Clinical Significance of Serum Biomarkers in Pediatric Solid Mediastinal and Abdominal Tumors
Abstract
:1. Introduction
2. Thoracic Tumors
3. Abdominal Tumors
4. Serum Biomarkers in Thoracic and Abdominal Tumors
4.1. Pediatric Germ Cell Tumors (GCTs)
4.1.1. Alpha-Fetoprotein (AFP), Human Chorionic Gonadotropin (hCG), and Lactate Dehydrogenase (LDH)
4.2. Hepatoblastoma (HB)
4.3. Lymphoma
4.3.1. β2 Microglobulin (β2M)
4.3.2. CA125
4.3.3. Nm23-H1
4.4. Neuroblastoma (NB)
4.4.1. Catecholamines
4.4.2. Chromogranin A (CgA) and Neuron-Specific Enolase (NSE)
4.5. Wilms Tumor (WT or Nephroblastoma)
4.5.1. Growth Factors, Cell Adhesion Molecules, and Extracellular Matrix Proteins
4.6. Soft Tissue Sarcomas
5. Conclusions
References
- Linabery, A.M.; Ross, J.A. Trends in childhood cancer incidence in the U.S. (1992–2004). Cancer 2008, 112, 416–432. [Google Scholar]
- Smith, M.A.; Seibel, N.L.; Altekruse, S.F.; Ries, L.A.; Melbert, D.L.; O'Leary, M.; Smith, F.O.; Reaman, G.H. Outcomes for children adolescents with cancer: challenges for the twenty-first century. J. Clin. Oncol 2010, 28, 2625–2634. [Google Scholar]
- Shochat, S. Mediastinal Masses in Children. In Pediatric Surgery: Diagnosis and Management; Puri, P., Hollwarth, M., Eds.; Springer: London, UK, 2009; pp. 277–284. [Google Scholar]
- Gow, K.W.; Roberts, I.F.; Jamieson, D.H.; Bray, H.; Magee, J.F.; Murphy, J.J. Local staging of Wilms' tumor-computerized tomography correlation with histological findings. J. Pediatr. Surg 2000, 35, 677–679. [Google Scholar]
- Shuster, J.; Gold, P.; Poulik, M.D. beta 2-microglogulin levels in cancerous and other disease states. Clin. Chim. Acta 1976, 67, 307–313. [Google Scholar]
- Nissen, M.H.; Plesner, T.; Rorth, M. Modification of beta 2-microglobulin in serum from patients with small cell carcinoma of the lung-correlation with the clinical course. Clin. Chim. Acta 1984, 141, 41–50. [Google Scholar]
- Forman, D.T. Beta-2 microglobulin-an immunogenetic marker of inflammatory and malignant origin. Ann. Clin. Lab. Sci 1982, 12, 447–452. [Google Scholar]
- Zissis, M.; Afroudakis, A.; Galanopoulos, G.; Palermos, L.; Boura, X.; Michopoulos, S.; Archimandritis, A. B2 microglobulin: is it a reliable marker of activity in inflammatory bowel disease? Am. J. Gastroenterol 2001, 96, 2177–2183. [Google Scholar]
- Kreiss, J.K.; Lawrence, D.N.; Kasper, C.K.; Goldstein, A.L.; Naylor, P.H.; McLane, M.F.; Lee, T.H.; Essex, M. Antibody to human T-cell leukemia virus membrane antigens, beta 2- microglobulin levels, and thymosin alpha 1 levels in hemophiliacs and their spouses. Ann. Intern. Med 1984, 100, 178–182. [Google Scholar]
- Braun, S.; Mauch, C.; Boukamp, P.; Werner, S. Novel roles of NM23 proteins in skin homeostasis, repair and disease. Oncogene 2007, 26, 532–542. [Google Scholar]
- de Groot, J.W.; Kema, I.P.; Breukelman, H.; van d, V.; Wiggers, T.; Plukker, J.T.; Wolffenbuttel, B.H.; Links, T.P. Biochemical markers in the follow-up of medullary thyroid cancer. Thyroid 2006, 16, 1163–1170. [Google Scholar]
- Schaarschmidt, H.; Prange, H.W.; Reiber, H. Neuron-specific enolase concentrations in blood as a prognostic parameter in cerebrovascular diseases. Stroke 1994, 25, 558–565. [Google Scholar]
- Nara, T.; Nozaki, H.; Nakae, Y.; Arai, T.; Ohashi, T. Neuron-specific enolase in comatose children. Am. J. Dis. Child 1988, 142, 173–174. [Google Scholar]
- Cunningham, R.T.; Morrow, J.I.; Johnston, C.F.; Buchanan, K.D. Serum neurone-specific enolase concentrations in patients with neurological disorders. Clin. Chim. Acta 1994, 230, 117–124. [Google Scholar]
- van Engelen, B.G.; Lamers, K.J.; Gabreels, F.J.; Wevers, R.A.; van Geel, W.J.; Borm, G.F. Age-related changes of neuron-specific enolase, S-100 protein, and myelin basic protein concentrations in cerebrospinal fluid. Clin. Chem 1992, 38, 813–816. [Google Scholar]
- Fogel, W.; Krieger, D.; Veith, M.; Adams, H.P.; Hund, E.; Storch-Hagenlocher, B.; Buggle, F.; Mathias, D.; Hacke, W. Serum neuron-specific enolase as early predictor of outcome after cardiac arrest. Crit. Care. Med 1997, 25, 1133–1138. [Google Scholar]
- Mokuno, K.; Kiyosawa, K.; Sugimura, K.; Yasuda, T.; Riku, S.; Murayama, T.; Yanagi, T.; Takahashi, A.; Kato, K. Prognostic value of cerebrospinal fluid neuron-specific enolase and S-100b protein in Guillain-Barre syndrome. Acta Neurol. Scand 1994, 89, 27–30. [Google Scholar]
- Inoue, S.; Takahashi, H.; Kaneko, K. The fluctuations of neuron-specific enolase (NSE) levels of cerebrospinal fluid during bacterial meningitis: the relationship between the fluctuations of NSE levels and neurological complications or outcome. Acta Paediatr. Jpn 1994, 36, 485–488. [Google Scholar]
- Bauer, J.H.; Durham, J.; Miles, J.; Hakami, N.; Groshong, T. Congenital mesoblastic nephroma presenting with primary reninism. J. Pediatr 1979, 95, 268–272. [Google Scholar]
- Rose, H.J.; Pruitt, A.W. Hypertension, hyperreninemia and a solitary renal cyst in an adolescent. Am. J. Med 1976, 61, 579–582. [Google Scholar]
- Billmire, D.; Vinocur, C.; Rescorla, F.; Cushing, B.; London, W.; Schlatter, M.; Davis, M.; Giller, R.; Lauer, S.; Olson, T. Outcome and staging evaluation in malignant germ cell tumors of the ovary in children and adolescents: an intergroup study. J. Pediatr. Surg 2004, 39, 424–429. [Google Scholar]
- International Germ Cell Cancer Collaborative Group. International Germ Cell Consensus Classification: a prognostic factor-based staging system for metastatic germ cell cancers. J. Clin. Oncol. 1997, 15, 594–603.
- Blohm, M.E.; Vesterling-Horner, D.; Calaminus, G.; Gobel, U. Alpha 1-fetoprotein (AFP) reference values in infants up to 2 years of age. Pediatr. Hematol. Oncol 1998, 15, 135–142. [Google Scholar]
- Aoyagi, Y.; Ikenaka, T.; Ichida, F. alpha-Fetoprotein as a carrier protein in plasma and its bilirubin-binding ability. Cancer Res 1979, 39, 3571–3574. [Google Scholar]
- Butler, S.A.; Ikram, M.S.; Mathieu, S.; Iles, R.K. The increase in bladder carcinoma cell population induced by the free beta subunit of human chorionic gonadotrophin is a result of an anti-apoptosis effect and not cell proliferation. Br. J. Cancer 2000, 82, 1553–1556. [Google Scholar]
- Birken, S.; Yershova, O.; Myers, R.V.; Bernard, M.P.; Moyle, W. Analysis of human choriogonadotropin core 2 o-glycan isoforms. Mol. Cell Endocrinol 2003, 204, 21–30. [Google Scholar]
- Cole, L.A. Biological functions of hCG and hCG-related molecules. Reprod. Biol. Endocrinol 2010, 8, 102. [Google Scholar]
- Alfthan, H.; Haglund, C.; Roberts, P.; Stenman, U.H. Elevation of free beta subunit of human choriogonadotropin and core beta fragment of human choriogonadotropin in the serum and urine of patients with malignant pancreatic and biliary disease. Cancer Res 1992, 52, 4628–4633. [Google Scholar]
- Wurzel, R.S.; Yamase, H.T.; Nieh, P.T. Ectopic production of human chorionic gonadotropin by poorly differentiated transitional cell tumors of the urinary tract. J. Urol 1987, 137, 502–504. [Google Scholar]
- Hotakainen, K.; Ljungberg, B.; Paju, A.; Rasmuson, T.; Alfthan, H.; Stenman, U.H. The free beta-subunit of human chorionic gonadotropin as a prognostic factor in renal cell carcinoma. Br. J. Cancer 2002, 86, 185–189. [Google Scholar]
- Shah, V.M.; Newman, J.; Crocker, J.; Antonakopoulos, G.N.; Chapple, C.R.; Collard, M.J. Production of beta-human chorionic gonadotropin by prostatic adenocarcinoma and transitional cell carcinoma of the upper urinary tract. Br. J. Exp. Pathol 1987, 68, 871–878. [Google Scholar]
- Grossmann, M.; Trautmann, M.E.; Poertl, S.; Hoermann, R.; Berger, P.; Arnold, R.; Mann, K. Alpha-subunit and human chorionic gonadotropin-beta immunoreactivity in patients with malignant endocrine gastroenteropancreatic tumours. Eur. J. Clin. Invest 1994, 24, 131–136. [Google Scholar]
- Bepler, G.; Jaques, G.; Oie, H.K.; Gazdar, A.F. Human chorionic gonadotropin and related glycoprotein hormones in lung cancer cell lines. Cancer Lett 1991, 58, 145–150. [Google Scholar]
- Agnantis, N.J.; Patra, F.; Khaldi, L.; Filis, S. Immunohistochemical expression of subunit beta H.C.G in breast cancer. Eur. J. Gynaecol. Oncol 1992, 13, 461–466. [Google Scholar]
- Braunstein, G.D.; Vaitukaitis, J.L.; Carbone, P.P.; Ross, G.T. Ectopic production of human chorionic gonadotrophin by neoplasms. Ann. Intern. Med 1973, 78, 39–45. [Google Scholar]
- Bhalang, K.; Kafrawy, A.H.; Miles, D.A. Immunohistochemical study of the expression of human chorionic gonadotropin-beta in oral squamous cell carcinoma. Cancer 1999, 85, 757–762. [Google Scholar]
- Acevedo, H.F.; Krichevsky, A.; Campbell-Acevedo, E.A.; Galyon, J.C.; Buffo, M.J.; Hartsock, R.J. Expression of membrane-associated human chorionic gonadotropin, its subunits, and fragments by cultured human cancer cells. Cancer 1992, 69, 1829–1842. [Google Scholar]
- Everse, J.; Kaplan, N.O. Lactate dehydrogenases: structure and function. Adv. Enzymol. Relat. Areas Mol. Biol 1973, 37, 61–133. [Google Scholar]
- Kopperschlager, G.; Kirchberger, J. Methods for the separation of lactate dehydrogenases and clinical significance of the enzyme. J. Chromatogr. B Biomed. Appl 1996, 684, 25–49. [Google Scholar]
- Hsu, P.P.; Sabatini, D.M. Cancer cell metabolism: Warburg and beyond. Cell 2008, 134, 703–707. [Google Scholar]
- Dang, C.V.; Semenza, G.L. Oncogenic alterations of metabolism. Trends Biochem. Sci 1999, 24, 68–72. [Google Scholar]
- Tas, F.; Aykan, F.; Alici, S.; Kaytan, E.; Aydiner, A.; Topuz, E. Prognostic factors in pancreatic carcinoma: serum LDH levels predict survival in metastatic disease. Am. J. Clin. Oncol 2001, 24, 547–550. [Google Scholar]
- Ferrari, S.; Bertoni, F.; Mercuri, M.; Picci, P.; Giacomini, S.; Longhi, A.; Bacci, G. Predictive factors of disease-free survival for non-metastatic osteosarcoma of the extremity: an analysis of 300 patients treated at the Rizzoli Institute. Ann. Oncol 2001, 12, 1145–1150. [Google Scholar]
- Motzer, R.J.; Mazumdar, M.; Bacik, J.; Berg, W.; Amsterdam, A.; Ferrara, J. Survival and prognostic stratification of 670 patients with advanced renal cell carcinoma. J. Clin. Oncol 1999, 17, 2530–2540. [Google Scholar]
- von Eyben, F.E.; Madsen, E.L.; Blaabjerg, O.; Petersen, P.H.; von der Maase, H.; Jacobsen, G.K.; Rorth, M. Serum lactate dehydrogenase isoenzyme 1 and relapse in patients with nonseminomatous testicular germ cell tumors clinical stage I. Acta Oncol 2001, 40, 536–540. [Google Scholar]
- Hauschild, A.; Michaelsen, J.; Brenner, W.; Rudolph, P.; Glaser, R.; Henze, E.; Christophers, E. Prognostic significance of serum S100B detection compared with routine blood parameters in advanced metastatic melanoma patients. Melanoma Res 1999, 9, 155–161. [Google Scholar]
- Marshall, W.; Bangert, S. Clinical Biochemistry: Metabolic and Clinical Aspects, 2nd ed; Churchill Livingstone: Philadelphia, PA, USA, 2008. [Google Scholar]
- Gilligan, T.D.; Seidenfeld, J.; Basch, E.M.; Einhorn, L.H.; Fancher, T.; Smith, D.C.; Stephenson, A.J.; Vaughn, D.J.; Cosby, R.; Hayes, D.F. American Society of Clinical Oncology Clinical Practice Guideline on uses of serum tumor markers in adult males with germ cell tumors. J. Clin. Oncol 2010, 28, 3388–3404. [Google Scholar]
- Sturgeon, C.M.; Duffy, M.J.; Stenman, U.H.; Lilja, H.; Brunner, N.; Chan, D.W.; Babaian, R.; Bast, R.C., Jr; Dowell, B. National Academy of Clinical Biochemistry laboratory medicine practice guidelines for use of tumor markers in testicular, prostate, colorectal, breast, and ovarian cancers. Clin. Chem. 2008, 54, e11–e79. [Google Scholar]
- Frazier, A.L.; Rumcheva, P.; Olson, T.; Giller, R.; Cushing, B.; Cullen, J.; Marina, N.; London, W.B. Application of the adult international germ cell classification system to pediatric malignant non-seminomatous germ cell tumors: a report from the Children's Oncology Group. Pediatr. Blood Cancer 2008, 50, 746–751. [Google Scholar]
- Bulterys, M.; Goodman, M.T.; Smith, M.; Buckley, J.D. Hepatic Tumors. Cancer Incidence, Survival Among Children, Adolescents: United States SEER Program 1975–1995. Available online: http://seer.cancer.gov/publications/childhood/ access on 18 January 2012.
- Kellie, S. Serum markers in tumour diagnosis and treatment. In Paediatric Oncology—Clinical Practice and Controversies, 3rd ed; Pinkerton, R., Plowman, P.N., Pieters, R., Eds.; Edward Arnold Publishers: London, UK, 2004; pp. 169–188. [Google Scholar]
- Urbach, A.H.; Zitelli, B.J.; Blatt, J.; Gartner, J.C.; Malatack, J.J. Elevated alpha-fetoprotein in a neonate with a benign hemangioendothelioma of the liver. Pediatrics 1987, 80, 596–597. [Google Scholar]
- Van Tornout, J.M.; Buckley, J.D.; Quinn, J.J.; Feusner, J.H.; Krailo, M.D.; King, D.R.; Hammond, G.D.; Ortega, J.A. Timing and magnitude of decline in alpha-fetoprotein levels in treated children with unresectable or metastatic hepatoblastoma are predictors of outcome: a report from the Children's Cancer Group. J. Clin. Oncol 1997, 15, 1190–1197. [Google Scholar]
- Lovvorn, H.N., III; Ayers, D.; Zhao, Z.; Hilmes, M.; Prasad, P.; Shinall, M.C., Jr.; Berch, B.; Neblett, W.W., III; O'Neill, J.A., Jr. Defining hepatoblastoma responsiveness to induction therapy as measured by tumor volume and serum alpha-fetoprotein kinetics. J. Pediatr. Surg 2010, 45, 121–128. [Google Scholar]
- Mueller, B.U.; Lopez-Terrada, D.; Finegold, M.J. Tumors of the Liver. In Principles and Practices of Pediatric Oncology, 5th ed; Pizzo, P., Poplack, D., Eds.; Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2006; pp. 887–904. [Google Scholar]
- Wu, J.T.; Book, L.; Sudar, K. Serum alpha fetoprotein (AFP) levels in normal infants. Pediatr. Res 1981, 15, 50–52. [Google Scholar]
- Kinoshita, Y.; Tajiri, T.; Souzaki, R.; Tatsuta, K.; Higashi, M.; Izaki, T.; Takahashi, Y.; Taguchi, T. Diagnostic value of lectin reactive alpha-fetoprotein for neoinfantile hepatic tumors and malignant germ cell tumors: preliminary study. J. Pediatr. Hematol. Oncol 2008, 30, 447–450. [Google Scholar]
- Nickerson, H.J.; Silberman, T.L.; McDonald, T.P. Hepatoblastoma, thrombocytosis, and increased thrombopoietin. Cancer 1980, 45, 315–317. [Google Scholar]
- Shafford, E.A.; Pritchard, J. Extreme thrombocytosis as a diagnostic clue to hepatoblastoma. Arch. Dis. Child 1993, 69, 171. [Google Scholar]
- Komura, E.; Matsumura, T.; Kato, T.; Tahara, T.; Tsunoda, Y.; Sawada, T. Thrombopoietin in patients with hepatoblastoma. Stem Cells 1998, 16, 329–333. [Google Scholar]
- Perilongo, G.; Rigon, F.; Murgia, A. Oncologic causes of precocious puberty. Pediatr. Hematol. Oncol 1989, 6, 331–340. [Google Scholar]
- Grunewald, T.G.; von Luettichau, I.; Welsch, U.; Dorr, H.G.; Hopner, F.; Kovacs, K.; Burdach, S.; Rabl, W. First report of ectopic ACTH syndrome and PTHrP-induced hypercalcemia due to a hepatoblastoma in a child. Eur. J. Endocrinol 2010, 162, 813–818. [Google Scholar]
- Armitage, J.O. Treatment of non-Hodgkin's lymphoma. N. Engl. J. Med 1993, 328, 1023–1030. [Google Scholar]
- Shipp, M.A. Prognostic factors in aggressive non-Hodgkin's lymphoma: who has "high-risk" disease? Blood 1994, 83, 1165–1173. [Google Scholar]
- A predictive model for aggressive non-Hodgkin's lymphoma. The International Non-Hodgkin's Lymphoma Prognostic Factors Project. N. Engl. J. Med. 1993, 329, pp. 987–994. Available online: http://www.ncbi.nlm.nih.gov/pubmed/8141877 access on 18 January 2012.
- Faderl, S.; Keating, M.J.; Do, K.A.; Liang, S.Y.; Kantarjian, H.M.; O'Brien, S.; Garcia-Manero, G.; Manshouri, T.; Albitar, M. Expression profile of 11 proteins and their prognostic significance in patients with chronic lymphocytic leukemia (CLL). Leukemia 2002, 16, 1045–1052. [Google Scholar]
- Bataille, R.; Durie, B.G.; Grenier, J. Serum beta2 microglobulin and survival duration in multiple myeloma: a simple reliable marker for staging. Br. J. Haematol 1983, 55, 439–447. [Google Scholar]
- Abdul, M.; Hoosein, N. Changes in beta-2 microglobulin expression in prostate cancer. Urol. Oncol 2000, 5, 168–172. [Google Scholar]
- Molica, S.; Levato, D.; Cascavilla, N.; Levato, L.; Musto, P. Clinico-prognostic implications of simultaneous increased serum levels of soluble CD23 and beta2-microglobulin in B-cell chronic lymphocytic leukemia. Eur. J. Haematol 1999, 62, 117–122. [Google Scholar]
- Bethea, M.; Forman, D.T. Beta 2-microglobulin: its significance and clinical usefulness. Ann. Clin. Lab. Sci 1990, 20, 163–168. [Google Scholar]
- Gatto, S.; Ball, G.; Onida, F.; Kantarjian, H.M.; Estey, E.H.; Beran, M. Contribution of beta-2 microglobulin levels to the prognostic stratification of survival in patients with myelodysplastic syndrome (MDS). Blood 2003, 102, 1622–1625. [Google Scholar]
- Nissen, M.H.; Bjerrum, O.J.; Plesner, T.; Wilken, M.; Rorth, M. Modification of beta-2- microglobulin in sera from patients with small cell lung cancer: evidence for involvement of a serine protease. Clin. Exp. Immunol 1987, 67, 425–432. [Google Scholar]
- Bien, E.; Balcerska, A. Serum soluble interleukin-2 receptor, beta2-microglobulin, lactate dehydrogenase and erythrocyte sedimentation rate in children with Hodgkin's lymphoma. Scand. J. Immunol 2009, 70, 490–500. [Google Scholar]
- Duletic-Nacinovic, A.; Stifter, S.; Marijic, B.; Lucin, K.; Valkovic, T.; Petranovic, D.; Jonjic, N. Serum IL-6, IL-8, IL-10 and beta2-microglobulin in association with International Prognostic Index in diffuse large B cell lymphoma. Tumori 2008, 94, 511–517. [Google Scholar]
- Bast, R.C., Jr; Klug, T.L.; St Jone, E.; Jenison, E.; Niloff, J.M.; Lazarus, H.; Berkowitz, R.S.; Leavitt, T.; Griffiths, C.T.; Parker, L.; Zurawski, V.R., Jr; Knapp, R.C. A radioimmunoassay using a monoclonal antibody to monitor the course of epithelial ovarian cancer. N. Engl. J. Med. 1983, 309, 883–887. [Google Scholar]
- Sevinc, A.; Buyukberber, S.; Sari, R.; Kiroglu, Y.; Turk, H.M.; Ates, M. Elevated serum CA-125 levels in hemodialysis patients with peritoneal, pleural, or pericardial fluids. Gynecol. Oncol 2000, 77, 254–257. [Google Scholar]
- Spitzer, M.; Kaushal, N.; Benjamin, F. Maternal CA-125 levels in pregnancy and the puerperium. J. Reprod. Med 1998, 43, 387–392. [Google Scholar]
- Birgen, D.; Ertem, U.; Duru, F.; Sahin, G.; Yuksek, N.; Bozkurt, C.; Karacan, C.D.; Aksoy, C. Serum Ca 125 levels in children with acute leukemia and lymphoma. Leuk. Lymphoma 2005, 46, 1177–1181. [Google Scholar]
- Nakata, B.; Hirakawa-YS, C.K.; Kato, Y.; Yamashita, Y.; Maeda, K.; Onoda, N.; Sawada, T.; Sowa, M. Serum CA 125 level as a predictor of peritoneal dissemination in patients with gastric carcinoma. Cancer 1998, 83, 2488–2492. [Google Scholar]
- Norum, L.F.; Erikstein, B.; Nustad, K. Elevated CA125 in breast cancer—A sign of advanced disease. Tumour. Biol 2001, 22, 223–238. [Google Scholar]
- Salgia, R.; Harpole, D.; Herndon, J.E.; Pisick, E.; Elias, A.; Skarin, A.T. Role of serum tumor markers CA 125 and CEA in non-small cell lung cancer. Anticancer Res 2001, 21, 1241–1246. [Google Scholar]
- Grankvist, K.; Ljungberg, B.; Rasmuson, T. Evaluation of five glycoprotein tumour markers (CEA, CA-50, CA-19–9, CA-125, CA-15–3) for the prognosis of renal-cell carcinoma. Int. J. Cancer 1997, 74, 233–236. [Google Scholar]
- Bergmann, J.F.; Bidart, J.M.; George, M.; Beaugrand, M.; Levy, V.G.; Bohuon, C. Elevation of CA 125 in patients with benign and malignant ascites. Cancer 1987, 59, 213–217. [Google Scholar]
- Halila, H.; Stenman, U.H.; Seppala, M. Ovarian cancer antigen CA 125 levels in pelvic inflammatory disease and pregnancy. Cancer 1986, 57, 1327–1329. [Google Scholar]
- Zacharos, I.D.; Efstathiou, S.P.; Petreli, E.; Georgiou, G.; Tsioulos, D.I.; Mastorantonakis, S.E.; Christakopoulou, I.; Roussou, P.P. The prognostic significance of CA 125 in patients with non- Hodgkin's lymphoma. Eur. J. Haematol 2002, 69, 221–226. [Google Scholar]
- Apel, R.L.; Fernandes, B.J. Malignant lymphoma presenting with an elevated serum CA-125 level. Arch. Pathol. Lab. Med 1995, 119, 373–376. [Google Scholar]
- Pabst, T.; Ludwig, C. CA-125: a tumor marker in non-Hodgkin's lymphomas? J. Clin. Oncol 1995, 13, 1827–1828. [Google Scholar]
- Ojha, R.P.; Brown, L.M.; Felini, M.J.; Singh, K.P.; Thertulien, R. Addressing uncertainty regarding the utility of carbohydrate antigen-125 as a prognostic marker in non-Hodgkin lymphoma. Leuk. Lymphoma 2010, 51, 1754–1757. [Google Scholar]
- Steeg, P.S.; Bevilacqua, G.; Kopper, L.; Thorgeirsson, U.P.; Talmadge, J.E.; Liotta, L.A.; Sobel, M.E. Evidence for a novel gene associated with low tumor metastatic potential. J. Natl. Cancer Inst 1988, 80, 200–204. [Google Scholar]
- Hartsough, M.T.; Steeg, P.S. Nm23/nucleoside diphosphate kinase in human cancers. J. Bioenerg. Biomembr 2000, 32, 301–308. [Google Scholar]
- Zou, M.; Shi, Y.; al-Sedairy, S.; Farid, N.R. High levels of Nm23 gene expression in advanced stage of thyroid carcinomas. Br. J. Cancer 1993, 68, 385–388. [Google Scholar]
- Niitsu, N.; Okabe-Kado, J.; Okamoto, M.; Takagi, T.; Yoshida, T.; Aoki, S.; Hirano, M.; Honma, Y. Serum nm23-H1 protein as a prognostic factor in aggressive non-Hodgkin lymphoma. Blood 2001, 97, 1202–1210. [Google Scholar]
- Niitsu, N.; Nakamine, H.; Okamoto, M.; Akamatsu, H.; Higashihara, M.; Honma, Y.; Okabe- Kado, J.; Hirano, M. Clinical significance of intracytoplasmic nm23-H1 expression in diffuse large B-cell lymphoma. Clin. Cancer Res 2004, 10, 2482–2490. [Google Scholar]
- Niitsu, N.; Nakamine, H.; Okamoto, M.; Tamaru, J.I.; Hirano, M. A clinicopathological study of nm23-H1 expression in classical Hodgkin's lymphoma. Ann. Oncol 2008, 19, 1941–1946. [Google Scholar]
- Niitsu, N.; Honma, Y.; Iijima, K.; Takagi, T.; Higashihara, M.; Sawada, U.; Okabe-Kado, J. Clinical significance of nm23-H1 proteins expressed on cell surface in non-Hodgkin's lymphoma. Leukemia 2003, 17, 196–202. [Google Scholar]
- Winkler, H.; Fischer-Colbrie, R. The chromogranins A and B: the first 25 years and future perspectives. Neuroscience 1992, 49, 497–528. [Google Scholar]
- Miettinen, M.; Rapola, J. Synaptophysin—an immuno-histochemical marker for childhood neuroblastoma. Acta Pathol. Microbiol. Immunol. Scand. A 1987, 95, 167–170. [Google Scholar]
- Tapia, F.J.; Polak, J.M.; Barbosa, A.J.; Bloom, S.R.; Marangos, P.J.; Dermody, C.; Pearse, A.G. Neuron-specific enolase is produced by neuroendocrine tumours. Lancet 1981, 1, 808–811. [Google Scholar]
- Bishop, A.E.; Power, R.F.; Polak, J.M. Markers for neuroendocrine differentiation. Pathol. Res. Pract 1988, 183, 119–128. [Google Scholar]
- Rode, J.; Dhillon, A.P.; Doran, J.F.; Jackson, P.; Thompson, R.J. PGP 9.5, a new marker for human neuroendocrine tumours. Histopathology 1985, 9, 147–158. [Google Scholar]
- Kogner, P.; Bjork, O.; Theodorsson, E. Neuropeptide Y as a marker in pediatric neuroblastoma. Pediatr. Pathol 1990, 10, 207–216. [Google Scholar]
- Agoston, D.V.; Colburn, S.; Krajniak, K.G.; Waschek, J.A. Distinct regulation of vasoactive intestinal peptide (VIP) expression at mRNA and peptide levels in human neuroblastoma cells. Neurosci. Lett 1992, 139, 213–216. [Google Scholar]
- Sawin, R.; Brockenbrough, J.; Ness, J. Gastrin-releasing peptide is an autocrine growth factor for human neuroblastoma. 1992, 606–608. [Google Scholar]
- Perel, Y.; Amrein, L.; Dobremez, E.; Rivel, J.; Daniel, J.Y.; Landry, M. Galanin and galanin receptor expression in neuroblastic tumours: correlation with their differentiation status. Br. J. Cancer 2002, 86, 117–122. [Google Scholar]
- Bjellerup, P.; Theodorsson, E.; Kogner, P. Somatostatin and vasoactive intestinal peptide (VIP) in neuroblastoma and ganglioneuroma: chromatographic characterisation and release during surgery. Eur. J. Cancer 1995, 31A, 481–485. [Google Scholar]
- Kogner, P.; Borgstrom, P.; Bjellerup, P.; Schilling, F.H.; Refai, E.; Jonsson, C.; Dominici, C.; Wassberg, E.; Bihl, H.; Jacobsson, H.; Theodorsson, E.; Hassan, M. Somatostatin in neuroblastoma and ganglioneuroma. Eur. J. Cancer 1997, 33, 2084–2089. [Google Scholar]
- Kogner, P.; Bjellerup, P.; Svensson, T.; Theodorsson, E. Pancreastatin immunoreactivity in favourable childhood neuroblastoma and ganglioneuroma. Eur. J. Cancer 1995, 31A, 557–560. [Google Scholar]
- Folkesson, R.; Monstein, H.J.; Geijer, T.; Pahlman, S.; Nilsson, K.; Terenius, L. Expression of the proenkephalin gene in human neuroblastoma cell lines. Brain Res 1988, 427, 147–154. [Google Scholar]
- Fahrenkrug, J. Co-existence and co-secretion of the structurally related peptides VIP and PHI. Scand. J. Clin. Lab Invest 1987, 186, 43–50. [Google Scholar]
- Vertongen, P.; Devalck, C.; Sariban, E.; De Laet, M.H.; Martelli, H.; Paraf, F.; Helardot, P.; Robberecht, P. Pituitary adenylate cyclase activating peptide and its receptors are expressed in human neuroblastomas. J. Cell Physiol 1996, 167, 36–46. [Google Scholar]
- Niimura, S.; Mizuno, K.; Yabe, R.; Tani, M.; Suenaga, K.; Naruse, M.; Inagami, T.; Fukuchi, S. Atrial natriuretic peptide in human neuroblastoma. Res. Commun. Chem. Pathol. Pharmacol 1989, 63, 189–200. [Google Scholar]
- Nakagawara, A.; Milbrandt, J.; Muramatsu, T.; Deuel, T.F.; Zhao, H.; Cnaan, A.; Brodeur, G.M. Differential expression of pleiotrophin andmidkine in advanced neuroblastomas. Cancer Res 1995, 55, 1792–1797. [Google Scholar]
- Bessho, F. Effects of mass screening on age-specific incidence of neuroblastoma. Int. J. Cancer 1996, 67, 520–522. [Google Scholar]
- Bessho, F. Where should neuroblastoma mass screening go? Lancet 1996, 348, 1672. [Google Scholar]
- Yamamoto, K.; Hanada, R.; Kikuchi, A.; Ichikawa, M.; Aihara, T.; Oguma, E.; Moritani, T.; Shimanuki, Y.; Tanimura, M.; Hayashi, Y. Spontaneous regression of localized neuroblastoma detected by mass screening. J. Clin. Oncol 1998, 16, 1265–1269. [Google Scholar]
- Schilling, F.H.; Spix, C.; Berthold, F.; Erttmann, R.; Fehse, N.; Hero, B.; Klein, G.; Sander, J.; Schwarz, K.; Treuner, J.; Zorn, U.; Michaelis, J. Neuroblastoma screening at one year of age. N. Engl. J. Med 2002, 346, 1047–1053. [Google Scholar]
- Woods, W.G.; Gao, R.N.; Shuster, J.J.; Robison, L.L.; Bernstein, M.; Weitzman, S.; Bunin, G.; Levy, I.; Brossard, J.; Dougherty, G.; Tuchman, M.; Lemieux, B. Screening of infants and mortality due to neuroblastoma. N. Engl. J. Med 2002, 346, 1041–1046. [Google Scholar]
- Strenger, V.; Kerbl, R.; Dornbusch, H.J.; Ladenstein, R.; Ambros, P.F.; Ambros, I.M.; Urban, C. Diagnostic and prognostic impact of urinary catecholamines in neuroblastoma patients. Pediatr. Blood Cancer 2007, 48, 504–509. [Google Scholar]
- Wu, T.; Chang, C.; Tsao, K.; Sun, C.; Wu, J.T. Development of a microplate assay for serum chromogranin A (CgA): establishment of normal reference values and detection of elevated CgA in malignant diseases. J. Clin. Lab. Anal 1999, 13, 312–319. [Google Scholar]
- Portela-Gomes, G.; Grimelius, L.; Wilander, E.; Stridsberg, M. Granins and granin-related peptides inneuroendocrine tumours. Regul. Pept 2010, 165, 12–20. [Google Scholar]
- Taupenot, L.; Harper, K.L.; O'Connor, D.T. The chromogranin-secretogranin family. N. Engl. J. Med 2003, 348, 1134–1149. [Google Scholar]
- Pritchard, J.; Cooper, E.H.; Hamilton, S.; Bailey, C.C.; Ninane, J. Serum neuron-specific enolase may be raised in children with Wilms' tumour. Lancet 1987, 1((87)), 91952–0. [Google Scholar] [CrossRef]
- Ishiguro, Y.; Kato, K.; Ito, T.; Horisawa, M.; Nagaya, M. Enolase isozymes as markers for differential diagnosis of neuroblastoma, rhabdomyosarcoma, and Wilms' tumor. Gann 1984, 75, 53–60. [Google Scholar]
- Ziegler, M.G.; Kennedy, B.; Morrissey, E.; O'Connor, D.T. Norepinephrine clearance, chromogranin A and dopamine beta hydroxylase in renal failure. Kidney Int 1990, 37, 1357–1362. [Google Scholar]
- Giusti, M.; Sidoti, M.; Augeri, C.; Rabitti, C.; Minuto, F. Effect of short-term treatment with low dosages of the proton-pump inhibitor omeprazole on serum chromogranin A levels in man. Eur. J. Endocrinol 2004, 150, 299–303. [Google Scholar]
- Ceconi, C.; Ferrari, R.; Bachetti, T.; Opasich, C.; Volterrani, M.; Colombo, B.; Parrinello, G.; Corti, A. Chromogranin A in heart failure; a novel neurohumoral factor and a predictor for mortality. Eur. Heart. J 2002, 23, 967–974. [Google Scholar]
- Corti, A.; Ferrari, R.; Ceconi, C. Chromogranin A and tumor necrosis factor-alpha (TNF) in chronic heart failure. Adv. Exp. Med. Biol 2000, 482, 351–359. [Google Scholar]
- Di, C.G.; Rossi, C.M.; Marinosci, A.; Lolmede, K.; Baldissera, E.; Aiello, P.; Mueller, R.B.; Herrmann, M.; Voll, R.E.; Rovere-Querini, P.; Sabbadini, M.G.; Corti, A.; Manfredi, A.A. Circulating chromogranin A reveals extra-articular involvement in patients with rheumatoid arthritis and curbs TNF-alpha-elicited endothelial activation. J. Leukoc. Biol 2009, 85, 81–87. [Google Scholar]
- Riley, R.D.; Heney, D.; Jones, D.R.; Sutton, A.J.; Lambert, P.C.; Abrams, K.R.; Young, B.; Wailoo, A.J.; Burchill, S.A. A systematic review of molecular and biological tumor markers in neuroblastoma. Clin. Cancer Res 2004, 10, 4–12. [Google Scholar]
- Coppes, M.J. Serum biological markers and paraneoplastic syndromes in Wilms tumor. Med. Pediatr. Oncol 1993, 21, 213–221. [Google Scholar]
- Ghanem, M.A.; van Steenbrugge, G.J.; Nijman, R.J.; van der Kwast, T.H. Prognostic markers in nephroblastoma (Wilms' tumor). Urology 2005, 65, 1047–1054. [Google Scholar]
- Skoldenberg, E.G.; Christiansson, J.; Sandstedt, B.; Larsson, A.; Lackgren, G.; Christofferson, R. Angiogenesis and angiogenic growth factors in Wilms tumor. J. Urol 2001, 165, 2274–2279. [Google Scholar]
- Hormbrey, E.; Gillespie, P.; Turner, K.; Han, C.; Roberts, A.; McGrouther, D.; Harris, A.L. A critical review of vascular endothelial growth factor (VEGF) analysis in peripheral blood: is the current literature meaningful? Clin. Exp. Metastasis 2002, 19, 651–663. [Google Scholar]
- Lawrence, W., Jr; Anderson, J.R.; Gehan, E.A.; Maurer, H. Pretreatment TNM staging of childhood rhabdomyosarcoma: a report of the Intergroup Rhabdomyosarcoma Study Group. Children's Cancer Study Group. Pediatric Oncology Group. Cancer 1997, 80, 1165–1170. [Google Scholar]
- Ishiguro, Y.; Kato, K.; Ito, T.; Horisawa, M.; Nagaya, M. Enolase isozymes as markers for differential diagnosis of neuroblastoma, rhabdomyosarcoma, and Wilms' tumor. Gann 1984, 75, 53–60. [Google Scholar]
- Tsuchida, Y.; Honna, T.; Iwanaka, T.; Saeki, M.; Taguchi, N.; Kaneko, T.; Koide, R.; Tsunematsu, Y.; Shimizu, K.; Makino, S. Serial determination of serum neuron-specific enolase in patients with neuroblastoma and other pediatric tumors. J. Pediatr. Surg 1987, 22, 419–424. [Google Scholar]
- Gluer, S.; Schelp, C.; von, S.D.; Gerardy-Schahn, R. Polysialylated neural cell adhesion molecule in childhood rhabdomyosarcoma. Pediatr. Res 1998, 43, 145–147. [Google Scholar]
- Moss, D.W.; Whitaker, K.B.; Munro, A.J. Creatine kinase MB isoenzyme in rhabdomyosarcoma. Clin. Chem 1989, 35, 896–897. [Google Scholar]
- Sawabe, S.; Hara, K.; Maekawa, M. High creatine kinase MB concentration and activity in patients with rhabdomyosarcoma. Rinsho Byori 1999, 47, 1079–1082. [Google Scholar]
- Lucas, S.; Reindl, T.; Henze, G.; Kurtz, A.; Sakuma, S.; Driever, P.H. Increased midkine serum levels in pediatric embryonal tumor patients. J. Pediatr. Hematol. Oncol 2009, 31, 713–717. [Google Scholar]
- Bache, M.; Kappler, M.; Wichmann, H.; Rot, S.; Hahnel, A.; Greither, T.; Said, H.M.; Kotzsch, M.; Wurl, P.; Taubert, H.; Vordermark, D. Elevated tumor and serum levels of the hypoxia-associated protein osteopontin are associated with prognosis for soft tissue sarcoma patients. BMC. Cancer 2010, 10, 132. [Google Scholar]
- Hoshino, M.; Kawashima, H.; Ogose, A.; Kudo, N.; Ariizumi, T.; Hotta, T.; Umezu, H.; Hatano, H.; Morita, T.; Nishio, J.; Iwasaki, H.; Endo, N. Serum CA 125 expression as a tumor marker for diagnosis and monitoring the clinical course of epithelioid sarcoma. J. Cancer Res. Clin. Oncol 2010, 136, 457–464. [Google Scholar]
- Febbo, P.G.; Ladanyi, M.; Aldape, K.D.; De Marzo, A.M.; Hammond, M.E.; Hayes, D.F.; Iafrate, A.J.; Kelley, R.K.; Marcucci, G.; Ogino, S.; Pao, W.; Sgroi, D.C.; Birkeland, M.L. NCCN Task Force Report: Evaluating the Clinical Utility of Tumor Markers in Oncology. J. Natl. Compr. Canc. Netw 2011, 9, S1–S32. [Google Scholar]
- Gilligan, T.D.; Seidenfeld, J.; Basch, E.M.; Einhorn, L.H.; Fancher, T.; Smith, D.C.; Stephenson, A.J.; Vaughn, D.J.; Cosby, R.; Hayes, D.F. American Society of Clinical Oncology Clinical Practice Guideline on uses of serum tumor markers in adult males with germ cell tumors. J. Clin. Oncol. 2010, 28, 3388–3404. [Google Scholar]
- Sturgeon, C.M.; Duffy, M.J.; Stenman, U.H.; Lilja, H.; Brunner, N.; Chan, D.W.; Babaian, R.; Bast, R.C., Jr; Dowell, B.; Esteva, F.J.; et al. National Academy of Clinical Biochemistry laboratory medicine practice guidelines for use of tumor markers in testicular, prostate, colorectal, breast, and ovarian cancers. Clin. Chem. 2008, 54, e11–e79. [Google Scholar]
- Houldsworth, J.; Korkola, J.E.; Bosl, G.J.; Chaganti, R.S. Biology and genetics of adult male germ cell tumors. J. Clin. Oncol 2006, 24, 5512–5518. [Google Scholar]
- De Backer, A.; Madern, G.C.; Pieters, R.; Haentjens, P.; Hakvoort-Cammel, F.G.; Oosterhuis, J.W.; Hazebroek, F.W. Influence of tumor site and histology on long-term survival in 193 children with extracranial germ cell tumors. Eur. J. Pediatr. Surg 2008, 18, 1–6. [Google Scholar]
- Bernstein, L.; Smith, M.A.; Liu, L.; Deapen, D.; Friedman, D. Germ Cell, trophoblastic, and other gonadal neoplasms. 1999. Available online: http://seer.cancer.gov/publications/childhood/germcell.pdf access on 18 January 2012.
- Oosterhuis, J.W.; Stoop, H.; Honecker, F.; Looijenga, L.H. Why human extragonadal germ cell tumours occur in the midline of the body: old concepts, new perspectives. Int. J. Androl 2007, 30, 256–263. [Google Scholar]
- Oosterhuis, J.W.; Looijenga, L.H. Testicular germ-cell tumours in a broader perspective. Nat. Rev. Cancer 2005, 5, 210–222. [Google Scholar]
- Masque-Soler, N.; Szczepanowski, M.; Leuschner, I.; Vokuhl, C.; Haag, J.; Calaminus, G.; Klapper, W. Absence of BRAF mutation in pediatric and adolescent germ cell tumors indicate biological differences to adult tumors. Pediatr. Blood Cancer 2011. [Google Scholar] [CrossRef]
- Cao, Z.T.; Rej, R. Are laboratories reporting serum quantitative hCG results correctly? Clin. Chem 2008, 54, 761–764. [Google Scholar]
- Zichi, D.; Eaton, B.; Singer, B.; Gold, L. Proteomics and diagnostics: Let's Get Specific, again. Curr. Opin. Chem. Biol 2008, 12, 78–85. [Google Scholar]
- Rifai, N.; Gillette, M.A.; Carr, S.A. Protein biomarker discovery and validation: the long and uncertain path to clinical utility. Nat. Biotechnol 2006, 24, 971–983. [Google Scholar]
- Teng, P.N.; Bateman, N.W.; Hood, B.L.; Conrads, T.P. Advances in proximal fluid proteomics for disease biomarker discovery. J. Proteome. Res 2010, 9, 6091–6100. [Google Scholar]
- Pujia, A.; De, A.F.; Scumaci, D.; Gaspari, M.; Liberale, C.; Candeloro, P.; Cuda, G.; Di, F.E. Highly efficient human serum filtration with water-soluble nanoporous nanoparticles. Int. J. Nanomed 2010, 5, 1005–1015. [Google Scholar]
- Wang, J.; Wang, L.; Zhang, D.; Fan, Y.; Jia, Z.; Qin, P.; Yu, J.; Zheng, S.; Yang, F. Identification of potential serum biomarkers for Wilms tumor after excluding confounding effects of common systemic inflammatory factors. Mol. Biol. Rep 2011. [Google Scholar] [CrossRef]
- Savage, W.J.; Everett, A.D. Biomarkers in pediatrics: children as biomarker orphans. Proteomics. Clin. Appl 2010, 4, 915–921. [Google Scholar]
- Hunsucker, S.W.; Accurso, F.J.; Duncan, M.W. Proteomics in pediatric research and practice. Adv. Pediatr 2007, 54, 9–28. [Google Scholar]
- Haudek, V.J.; Slany, A.; Gundacker, N.C.; Wimmer, H.; Drach, J.; Gerner, C. Proteome maps of the main human peripheral blood constituents. J. Proteome. Res 2009, 8, 3834–3843. [Google Scholar]
- Liu, X.; Valentine, S.J.; Plasencia, M.D.; Trimpin, S.; Naylor, S.; Clemmer, D.E. Mapping the human plasma proteome by SCX-LC-IMS-MS. J. Am. Soc. Mass Spectrom 2007, 18, 1249–1264. [Google Scholar]
- Muthusamy, B.; Hanumanthu, G.; Suresh, S.; Rekha, B.; Srinivas, D.; Karthick, L.; Vrushabendra, B.M.; Sharma, S.; Mishra, G.; Chatterjee, P.; Mangala, K.S.; Shivashankar, H.N.; et al. Plasma Proteome Database as a resource for proteomics research. Proteomics 2005, 5, 3531–3536. [Google Scholar]
- Saha, S.; Harrison, S.H.; Shen, C.; Tang, H.; Radivojac, P.; Arnold, R.J.; Zhang, X.; Chen, J.Y. HIP2: an online database of human plasma proteins from healthy individuals. BMC. Med. Genomics 2008, 1. [Google Scholar] [CrossRef]
Tumor Marker | Clinically Available | Primary Cancer | Additional Associated Malignancies | Benign Diseases/Conditions | Normal Values |
---|---|---|---|---|---|
AFP | Yes | HB HCC Nonseminomatous GCT | Stomach, lung colon, and pancreatic cancer | Alcohol abuse Hepatitis Cirrhosis Biliary tract obstruction Hereditary persistence | cord: 9100–190,000 ng/mL 1 day: 7900–170,000 7 days: 3500–74,000 8–14 days: 1500–59,000 15–21 days: 580–23,000 22–28 days: 320–6300 29–45 days: 30–5800 46–60 days: 16–2000 3 months (61–90 d): 6–1000 4 months (91–120 d): 3–420 5 months (121–150 d): 2–220 6 months (151–180 d): 1–130 7 months–2 years (181–720 d): 1–87 >2 years: 1–15 |
HCG | Yes | Nonseminomatous GCT Gestational trophoblastic disease | Neuroendocrine, bladder, kidney, lung, head, neck, gastrointestinal, cervix, uterus and vulva tumors, lymphoma, and leukemia | Pregnancy Fetal Down syndrome Marijuana use Hypogonadism | <5 mU/mL (male, non-pregnant female) |
LDH | Yes | GCT NB Lymphoma Melanoma | Small-cell lung cancer Ewing sarcoma Osteogenic sarcoma | Hemolysis Renal failure Liver and muscle diseases | 0–3 days: 290–775 U/L 4–9 days: 545-2000 U/L 10 days–23 months: 180–430 U/L 2–11 years: 110–295 U/L 12–17 years: 100–190 U/L >18 years: 105–210 U/L |
β2M [5–7] | Yes | Lymphoma | Breast, prostate, lung, renal, gastrointestinal, nasopharyngeal cancers, and multiple myeloma | Inflammatory bowel disease [8] Autoimmune diseases Acute viral infections[9] | 1.1–2.4 mg/L |
CA125 | Yes | Ovary Lymphoma | Cervical and endometrial cancers, malignant ascites, renal cancer, non–small cell lung, breast, and stomach cancers, primary peritoneal carcinoma | Benign breast or ovarian disease Endometriosis Pelvic inflammatory disease Chronic renal failure Hepatitis | 0–35 U/mL |
Nm23-H1 | No | Hematologic | Thyroid and NB | Psoriasis[10] | 0–80 ng/mL |
Catecholamines | Yes | NB PCC | MTC [11] | Not applicable | 24-hour Urine catecholamines, fractionated, & VMA * Epinephrine, 24 hr Urine 0–2 years: Not established 3–8 years: 1–7 μg/24 h 9–12 years: 8 or less μg/24 h 13–17 years: 11 or less μg/24 h Adults: 2–24 μg/24 h |
Norepinephrine, 24 h Urine 0–2 years: Not established 3–8 years: 5–41 μg/24 h 9–12 years: 5–50 μg/24 h 13–17 years: 12–88 μg/24 h Adults: 15–100 μg/24 h | |||||
Calculated Total (N+E) 0–2 years: Not established 3–8 years: 9–51 μg/24 h 9–12 years: 9–71 μg/24 h 13–17 years: 13–90 μg/24 h Adults: 26–121 μg/24 h Dopamine, 24 hr Urine 0–2 years: Not established 3–8 years: 80–378 μg/24 h 9–12 years: 51–474 μg/24 h 13–17 years: 51–645 μg/24 h Adults: 52–480 μg/24 h | |||||
VMA, 24 h Urine 3–8 years: 2.3 mg or less 9–12 years: 3.4 mg or less 13–17 years: 3.9 mg or less Adults: 6.0 or less | |||||
CgA | Yes | NB PCC Neuroendocrine tumors | Prostate, lung, breast, gastric, and colon cancers | Hepatic disease, renal failure, rheumatoid arthritis, atrophic gastritis | 0–95 ng/mL |
NSE | Yes | NB PCC MTC Gastric or lung carcinoids | Wilms tumor Rhabdomyosarcoma | Brain hypoxia after MI, stroke, subarachnoid hemorrhage, traumatic brain damage, Guillain–Barré syndrome, bacterial meningitis and encephalitis [12–18] | 0–5 nmol/mL |
Renin | Yes | Renal (Wilms, clear cell carcinoma, and mesoblastic nephroma) [19,20] | Ovarian, lung, pancreatic, adrenal, and colon cancers | Bartter syndrome, solitary renal cyst, cirrhosis, nephrotic syndrome, dehydration Hypertension | 1.9 to 3.7 ng/mL/h |
© 2012 by the authors; licensee Molecular Diversity Preservation International, Basel, Switzerland. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Sandoval, J.A.; Malkas, L.H.; Hickey, R.J. Clinical Significance of Serum Biomarkers in Pediatric Solid Mediastinal and Abdominal Tumors. Int. J. Mol. Sci. 2012, 13, 1126-1153. https://doi.org/10.3390/ijms13011126
Sandoval JA, Malkas LH, Hickey RJ. Clinical Significance of Serum Biomarkers in Pediatric Solid Mediastinal and Abdominal Tumors. International Journal of Molecular Sciences. 2012; 13(1):1126-1153. https://doi.org/10.3390/ijms13011126
Chicago/Turabian StyleSandoval, John A., Linda H. Malkas, and Robert J. Hickey. 2012. "Clinical Significance of Serum Biomarkers in Pediatric Solid Mediastinal and Abdominal Tumors" International Journal of Molecular Sciences 13, no. 1: 1126-1153. https://doi.org/10.3390/ijms13011126
APA StyleSandoval, J. A., Malkas, L. H., & Hickey, R. J. (2012). Clinical Significance of Serum Biomarkers in Pediatric Solid Mediastinal and Abdominal Tumors. International Journal of Molecular Sciences, 13(1), 1126-1153. https://doi.org/10.3390/ijms13011126