Optimization of Antibacterial Activity of Perilla frutescens var. acuta Leaf against Staphylococcus aureus Using Evolutionary Operation Factorial Design Technique
Abstract
:1. Introduction
2. Results
2.1. Optimization of Antibacterial Activity by EVOP-fs
2.2. Total Phenolic Contents
2.3. Scanning Electron Microscopy (SEM)
3. Experimental Section
3.1. Plant Material
3.2. Microorganism
3.3. Preparation of Extracts
3.4. EVOP-Factorial Design Technique
3.5. Assay for Antibacterial Potential
3.6. Scanning Electron Microscopic (SEM) Analysis
3.7. Determination of Total Phenolic Contents
4. Discussion
References
- Careaga, M; Fernandez, E; Dorantes, L; Mota, L; Jaramillo, ME; Hernandez-Sanchez, H. Antibacterial activity of Capsicum extract against Salmonella typhimurium and Pseudomonas aeruginosa inoculated in raw beef meat. Int. J. Food Microbiol 2003, 83, 331–335. [Google Scholar]
- Lara, JAF; Senigalia, SWB; Oliveira, TCRM; Dutra, IS; Pinto, MF; Shimokomaki, M. Evaluation of survival of Staphylococcus aureus and Clostridium botulinum in charqui meats. Meat Sci 2003, 65, 609–613. [Google Scholar]
- Franco, BDGM; Landgraf, M; Shimokomaki, M; Azevedo, CHM. Condico es higie nico-sanita rias do charque comercializado em Sao Paulo, Brasil. Rev.de Microbiol 1987, 18, 98–102. [Google Scholar]
- Pinto, MF; Ponsano, EGH; Franco, BDGM; Shimokomaki, M. Charqui meats as fermented meat products: Role of bacteria for some sensorial properties development. Meat Sci 2002, 61, 187–191. [Google Scholar]
- Senigalia, SWB; Oliveira, TCR; Popper, IO; Shimokomaki, M. Implementacao doHACCP no processamento do charque visando Staphylococcus aureus. Rev. Nacional da Carne 1998, 27, 30–36. [Google Scholar]
- Box, GEP. Evolutionary operation: A method of increasing industrial productivity. Appl. Stat 1957, 6, 81–101. [Google Scholar]
- Kim, SJ; Park, SY; Kim, CW. A novel approach to the production of hyaluronic acid by Streptococcus zooepidemicus. J. Microbiol. Biotechnol 2006, 16, 1849–1855. [Google Scholar]
- Mukherjee, G; Banerjee, R. Evolutionary operation-factorial design technique for optimization of conversion of mixed agroproducts into gallic acid. Appl. Biochem. Biotechnol 2004, 118, 33–46. [Google Scholar]
- Banerjee, R; Bhattacharyya, BC. Evolutionary operation (EVOP) to optimize three-dimensional biological experiments. Biotechnol. Bioeng 1993, 41, 67–71. [Google Scholar]
- Tunga, R; Banerjee, R; Bhattacharyya, BC. Optimization of n variable biological experiments by evolutionary operation-factorial design technique. J. Biosci. Bioeng 1999, 87, 224–230. [Google Scholar]
- Chauhan, K; Trivedi, U; Patel, KC. Application of response surface methodology for optimization of lactic acid production using date juice. J. Microbiol. Biotechnol 2006, 16, 1410–1415. [Google Scholar]
- Kvist, T; Thyregod, P. Using evolutionary operation to improve yield in biotechnological processes. Qual. Real. Eng. Int 2005, 21, 457–463. [Google Scholar]
- Liu, JH; Steigel, A; Reininger, E; Bauer, R. Two new prenylated 3-benzoxepin derivatives ascyclooxygenase inhibitors from Perilla frutescens var. acuta. J. Nat. Prod 2000, 63, 403–405. [Google Scholar]
- Nakamura, Y; Ohto, Y; Murakami, A; Ohigashi, H. Superoxide scavenging activity of rosmarinic acid from Perilla frutescens Britton var. acuta f. Viridis. J. Agr. Food Chem 1998, 46, 4545–4550. [Google Scholar]
- Nakazawa, T; Ohsawa, K. Metabolites of orally administered Perilla frutescens extract in rats and humans. Biol. Pharm. Bull 2000, 23, 122–127. [Google Scholar]
- Choi, UK; Lee, OH; Lim, SI; Kim, YC. Optimization of antibacterial activity of Perilla frutescens var. acuta leaf against Pseudomonas aeruginosa using the evolutionary operation- factorial design technique. Int. J. Mol. Sci 2010, 11, 3922–3932. [Google Scholar]
- Benli, M; Kaya, I; Yigit, N. Screening antimicrobial activity of various extracts of Artemisia dracunculus L. Cell Biochem. Fun 2007, 25, 681–686. [Google Scholar]
- Eloff, JN. Antibacterial activity of Marula (Sclerocarya birrea (A. rich.) Hochst. subsp. caffra (Sond.) Kokwaro) (Anacardiaceae) bark and leaves. J. Ethnopharmacol 2001, 76, 305–308. [Google Scholar]
- Kockro, RA; Hampl, JA; Jansen, B; Peters, G; Scheihing, M; Giacomelli, R; Kunze, S; Aschoff, A. Use of scanning electron microscopy to investigate the prophylactic efficacy of rifampin-impregnated CSF shunt catheters. J. Med. Microbiol 2000, 49, 441–450. [Google Scholar]
- Lister, E; Wilson, P. Measurement of total phenolics and ABTS assay for antioxidant activity; Crop Research Institute: Lincoln, New Zealand, Personal communication; 2001. [Google Scholar]
- Shin, SY; Bajpai, VK; Kim, HR; Kang, SC. Antibacterial activity of eicosapentaenoic acid (EPA) against foodborne and food spoilage microorganisms. LWT-Food Sci. Technol 2007, 40, 1515–1519. [Google Scholar]
- Bajpai, VK; Sharif, MA; Choi, UK; Lee, JH; Kang, SC. Chemical composition, antibacterial and antioxidant activities of leaf essential oil and extracts of Metasequioa glyptostroboides Miki ex Hu. Food Chem. Toxicol 2009, 47, 1876–1883. [Google Scholar]
- Rauha, JP; Remes, S; Heinonen, M; Hopia, A; Kahkonen, M; Kujala, T; Pihlaja, K; Vuorela, H; Vuorela, P. Antimicrobial effects of Finnish plant extracts containing flavonoids and other phenolic compounds. Int. J. Food Microbiol 2000, 56, 3–12. [Google Scholar]
Experimental conditions | E10 | E11 | E12 | E13 | E14 | E20 | E21 | E22 | E23 | E24 |
---|---|---|---|---|---|---|---|---|---|---|
Temperature (°C) | 45(0) | 30(−) | 30(−) | 60(+) | 60(+) | 45(0) | 60(+) | 30(−) | 60(+) | 30(−) |
Time (h) | 12(0) | 6(−) | 18(+) | 6(−) | 18(+) | 12(0) | 18(+) | 6(−) | 6(−) | 18(+) |
Ethanol concentration (%) | 45(0) | 30(−) | 60(+) | 60(+) | 30(−) | 45(0) | 60(+) | 60(+) | 30(−) | 30(−) |
Antibacterial activity (cycle I) (Log CFU/mL) | 6.97 | 7.45 | 7.15 | 6.58 | 6.15 | 7.17 | 5.75 | 7.35 | 6.59 | 7.22 |
Antibacterial activity (cycle II) (Log CFU/mL) | 7.12 | 7.62 | 6.96 | 6.39 | 5.95 | 6.92 | 5.99 | 7.59 | 6.37 | 7.38 |
Difference (cycle I − cycle II) (Log CFU/mL) | −0.15 | −0.17 | 0.19 | 0.19 | 0.20 | 0.25 | −0.24 | −0.24 | 0.22 | −0.16 |
Average activity (Log CFU/mL) | 7.045 (a10) | 7.535 (a11) | 7.055 (a12) | 6.485 (a13) | 6.050 (a14) | 7.045 (a20) | 5.870 (a21) | 7.470 (a22) | 6.480 (a23) | 7.300 (a24) |
Effects of | Calculation of effects | ||
---|---|---|---|
Temperature | 1/4(a13+a14+a21+a23−a11−a12−a22−a24) | 0.1013 | |
Time | 1/4(a12+a14+a21+a24−a11−a13−a22−a23) | −0.4238 | |
Ethanol concentration | 1/4(a12+a13+a21+a22−a11−a14−a23−a24) | −0.1213 | |
Temperature × Time | 1/4(a11+a14+a21+a22−a12−a13−a23−a24) | −0.0988 | |
Temperature × Ethanol concentration | 1/4(a11+a13+a21+a24−a12−a14−a22−a23) | 0.0338 | |
Time × Ethanol concentration | 1/4(a11+a12+a21+a23−a13−a14−a22−a24) | −0.0913 | |
Temperature × Time × Ethanol concentration | 1/4(a21+a22+a23+a24−a11−a12−a13−a14) | −0.5013 | |
Change in mean effect | 1/10(a11+a12+a13+a14+a21+a22+a23+a24−4a10−4a20) | −0.2115 | |
Standard deviation (σ) | 1/2(σ1+σ2)=1/2(R1 × fk,n + R2 × fk,n)(1) | 0.1230 | |
Error limits : | For average | ±1.414σ (±2σ/√n) | 0.1739 |
For effects | ±1.004σ (±0.71 × 2σ/√n) | 0.1235 | |
For change in mean | ±0.891σ (±0.63 × 2σ/√n) | 0.1096 |
Experimental conditions | E10 | E11 | E12 | E13 | E14 | E20 | E21 | E22 | E23 | E24 |
---|---|---|---|---|---|---|---|---|---|---|
Temperature (°C) | 60(0) | 45(−) | 45(−) | 75(+) | 75(+) | 60(0) | 75(+) | 45(−) | 75(+) | 45(−) |
Time (h) | 18(0) | 12(−) | 24(+) | 12(−) | 24(+) | 18(0) | 24(+) | 12(−) | 12(−) | 24(+) |
Ethanol concentration (%) | 60(0) | 45(−) | 75(+) | 75(+) | 45(−) | 60(0) | 75(+) | 75(+) | 45(−) | 45(−) |
Antibacterial activity (cycle I) (Log CFU/mL) | 5.70 | 6.95 | 5.18 | 5.89 | 4.78 | 5.76 | 5.23 | 6.80 | 5.42 | 5.60 |
Antibacterial activity (cycle II) (Log CFU/mL) | 5.55 | 7.08 | 5.38 | 5.69 | 5.00 | 5.57 | 5.40 | 6.99 | 5.28 | 5.39 |
Difference (cycle I − cycle II) (Log CFU/mL) | 0.15 | −0.13 | −0.20 | 0.20 | 0.22 | 0.19 | −0.17 | −0.19 | 0.19 | 0.21 |
Average activity (Log CFU/mL) | 5.625 (a10) | 7.015 (a11) | 5.280 (a12) | 5.790 (a13) | 4.890 (a14) | 5.665 (a20) | 5.315 (a21) | 6.895 (a22) | 5.350 (a23) | 5.495 (a24) |
Effects of | Calculation of effects | |
---|---|---|
Temperature | −0.8350 | |
Time | −1.0175 | |
Ethanol concentration | 0.1325 | |
Temperature × Time | 0.5500 | |
Temperature × EC | 0.3000 | |
Time × Ethanol concentration | −0.0275 | |
Temperature × Time × EC | −0.1638 | |
Change in mean effect | 0.0870 | |
Standard deviation (σ) | 0.1230 | |
Error limits : | For average | 0.1739 |
For effects | 0.1235 | |
For change in mean | 0.1096 |
Experimental conditions | E10 | E11 | E12 | E13 | E14 | E20 | E21 | E22 | E23 | E24 |
---|---|---|---|---|---|---|---|---|---|---|
Temperature (°C) | 75(0) | 60(−) | 60(−) | 90(+) | 90(+) | 75(0) | 90(+) | 60(−) | 90(+) | 60(−) |
Time (h) | 24(0) | 18(−) | 30(+) | 18(−) | 30(+) | 24(0) | 30(+) | 18(−) | 18(−) | 30(+) |
Ethanol concentration (%) | 45(0) | 30(−) | 60(+) | 60(+) | 30(−) | 45(0) | 60(+) | 60(+) | 30(−) | 30(−) |
Antibacterial activity (cycle I) (Log CFU/mL) | 4.83 | 5.15 | 5.18 | 5.38 | 5.11 | 4.76 | 5.26 | 5.25 | 5.31 | 5.30 |
Antibacterial activity (cycle II) (Log CFU/mL) | 5.02 | 5.35 | 5.30 | 5.19 | 5.21 | 4.97 | 5.05 | 5.40 | 5.18 | 5.20 |
Difference (cycle I − cycle II) (Log CFU/mL) | −0.19 | −0.20 | −0.12 | 0.19 | −0.10 | −0.21 | 0.21 | −0.15 | 0.13 | 0.10 |
Average activity (Log CFU/mL) | 4.925 (a10) | 5.250 (a11) | 5.240 (a12) | 5.285 (a13) | 5.160 (a14) | 4.865 (a20) | 5.155 (a21) | 5.325 (a22) | 5.245 (a23) | 5.250 (a24) |
Effects of | Calculation of effects | |
---|---|---|
Temperature | −0.0550 | |
Time | −0.0750 | |
Ethanol concentration | 0.0236 | |
Temperature × Time | −0.0325 | |
Temperature × EC | −0.0075 | |
Time × Ethanol concentration | −0.0325 | |
Temperature × Time × EC | 0.0100 | |
Change in mean effect | 0.2750 | |
Standard deviation (σ) | 0.1215 | |
Error limits : | For average | 0.1718 |
For effects | 0.1299 | |
For change in mean | 0.1083 |
© 2011 by the authors; licensee MDPI, Basel, Switzerland. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Kim, D.-H.; Kim, Y.-C.; Choi, U.-K. Optimization of Antibacterial Activity of Perilla frutescens var. acuta Leaf against Staphylococcus aureus Using Evolutionary Operation Factorial Design Technique. Int. J. Mol. Sci. 2011, 12, 2395-2407. https://doi.org/10.3390/ijms12042395
Kim D-H, Kim Y-C, Choi U-K. Optimization of Antibacterial Activity of Perilla frutescens var. acuta Leaf against Staphylococcus aureus Using Evolutionary Operation Factorial Design Technique. International Journal of Molecular Sciences. 2011; 12(4):2395-2407. https://doi.org/10.3390/ijms12042395
Chicago/Turabian StyleKim, Dae-Hyun, Young-Chan Kim, and Ung-Kyu Choi. 2011. "Optimization of Antibacterial Activity of Perilla frutescens var. acuta Leaf against Staphylococcus aureus Using Evolutionary Operation Factorial Design Technique" International Journal of Molecular Sciences 12, no. 4: 2395-2407. https://doi.org/10.3390/ijms12042395
APA StyleKim, D. -H., Kim, Y. -C., & Choi, U. -K. (2011). Optimization of Antibacterial Activity of Perilla frutescens var. acuta Leaf against Staphylococcus aureus Using Evolutionary Operation Factorial Design Technique. International Journal of Molecular Sciences, 12(4), 2395-2407. https://doi.org/10.3390/ijms12042395