Chitosan Fibers Modified with HAp/β–TCP Nanoparticles
Abstract
:1. Introduction
2. Results and Discussion
2.1. Preparation of Chitosan Solutions Containing β-TCP, HAp and HAp/β-TCP
2.2. Rheology of Chitosan Solutions Modified with HAp/β-TCP Nanoparticles
2.3. Investigation into the Spinning of Chitosan Fibers Modified with HAp, β-TCP and HAp/β-TCP
2.4. Mechanical Properties of Chitosan Fibers Modified with HAp, β-TCP and HAp/β-TCP
2.5. FTIR Examination of Chitosan Fibers Modified with HAp, β-TCP and HAp/β-TCP Nanoparticles
2.6. Morphology and Chemistry of Chitosan Fibers Modified with HAp, β-TCP and HAp/β-TCP Nanoparticles
3. Experimental Section
3.1. Preparation of Chitosan Spinning Solution Containing HAp, β-TCP and HAp/β-TCP Nanoparticles
3.2. Wet Spinning of Chitosan Fibers Containing HAp, β-TCP and HAp/β-TCP Nanoparticles
3.3. Analytical Methods
4. Conclusions
Acknowledgments
References
- Wawro, D.; Ciechańska, D.; Stęplewski, W.; Bodek, A. Chitosan microfibrids: preparation, selected properties and application. Fibers Text. East. Eur 2006, 14, 97–101. [Google Scholar]
- Notin, L.; Viton, C.; Lucas, J.-M.; Domard, A. Pseudo-dry-spinning of chitosan. Acta Biomater 2006, 2, 297–311. [Google Scholar]
- Niekraszewicz, A.; Kucharska, M.; Wawro, D.; Struszczyk, M.H.; Kopias, K.; Rogaczewska, A. Development of a manufacturing method for surgical meshes modified by chitosan. Fibers Text. East. Eur 2007, 15, 105–107. [Google Scholar]
- Wawro, D. Multifilament chitosan yarn. Fibers Text. East. Eur 2011, 19, 101. [Google Scholar]
- Spinks, G.M.; Shin, S.R.; Whitten, P.G.; Kim, S.I.; Kim, S.J.; Wallace, G.G. Mechanical properties of chitosan/CNT microfibers obtained with improved dispersion. Sens. Actuators 2006, 115, 678–684. [Google Scholar]
- Wawro, D.; Stęplewski, W.; Ciechańska, D.; Krucińska, I.; Surma, B.; Lipp-Symonowicz, B. Methods of production high tenacity chitosan fibers. Pol. Pat. Appl. P. 387234 2009. [Google Scholar]
- Wawro, D.; Krucińska, I.; Ciechańska, D.; Niekraszewicz, A.; Stęplewski, W. Some Functional Properties of Chitosan Fibers Modified with Nanoparticles. Proceedings of the 10th International Conference of the European Chitin Society, EUCHIS’11, St. Petersburg, Russia, 20–24 May 2011.
- Sarkar, S.; Jana, A.D.; Samanta, S.K.; Mostafa, G. Facile synthesis of silver nanoparticles with highly efficient antimicrobial property. 2007, 26, 4419–4426. [Google Scholar]
- Zargarian, S.S.; Haddadi-Asl, V. A nanofibrous composite scaffold of PCL/hydroxyapatite-chitosan/PVA prepared by electrospinning. Iran. Polym. J. 2010, 19, 457–468. [Google Scholar]
- Lee, C.-Y.; Lee, J.-S.; Chen, S.-C. Dechlorinating Chitosan Fibers and Method for Manufacturing the same. U.S. 2010/0084336 A1 8 April 2010. [Google Scholar]
- Strobin, G.; Ciechańska, D.; Wawro, D.; Stęplewski, W.; JóŸwicka, J.; Sobczak, S.; Haga, A. Chitosan fibers modified by fibroin. Fibers Text. East. Eur 2007, 15, 64–65. [Google Scholar]
- Wawro, D.; Stęplewski, W.; Wrześniewska-Tosik, K. Preparation of keratin-modified chitosan fibers. Fibers Text. East. Eur 2009, 17, 37–42. [Google Scholar]
- Heineman, C.; Heineman, S.; Bernhard, A.; Worch, H.; Hanke, T. Novel textile chitosan scaffolds promote spreading, proliferation, and differentiation of osteoblasts. Biomacromolecules 2008, 9, 2913–2920. [Google Scholar]
- Heineman, C.; Heineman, S.; Bernhard, A.; Lode, A.; Worch, H.; Hanke, T. In vitro evaluation of textile chitosan scaffolds for tissue engineering using human bone marrow stromal cells. Biomacromolecules 2009, 10, 1305–1310. [Google Scholar]
- Heineman, C.; Heineman, S.; Bernhard, A.; Lode, A.; Worch, H.; Hanke, T. In vitro osteoclastogenesis on textile chitosan scaffolds. Eur. Cells Mater 2010, 19, 96–106. [Google Scholar]
- Tuzlakoglu, K.; Alves, C.M.; Mano, J.F.; Reis, R.L. Production and characterization of chitosan fibers and 3-D fiber mesh scaffolds for tissue engineering applications. Macromol. Biosci 2004, 4, 811–819. [Google Scholar]
- Tuzlakoglu, K.; Reis, R.L. Formation of bone-like apatite layer on chitosan fiber mesh scaffolds by a biomimetic spraying process. J. Mater. Sci. Mater. Med 2007, 18, 1279–1286. [Google Scholar] [Green Version]
- Lian, Q.; Li, D.C.; He, J.K.; Wang, Z. Mechanical properties and in-vivo performance of calcium phosphate cement-chitosan fiber composite. Proc. Inst. Mech. Eng. H 2007, 222, 347–353. [Google Scholar]
- Kent, J.N.; Block, M.S.; Finger, I.M.; Guerra, L.; Larsen, H.; Misiek, D.J. Biointegrated hydroxyapatite coated dental implants: 5 Year clinical observation. J. Am. Dent. Assoc 1990, 121, 138–144. [Google Scholar]
- Yokoyama, A.; Yamamoto, S.; Kawasaki, T.; Kogho, T.; Nakasu, M. Development of calcium phosphate cement using chitosan and citric acid for bone substitute materials. Biomaterials 2002, 23, 1091–1101. [Google Scholar]
- Pighinelli, L. Properties of Microcrystalline Chitosan/Calcium Phosphate Complex, Potential Use of Chitosan-Based Materials in Medicine. Proceedings of Conference 7th ISNaPol and XII IMC, Gramado, Brazil, 7–10 September 2010.
- Ratajska, M.; Haberko, K.; Ciechańska, D.; Niekraszewicz, A.; Kucharska, M. Hydroxyapatite-chitosan biocomposites. Prensent at the VII International Polymer Seminar, Gliwice, Poland, 26 June 2008.
- Murugan, R.; Ramakrishna, S. Bioresorbable composite bone paste using polysaccharide based nano hydroxyapatite. Biomaterials 2004, 25, 3829–3835. [Google Scholar]
- Wilsonjr, O.; Hull, J.R. Surface modification of nanophased hydroxyapatite with chitosan Materials. Sci. Eng. C 2008, 28, 434–437. [Google Scholar]
- Kwon, S.-H.; Jun, Y.-K.; Hong, S.-H.; Kim, H-E. Synthesis and dissolution behavior of β-TCP and HA/β-TCP composite powder. J. Eur. Ceram. Soc. 2003, 23, 1039–1045. [Google Scholar]
- Wawro, D.; Pighinelli, L.; Stęplewski, W. Methods of manufacture composite chitosan fibers. Pol. Pat. Appl. P. 393022 2010. [Google Scholar]
- Matsumoto, T.; Okazaki, M.; Inoune, M.; Hamada, Y.; Taira, M.; Takahashi, J. Crystallinity and solubility characteristics of hydroxyapatite adsorbed amino acid. Biomaterials 2002, 23, 2241–2247. [Google Scholar]
- Shinn-Jyh, D. Preparation and properties of chitosan/calcium phosphate composites for bone repair. Dent. Mater 2006, 25, 706–712. [Google Scholar]
- Liou, S.C.; Chen, S.Y. Transformation mechanism of different chemically precipitated apatitic precursor into β-tricalcium phosphate upon calcinations. Biomaterials 2002, 23, 4541–4547. [Google Scholar]
- Pena, J.; Vallet-Regi, M. Hydroxyapatite, tricalcium phosphate and biphasic materials prepared by a liquid mix technique. J. Eur. Ceram. Soc 2003, 23, 1687–1696. [Google Scholar]
- Fujita, R.; Yokoyama, A.; Nodasaka, Y.; Kohgo, T.; Kawasaki, T. Ultrastructure of ceramic-bone interface using hydroxyapatite and B-tricalcium phosphate ceramics and replacement mechanism of β-tricalcium phosphate in bone. Tissue Cell 2003, 35, 427–440. [Google Scholar]
- Skrtic, D.; Antonucci, J.M.; Eanes, E.D. Amorphous calcium phosphate-based bioactive polymeric composites for mineralized tissue regeneration. J. Res. Natl. Inst. Stand. Technol 2003, 108, 167–182. [Google Scholar]
- Fathi, M.H.; Hanifi, A.; Mortazavi, V. Preparation and bioactivity evaluation of bone-like hydroxyapatite nanopowder. J. Mater. Process. Technol 2008, 202, 536–542. [Google Scholar]
- Skoog, D.A.; Holler, F.J.; Nieman, T.A. Principios de Analise Instrumental, 5a ed; Bookman: Porto Alegre, Brazil, 2002; pp. 342–384. [Google Scholar]
- Wilson, O.C., Jr; Hull, J.R. Surface modification of nanophase hydroxyapatite with chitosan. Mater. Sci. Eng. C 2008, 28, 434–437. [Google Scholar]
- Maachou, H.; Bal, K.E.; Bal, Y.; Chagnes, A.; Cote, G.; Alliouche, D. Characterization and in vitro bioactivity of chitosan/hydroxyapatite composite membrane prepared by freeze-gelation method. Trends Biomater. Artif. Organs 2008, 22, 16–27. [Google Scholar]
- Brugnerotto, J.; Lizardi, J.; Goycoolea, F.M.; ArguÈelles-Monal, W.; DesbrieÁres, J.; Rinaudo, M. An infrared investigation in relation with chitin and chitosan characterization. Polymer 2001, 42, 3569–3580. [Google Scholar]
Solution code | Percentage of solution used, % | Concentration of | Dynamic viscosity/temp. | |||||
---|---|---|---|---|---|---|---|---|
β-TCP | HAp | Acetic acid | Chitosan | |||||
A | B | C | wt% | wt% | wt% | wt% | Pa/°C | |
Chit 58 | 100 | - | - | - | - | 3.00 | 5.16 | 19000/52 |
MCT 6 | 83.3 | 16.7 | - | 0.333 | - | 2.75 | 4.50 | 7500/49 |
MCT 7 | 83.3 | - | 16.7 | - | 0.330 | 2.75 | 4.63 | 9250/49 |
MCT 8 | 71.4 | 14.3 | 14.3 | 0.286 | 0.283 | 2.36 | 4.46 | 4500/52 |
MCT 11 | 62.5 | 25.0 | 12.5 | 0.707 | 0.252 | 2.10 | 4.01 | 1750/51 |
Chitosan solution | Range of particle size | Size of fraction with highest volume content | Percentage of volume | Potential Zeta |
---|---|---|---|---|
nm | nm | % | mV | |
Solution B | 28.9–164.9 | 65.2 | 11.5 | 43.0 ± 2.3 |
Solution C | 417.3–1495 | 745.4 | 34.2 | 45.3 ± 2.3 |
Blend of chitosan solutions B/C in 2:1 ratio | 12.8–58 | 22.9 | 19 | 52.9 ± 4.0 |
Parameter | Chit 58 | MCT 6 | MCT 7 | MCT 8 | MCT 11 | |
---|---|---|---|---|---|---|
Linear density | dtex | 4.39 | 4.48 | 5.14 | 5.41 | 4.16 |
Coefficient of variability of linear density | % | 1.25 | 2.48 | 1.93 | 3.57 | 1.64 |
Confidence interval of linear density | % | ±1.55 | ±3.08 | ±2.40 | ±4.43 | ±2.04 |
Breaking force | cN | 3.61 | 3.51 | 2.46 | 2.91 | 3.35 |
Coefficient of variability of breaking force (conditioned) | % | 14.6 | 14.0 | 32.2 | 28.6 | 19.5 |
Confidence interval of breaking force | % | ±6.02 | ±5.77 | ±13.3 | ±11.8 | ±8.03 |
Tenacity (cond) | cN/tex | 8.22 | 7.83 | 4.79 | 5.38 | 8.05 |
Elongation at break (cond) | % | 17.0 | 22.0 | 9.9 | 11.0 | 12.0 |
Breaking force (wet) | cN | 2.80 | 2.21 | 1.78 | 2.48 | 2.25 |
Coefficient of variability of breaking force (wet) | % | 36.8 | 31.9 | 49.9 | 33.4 | 18.3 |
Tenacity (wet) | cN/tex | 6.38 | 4.93 | 3.46 | 4.58 | 6.86 |
Elongation at break (wet) | % | 7.8 | 7.3 | 7.8 | 6.1 | 8.00 |
Fiber code | WRV | Ash | Calcium content |
---|---|---|---|
% | % | g/kg | |
Chit 58 | 158 | 0.1 | 0.14 |
MCT 6 | 163 | 0.4 | 0.35 |
MCT 7 | 154 | 3.2 | 8.45 |
MCT 8 | 331 | 4.8 | 9.95 |
MCT 11 | 210 | 4.8 | 14.35 |
© 2011 by the authors; licensee MDPI, Basel, Switzerland. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Wawro, D.; Pighinelli, L. Chitosan Fibers Modified with HAp/β–TCP Nanoparticles. Int. J. Mol. Sci. 2011, 12, 7286-7300. https://doi.org/10.3390/ijms12117286
Wawro D, Pighinelli L. Chitosan Fibers Modified with HAp/β–TCP Nanoparticles. International Journal of Molecular Sciences. 2011; 12(11):7286-7300. https://doi.org/10.3390/ijms12117286
Chicago/Turabian StyleWawro, Dariusz, and Luciano Pighinelli. 2011. "Chitosan Fibers Modified with HAp/β–TCP Nanoparticles" International Journal of Molecular Sciences 12, no. 11: 7286-7300. https://doi.org/10.3390/ijms12117286
APA StyleWawro, D., & Pighinelli, L. (2011). Chitosan Fibers Modified with HAp/β–TCP Nanoparticles. International Journal of Molecular Sciences, 12(11), 7286-7300. https://doi.org/10.3390/ijms12117286