Preparation and Scintillating Properties of Sol-Gel Eu3+, Tb3+ Co-Doped Lu2O3 Nanopowders
Abstract
:1. Introduction
2. Results and Discussion
2.1. Thermal Analysis
2.2. Infrared Analysis
2.3. Structural Properties
2.4. Scintillating Properties
3. Experimental Section
4. Conclusions
Acknowledgments
References
- Zych, E; Hreniak, D; Stark, W. Lu2O3:Eu, a new X-ray phosphor. Mater Sci 2002, 20, 111–122. [Google Scholar]
- Van Eijik, CWE. Inorganic-scintillator development. Nucl Intrum Meth A 2001, 460, 1–14. [Google Scholar]
- Greskovich, C; Duclos, S. Ceramic scintillators. Annu Rev Mater Sci 1997, 27, 69–88. [Google Scholar]
- Zych, E; Meijerink, A; Mello Donega, C. Quantum efficiency of europium emission from nanocrystalline powders of Lu2O3:Eu. J Phys Condens Mat 2003, 15, 5145–5155. [Google Scholar]
- Liaparinos, PF; Kandarakis, IS. The imaging performance of compact Lu2O3:Eu powdered phosphor screens: Monte Carlo simulation for applications in mammography. Med Phys 2009, 36, 1985–1997. [Google Scholar]
- Zych, E. Lumininscence and scintillation of inorganic phosphor materials. In Handbook of Luminiscence Dysplay Materials and Devices, 1st ed; Halwa, HS, Rohwer, LS, Eds.; American Scientific Publishers: Stevenson Ranch, CA, USA, 2003; Volume 2, pp. 251–300. [Google Scholar]
- Garcia-Murillo, A; Le Luyer, C; Dujardin, C; Martin, T; Garapon, C; Pedrini, C. Elaboration and scintillation properties of Eu3+-doped Gd2O3 and Lu2O3 sol-gel films. Nucl Instrum Meth A 2002, 486, 181–185. [Google Scholar]
- Zych, E; Trojan-Piegza, J; Dorenbos, P. Radioluminescence of Lu2O3:Eu nanocrystalline powder and vacuum-sintered ceramic. Radiat Meas 2004, 38, 471–474. [Google Scholar]
- Nagarkar, VV; Miller, SR; Tipnis, SV; Lempikchi, A; Brecher, C; Lingertat, H. A new large area scintillator screen for X-ray imaging. Nucl Instrum Meth B 2004, 213, 250–254. [Google Scholar]
- Zych, E; Hreniak, D; Strek, W. Spectroscopic properties of Lu2O3/Eu3+ nanocrystalline powders and sintered ceramics. J Phys Chem B 2002, 106, 3805–3812. [Google Scholar]
- Liu, XJ; Lio, HL; Xie, RJ; Hirosaki, N; Xu, X; Huang, LP. Synthesis, characterization, and luminescent properties of Lu2O3:Eu phosphors. J Lumin 2007, 127, 469–473. [Google Scholar]
- Lempicky, A; Brecher, C; Szupryczynski, P; Lingertat, H; Nagarkar, VV; Tipnis, SV; Miller, SR. A new lutetia-based ceramic scintillator for X-ray imaging. Nucl Instrum Meth A 2002, 488, 579–590. [Google Scholar]
- Quaranta, A; Gramegna, F; Kravchuk, V; Scian, C. Radiation damage mechanism in CsI Tl studied by ion beam induced luminiscence. Nucl Instrum Meth B 2008, 266, 2123–2731. [Google Scholar]
- Nik, M; Yoshikawa, A; Vedda, A; Fakuda, T. Development of novel scintillator crystals. J Cryst Growth 2006, 488, 579–590. [Google Scholar]
- Lalic, MV; Souza, SO. The fist principles study of electronic and optical properties of BGO and BSO scintillators. Opt Mater 2008, 30, 1189–1192. [Google Scholar]
- Sthephen, G; Topping, V; Sarin, K. CVD Lu2O3:Eu3+ coatings for advanced scintillators. Int J Refract Metals Hard Mater 2009, 27, 498–501. [Google Scholar]
- Jones, SL; Kumar, D; Sing, PK; Hollouway, PH. Luminescence of pulsed laser deposited Eu doped yttrium oxide films. Appl Phys Lett 1997, 71, 404–406. [Google Scholar]
- Kumar, D; Sankar, J; Cho, KG; Cracium, V; Singh, RK. Enhancement of cathodoluminescent and photoluminescent properties of Eu:Y2O3 luminescent films by vacuum cooling. Appl Phys Lett 2000, 77, 2518–2520. [Google Scholar]
- Cho, S; Lee, H; Moon, C; Kim, J; Park, J; Jeon, G; Lee, R; Nam, S. Synthesis and characterization of Eu3+ doped Lu2O3 nanophosphor using a solution-combustion method. J Sol-Gel Sci Tech 2010, 53, 171–175. [Google Scholar]
- Farman, TT; Gakenheimer, DC; Lempicki, A; Miller, SR; Scheetz, JP; Shafie, A; Farman, AG. Computer-aided maxillofacial radiographic diagnosis: Impact of variations in scintillator and acquisition mode. Int Congr Ser 2003, 1256, 1212–1218. [Google Scholar]
- Antic-Findacev, E; Hölsä, J; Lastusaari, M. Crystal field energy levels of Eu3+ and Yb3+ in the C2 and S6 sites of the cubic C-type R2O3. J Phys Condes Matter 2003, 15, 863–872. [Google Scholar]
- Daldosso, M; Sokolnicki, J; Kepinski, L; Legendziewicz, J; Speghini, A; Bettinelli, M. Preparation and optical properties of nanocrystalline Lu2O3:Eu3+ phosphors. J Lumin 2007, 122–123, 858–861. [Google Scholar]
- Wang, Z; Zhang, W; Lin, L; You, B; Fu, Y; Yin, M. Preparation and spectroscopic characterization of Lu2O3:Eu3+ nanopowders and ceramics. Opt Mater 2008, 30, 1484–1488. [Google Scholar]
- Jia, G; You, H; Zheng, Y; Liu, K; Guo, N; Zhang, H. Synthesis and characterization of highly uniform Lu2O3:Ln3+ (Ln = Eu, Er, Yb) luminescent hollow microspheres. Cryst Eng Comm 2010, 12, 2943–2948. [Google Scholar]
- Lu, Z; Chen, L; Tang, Y; Li, Y. Facile synthesis and characterization of sheet-like Y2O3:Eu3+ microcrystals. J Cryst Growth 2005, 276, 513–518. [Google Scholar]
- Dulina, NA; Yermolayeva, YV; Tolmachev, AV; Sergienko, ZP; Vovk, OM; Vovk, EA; Matveevskaya, NA; Mateychenko, PV. Synthesis and characterization of the crystalline powders on the basis of Lu2O3:Eu3+ spherical submicron-sized particles. J Eur Ceram Soc 2010, 30, 1717–1724. [Google Scholar]
- Yin, S; Akita, S; Shinozaki, M; Li, R; Sato, T. Synthesis and morphological control of rare earth oxide nanoparticles by solvothermal reaction. J Mater Sci 2008, 43, 2234–2239. [Google Scholar]
- Li, Y; Zhang, J; Luo, Y; Zhang, X; Hao, Z; Wang, X. Color control and white light generation of upconversion luminescence by operating dopant concentrations and pump densities in Yb3+, Er3+ and Tm3+ tri-doped Lu2O3 nanocrystals. J Mater Chem 2011, 21, 2895–2900. [Google Scholar]
- Qiu, HJ; Jun, QH; Xie, JJ; Ji, X; Lin, X; Xu, FF. Hydrothermal route to Eu doped LuO(OH) and Lu2O3 nanorods. Sci Chiba Tech Sci 2010, 53, 1576–1582. [Google Scholar]
- Wang, J; Liu, Q; Liu, Q. Synthesis and luminescence properties of Eu or Tb doped Lu2O3 square nanosheets. Opt Mater 2007, 29, 593–597. [Google Scholar]
- Li, L; Yang, HK; Moon, BK; Choi, BCh; Jeong, JH; Kim, KH. Photoluminescent properties of Ln2O3:Eu3+ (Ln = Y, Lu and Gd) prepared by hydrothermal process and sol-gel method. Mat Chem Phys 2010, 119, 471–477. [Google Scholar]
- Trojan-Piegza, J; Zych, E. Preparation of nanocrystalline Lu2O3:Eu phosphor via a molten salts route. J Alloy Compd 2004, 380, 118–122. [Google Scholar]
- Zych, E; Trojan-Piegza, J; Kepinsky, L. Homogeneously precipitated Lu2O3:Eu nanocrystalline phosphor for X-ray detection. Sensor Actuat B Chem 2005, 109, 112–118. [Google Scholar]
- Chen, QW; Shia, Y; Chena, JY; Shia, JL. Photoluminescence of Lu2O3:Eu3+ phosphors obtained by glycine-nitrate combustion synthesis. J Mater Res 2005, 20, 1409–1414. [Google Scholar]
- Qi, Z; Liu, M; Chen, Y; Zhang, G; Xu, M; Shi, C; Zhang, W; Yin, M; Xie, Y. Local structure of nanocrystalline Lu2O3:Eu studied by X-ray absorption spectroscopy. J Phys Chem C 2007, 111, 1945–1950. [Google Scholar]
- William Barrera, E; Cinta Pujol, M; Cascales, C; Carvajal, JJ; Mateos, X; Aguiló, M; Diaz, F. Synthesis and structural characterization of Tm:Lu2O3 nanocrystals. An approach towards new laser ceramics. Opt Mat 2011, 33, 722–727. [Google Scholar]
- Sokolnicky, J. Photoluminescence and structural characteristics of Lu2O3:Eu3+ nanocrystallites in silica matrix. J Solid State Chem 2007, 180, 2400–2408. [Google Scholar]
- Chen, Q; Shi, Y; An, L; Wang, S; Chen, J; Shi, J. A novel co-precipitation synthesis of a new phosphor Lu2O3:Eu3+. J Eur Ceram Soc 2007, 27, 191–197. [Google Scholar]
- Nedelec, JM. Sol-gel processing of nanostructured inorganic scintillating materials. J Nanomater 2007, 2007, 1–8. [Google Scholar]
- Hreniak, J; Zych, E; Kepinsky, L; Strek, W. Structural and spectroscopic studies of Lu2O3/Eu3+ nanocrystallites embedded in SiO2 sol-gel ceramics. J Phys Chem Solids 2003, 64, 111–119. [Google Scholar]
- Yan, J; Li, J. Sol-gel synthesis of nanocrystalline Yb3+/Ho3+-doped Lu2O3 as an efficient green phosphor. J Electrochem Soc 2010, 157, 273–278. [Google Scholar]
- García-Murillo, A; Carrillo-Romo, FJ; Le Luyer, C; Morales-Ramírez, AJ; García-Hernández, M; Moreno-Palmerin, J. Sol-gel elaboration and structural investigations of Lu2O3 planar waveguides. J Sol-Gel Sci Tech 2009, 50, 359–367. [Google Scholar]
- Guo, H; Yin, M; Dong, N; Xu, M; Lou, L; Zhang, W. Effect of heat-treatment temperature on the luminescent properties of Lu2O3:Eu film prepared by Pechini sol-gel method. Appl Surf Sci 2005, 243, 245–250. [Google Scholar]
- Liu, Y; Yang, Y; Qian, G; Wang, Z; Wang, M. Energy transfer processes from Tb3+ to Eu3+ in ternary chelate doped in gel glasses via in situ technique. Mat Sci Eng B 2007, 137, 74–79. [Google Scholar]
- Mukherjee, S; Sudarsan, V; Vatsa, RK; Godbole, SV; Kadam, RM; Bhatta, UM; Tyagi, AK. Effect of structure, particle size and relative concentration of Eu3+ and Tb3+ ions on the luminescence properties of Eu3+ co-doped Y2O3:Tb nanoparticles. Nanotechnology 2008, 19, 325704–325711. [Google Scholar]
- Liu, Z; Yu, L; Wang, Q; Tao, Y; Yang, H. Effect of Eu,Tb codoping on the luminescent properties of Y2O3 nanorods. J Lumin 2011, 131, 12–16. [Google Scholar]
- Morales-Ramírez, A. de J., García-Murillo, A., Carrillo-Romo, F. de J., García-Hernández, M., Jaramillo-Vigueras, D., Chaderyron G., Boyer, D. Properties of Gd2O3:Eu3+, Tb3+ nanopowders obtained by sol-gel process. Mater Res Bull 2010, 45, 40–45. [Google Scholar]
- Chen, Q; Ying, S; An, L; Wang, S; Chen, J; Shi, J. A novel co-precipitation synthesis of a new phosphor Lu2O3:Eu3+. J Eur Ceram Soc 2007, 27, 191–197. [Google Scholar]
- Zych, E. On the reasons for low luminescence efficiency in combustion-made Lu2O3:Tb. Opt Mater 2001, 16, 445–452. [Google Scholar]
- Chi, Y; Chuang, S. Infrared and TPD studies of nitrates adsorbed on Tb4O7, La2O3, BaO, and MgO/γ-Al2O3. J Phys Chem B 2000, 104, 4673–4683. [Google Scholar]
- Stefanescu, M; Stoia, M; Stefanescu, O. Thermal and FT-IR study of the hybrid ethylene-glycol-silica matrix. J Sol-Gel Sci Tech 2007, 41, 71–78. [Google Scholar]
- Ksapabutr, B; Gulari, E; Wongkasemjit, S. One-pot synthesis and characterization of novel sodium tris(glycozirconate) and cerium glycolate precursors and their pyrolisis. Mater Chem Phys 2004, 83, 34–42. [Google Scholar]
- Shi, Y; Chen, QW; Shi, JL. Processing and scintillation properties of Eu3+ doped Lu2O3 transparent ceramics. Opt Mater 2009, 31, 729–733. [Google Scholar]
- Socrates, G. Infrared Characteristic Grooup Frequencies. In Table and Charts, 3rd ed; John Wiley and Sons LTD: West Sussex, UK, 2001; pp. 117–118. [Google Scholar]
- McDevitt, NT; Baun, WL. Infrared absorption study of metal oxides in the low frequency region (700–240 cm−1). Spectrochim Acta 1964, 20, 799–808. [Google Scholar]
- Garcia-Murillo, A; Le Luyer, C; Pedrini, C; Mugnier, J. Synthesis and properties of Lu2O3 sol-gel films. J Alloys Compd 2001, 323, 74–77. [Google Scholar]
- Cullity, BD. Elements of X-Ray Diffraction, 2nd ed; Addison-Wesley: Reading, MA, USA, 1978; p. 99. [Google Scholar]
- Zych, E. Concentration dependence of energy transfer between Eu3+ ions occupying two symmetry sites in Lu2O3. J Phys Condens Mater 2002, 14, 5637–5650. [Google Scholar]
- Zych, E; Trojan-Piegza, J. Low-temperature luminescence of Lu2O3:Eu ceramics upon excitation with synchrotron radiation in the vicinity of band gap energy. Chem Mater 2006, 18, 2194–2203. [Google Scholar]
- Karbowiak, M; Zych, E; Holsa, J. Crystal-field analysis of Eu3+ in Lu2O3. J Phys Condens Matter 2003, 15, 2169–2181. [Google Scholar]
- Zych, E; Deren, PJ; Strek, W; Meijerink, A; Mielcarek, W; Dmagala, K. Preparation, X-ray analysis and spectroscopic investigation of nanostructured Lu2O3:Tb. J Alloy Compd 2001, 323, 8–12. [Google Scholar]
Temperature/°C | 500 | 600 | 700 | 800 | 900 |
FWHM/Degree | 1.94 | 0.75 | 0.57 | 0.49 | 0.38 |
Crystal Size/nm | 5 | 14 | 18 | 19 | 26 |
© 2011 by the authors; licensee MDPI, Basel, Switzerland. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Ramírez, Á.d.J.M.; Murillo, A.G.; Romo, F.d.J.C.; Hernández, M.G.; Palmerin, J.M.; Guerrero, R.R. Preparation and Scintillating Properties of Sol-Gel Eu3+, Tb3+ Co-Doped Lu2O3 Nanopowders. Int. J. Mol. Sci. 2011, 12, 6240-6254. https://doi.org/10.3390/ijms12096240
Ramírez ÁdJM, Murillo AG, Romo FdJC, Hernández MG, Palmerin JM, Guerrero RR. Preparation and Scintillating Properties of Sol-Gel Eu3+, Tb3+ Co-Doped Lu2O3 Nanopowders. International Journal of Molecular Sciences. 2011; 12(9):6240-6254. https://doi.org/10.3390/ijms12096240
Chicago/Turabian StyleRamírez, Ángel de Jesús Morales, Antonieta García Murillo, Felipe de Jesús Carrillo Romo, Margarita García Hernández, Joel Moreno Palmerin, and Rosario Ruiz Guerrero. 2011. "Preparation and Scintillating Properties of Sol-Gel Eu3+, Tb3+ Co-Doped Lu2O3 Nanopowders" International Journal of Molecular Sciences 12, no. 9: 6240-6254. https://doi.org/10.3390/ijms12096240
APA StyleRamírez, Á. d. J. M., Murillo, A. G., Romo, F. d. J. C., Hernández, M. G., Palmerin, J. M., & Guerrero, R. R. (2011). Preparation and Scintillating Properties of Sol-Gel Eu3+, Tb3+ Co-Doped Lu2O3 Nanopowders. International Journal of Molecular Sciences, 12(9), 6240-6254. https://doi.org/10.3390/ijms12096240