their Antimicrobial and Antioxidant Functionalities. Molecules, 30(3), 667. https://doi.org/10.3390/molecules30030667