A Bead-Based Multiplexed Immunoassay to Evaluate Breast Cancer Biomarkers for Early Detection in Pre-Diagnostic Serum
Abstract
:1. Introduction
2. Results and Discussion
2.1. Study Population
2.2. Discriminative Value of Candidate Breast Cancer Markers in Pre-Diagnostic Serum
2.3. Discussion
3. Experimental Section
3.1. Study Population
3.2. Multiplex Analysis
3.3. Data Analysis
4. Conclusions
Supplementary Materials
ijms-13-13587-s001.pdfAcknowledgements
References
- Boyd, N.F.; Guo, H.; Martin, L.J.; Sun, L.; Stone, J.; Fishell, E.; Jong, R.A.; Hislop, G.; Chiarelli, A.; Minkin, S.; et al. Mammographic density and the risk and detection of breast cancer. N. Engl. J. Med 2007, 356, 227–236. [Google Scholar]
- Ludwig, J.A.; Weinstein, J.N. Biomarkers in cancer staging, prognosis and treatment selection. Nat. Rev. Cancer 2005, 5, 845–856. [Google Scholar]
- Kulasingam, V.; Zheng, Y.; Soosaipillai, A.; Leon, A.E.; Gion, M.; Diamandis, E.P. Activated leukocyte cell adhesion molecule: A novel biomarker for breast cancer. Int. J. Cancer 2009, 125, 9–14. [Google Scholar]
- Pitteri, S.J.; Amon, L.M.; Busald, B.T.; Zhang, Y.; Johnson, M.M.; Chin, A.; Kennedy, J.; Wong, C.H.; Zhang, Q.; Wang, H.; et al. Detection of elevated plasma levels of epidermal growth factor receptor before breast cancer diagnosis among hormone therapy users. Cancer Res 2010, 70, 8598–8606. [Google Scholar]
- Arslan, N.; Serdar, M.; Deveci, S.; Ozturk, B.; Narin, Y.; Ilgan, S.; Ozturk, E.; Ozguven, M.A. Use of CA15–3, CEA and prolactin for the primary diagnosis of breast cancer and correlation with the prognostic factors at the time of initial diagnosis. Ann. Nucl. Med 2000, 14, 395–399. [Google Scholar]
- Eskelinen, M.; Kataja, V.; Hamalainen, E.; Kosma, V.M.; Penttila, I.; Alhava, E. Serum tumour markers CEA, AFP, CA 15-3, TPS and Neu in diagnosis of breast cancer. Anticancer Res 1997, 17, 1231–1234. [Google Scholar]
- Lumachi, F.; Basso, S.M.; Brandes, A.A.; Pagano, D.; Ermani, M. Relationship between tumor markers CEA and CA 15–3, TNM staging, estrogen receptor rate and MIB-1 index in patients with pT1-2 breast cancer. Anticancer Res 2004, 24, 3221–3224. [Google Scholar]
- Molina, R.; Jo, J.; Filella, X.; Zanon, G.; Pahisa, J.; Munoz, M.; Farrus, B.; Latre, M.L.; Escriche, C.; Estape, J.; et al. c-erbB-2 Oncoprotein, CEA, and CA 15.3 in patients with breast cancer: Prognostic value. Breast Cancer Res. Treat 1998, 51, 109–119. [Google Scholar]
- Robertson, J.F.; Pearson, D.; Price, M.R.; Selby, C.; Pearson, J.; Blamey, R.W.; Howell, A. Prospective assessment of the role of five tumour markers in breast cancer. Cancer Immunol. Immunother 1991, 33, 403–410. [Google Scholar]
- Hwa, H.L.; Kuo, W.H.; Chang, L.Y.; Wang, M.Y.; Tung, T.H.; Chang, K.J.; Hsieh, F.J. Prediction of breast cancer and lymph node metastatic status with tumour markers using logistic regression models. J. Eval. Clin. Pract 2008, 14, 275–280. [Google Scholar]
- Norum, L.F.; Erikstein, B.; Nustad, K. Elevated CA125 in breast cancer—A sign of advanced disease. Tumour Biol 2001, 22, 223–228. [Google Scholar]
- Sturgeon, C.M.; Duffy, M.J.; Stenman, U.H.; Lilja, H.; Brunner, N.; Chan, D.W.; Babaian, R.; Bast, R.C., Jr; Dowell, B.; Esteva, F.J.; et al. National Academy of Clinical Biochemistry laboratory medicine practice guidelines for use of tumor markers in testicular, prostate, colorectal, breast, and ovarian cancers. Clin. Chem 2008, 54, e11–e79. [Google Scholar]
- Perou, C.M.; Sorlie, T.; Eisen, M.B.; van de Rijn, M.; Jeffrey, S.S.; Rees, C.A.; Pollack, J.R.; Ross, D.T.; Johnsen, H.; Akslen, L.A.; et al. Molecular portraits of human breast tumours. Nature 2000, 406, 747–752. [Google Scholar]
- Moore, R.G.; McMeekin, D.S.; Brown, A.K.; DiSilvestro, P.; Miller, M.C.; Allard, W.J.; Gajewski, W.; Kurman, R.; Bast, R.C., Jr; Skates, S.J. A novel multiple marker bioassay utilizing HE4 and CA125 for the prediction of ovarian cancer in patients with a pelvic mass. Gynecol. Oncol 2009, 112, 40–46. [Google Scholar]
- Zhu, C.S.; Pinsky, P.F.; Cramer, D.W.; Ransohoff, D.F.; Hartge, P.; Pfeiffer, R.M.; Urban, N.; Mor, G.; Bast, R.C., Jr; Moore, L.E.; et al. A framework for evaluating biomarkers for early detection: Validation of biomarker panels for ovarian cancer. Cancer Prev. Res 2011, 4, 375–383. [Google Scholar]
- Das, P.M.; Bast, R.C., Jr. Early detection of ovarian cancer. Biomark. Med 2008, 2, 291–303. [Google Scholar]
- Zhang, Z.; Yu, Y.; Xu, F.; Berchuck, A.; Haaften-Day, C.; Havrilesky, L.J.; de Bruijn, H.W.; van der Zee, A.G.; Woolas, R.P.; Jacobs, I.J.; et al. Combining multiple serum tumor markers improves detection of stage I epithelial ovarian cancer. Gynecol. Oncol 2007, 107, 526–531. [Google Scholar]
- Pepe, M.S.; Etzioni, R.; Feng, Z.; Potter, J.D.; Thompson, M.L.; Thornquist, M.; Winget, M.; Yasui, Y. Phases of biomarker development for early detection of cancer. J. Natl. Cancer. Inst 2001, 93, 1054–1061. [Google Scholar]
- Kim, B.K.; Lee, J.W.; Park, P.J.; Shin, Y.S.; Lee, W.Y.; Lee, K.A.; Ye, S.; Hyun, H.; Kang, K.N.; Yeo, D.; et al. The multiplex bead array approach to identifying serum biomarkers associated with breast cancer. Breast Cancer Res 2009, 11, R22. [Google Scholar]
- Verjans, E.; Noetzel, E.; Bektas, N.; Schutz, A.K.; Lue, H.; Lennartz, B.; Hartmann, A.; Dahl, E.; Bernhagen, J. Dual role of macrophage migration inhibitory factor (MIF) in human breast cancer. BMC Cancer 2009, 9, 230. [Google Scholar] [Green Version]
- Xu, X.; Wang, B.; Ye, C.; Yao, C.; Lin, Y.; Huang, X.; Zhang, Y.; Wang, S. Overexpression of macrophage migration inhibitory factor induces angiogenesis in human breast cancer. Cancer Lett 2008, 261, 147–157. [Google Scholar]
- Sarcione, E.J.; Biddle, W. Elevated serum alpha fetoprotein levels in postmenopausal women with primary breast carcinoma. Dis. Markers 1987, 5, 75–79. [Google Scholar]
- Park, I.J.; Choi, G.S.; Jun, S.H. Prognostic value of serum tumor antigen CA19-9 after curative resection of colorectal cancer. Anticancer Res 2009, 29, 4303–4308. [Google Scholar]
- Lee, H.; Rhee, H.; Kang, H.J.; Kim, H.S.; Min, B.S.; Kim, N.K.; Kim, H. Macrophage migration inhibitory factor may be used as an early diagnostic marker in colorectal carcinomas. Am. J. Clin. Pathol 2008, 129, 772–779. [Google Scholar]
- Meyer-Siegler, K.L.; Iczkowski, K.A.; Vera, P.L. Further evidence for increased macrophage migration inhibitory factor expression in prostate cancer. BMC Cancer 2005, 5, 73. [Google Scholar]
- Xia, H.H.; Yang, Y.; Chu, K.M.; Gu, Q.; Zhang, Y.Y.; He, H.; Wong, W.M.; Leung, S.Y.; Yuen, S.T.; Yuen, M.F.; et al. Serum macrophage migration-inhibitory factor as a diagnostic and prognostic biomarker for gastric cancer. Cancer 2009, 115, 5441–5449. [Google Scholar]
- Bando, H.; Matsumoto, G.; Bando, M.; Muta, M.; Ogawa, T.; Funata, N.; Nishihira, J.; Koike, M.; Toi, M. Expression of macrophage migration inhibitory factor in human breast cancer: association with nodal spread. Jpn. J. Cancer Res 2002, 93, 389–396. [Google Scholar]
- Tworoger, S.S.; Eliassen, A.H.; Sluss, P.; Hankinson, S.E. A prospective study of plasma prolactin concentrations and risk of premenopausal and postmenopausal breast cancer. J. Clin. Oncol 2007, 25, 1482–1488. [Google Scholar]
- Wu, M.H.; Chou, Y.C.; Chou, W.Y.; Hsu, G.C.; Chu, C.H.; Yu, C.P.; Yu, J.C.; Sun, C.A. Circulating levels of leptin, adiposity and breast cancer risk. Br. J. Cancer 2009, 100, 578–582. [Google Scholar]
- Maccio, A.; Madeddu, C.; Gramignano, G.; Mulas, C.; Floris, C.; Massa, D.; Astara, G.; Chessa, P.; Mantovani, G. Correlation of body mass index and leptin with tumor size and stage of disease in hormone-dependent postmenopausal breast cancer: preliminary results and therapeutic implications. J. Mol. Med 2010, 88, 677–686. [Google Scholar]
- Ozet, A.; Arpaci, F.; Yilmaz, M.I.; Ayta, H.; Ozturk, B.; Komurcu, S.; Yavuz, A.A.; Tezcan, Y.; Acikel, C. Effects of tamoxifen on the serum leptin level in patients with breast cancer. Jpn. J. Clin. Oncol 2001, 31, 424–427. [Google Scholar]
- Tessitore, L.; Vizio, B.; Jenkins, O.; de Stefano, I.; Ritossa, C.; Argiles, J.M.; Benedetto, C.; Mussa, A. Leptin expression in colorectal and breast cancer patients. Int. J. Mol. Med 2000, 5, 421–426. [Google Scholar]
- Wijnhoven, S.W.; Zwart, E.; Speksnijder, E.N.; Beems, R.B.; Olive, K.P.; Tuveson, D.A.; Jonkers, J.; Schaap, M.M.; van den Berg, J.; Jacks, T.; et al. Mice expressing a mammary gland-specific R270H mutation in the p53 tumor suppressor gene mimic human breast cancer development. Cancer Res 2005, 65, 8166–8173. [Google Scholar]
- Krupke, D.M.; Begley, D.A.; Sundberg, J.P.; Bult, C.J.; Eppig, J.T. The mouse tumor biology database. Nat. Rev. Cancer 2008, 8, 459–465. [Google Scholar]
- Rodenburg, W.; Pennings, J.L.; van Oostrom, C.T.; Roodbergen, M.; Kuiper, R.V.; Luijten, M.; de Vries, A. Identification of breast cancer biomarkers in transgenic mouse models: A proteomics approach. Proteomics Clin. Appl 2010, 4, 603–612. [Google Scholar]
- Hamrita, B.; Chahed, K.; Trimeche, M.; Guillier, C.L.; Hammann, P.; Chaieb, A.; Korbi, S.; Chouchane, L. Proteomics-based identification of alpha1-antitrypsin and haptoglobin precursors as novel serum markers in infiltrating ductal breast carcinomas. Clin. Chim. Acta 2009, 404, 111–118. [Google Scholar]
- Fedarko, N.S.; Jain, A.; Karadag, A.; van Eman, M.R.; Fisher, L.W. Elevated serum bone sialoprotein and osteopontin in colon, breast, prostate, and lung cancer. Clin. Cancer Res 2001, 7, 4060–4066. [Google Scholar]
- Pitteri, S.J.; Faca, V.M.; Kelly-Spratt, K.S.; Kasarda, A.E.; Wang, H.; Zhang, Q.; Newcomb, L.; Krasnoselsky, A.; Paczesny, S.; Choi, G.; et al. Plasma proteome profiling of a mouse model of breast cancer identifies a set of up-regulated proteins in common with human breast cancer cells. J. Proteome Res 2008, 7, 1481–1489. [Google Scholar]
- Whiteaker, J.R.; Lin, C.; Kennedy, J.; Hou, L.; Trute, M.; Sokal, I.; Yan, P.; Schoenherr, R.M.; Zhao, L.; Voytovich, U.J.; et al. A targeted proteomics-based pipeline for verification of biomarkers in plasma. Nat. Biotechnol 2011, 29, 625–634. [Google Scholar]
- Pietrowska, M.; Marczak, L.; Polanska, J.; Behrendt, K.; Nowicka, E.; Walaszczyk, A.; Chmura, A.; Deja, R.; Stobiecki, M.; Polanski, A.; et al. Mass spectrometry-based serum proteome pattern analysis in molecular diagnostics of early stage breast cancer. J. Transl. Med 2009, 7, 60. [Google Scholar]
- Rudland, P.S.; Platt-Higgins, A.; El Tanani, M.; Silva Rudland, S.; Barraclough, R.; Winstanley, J.H.; Howitt, R.; West, C.R. Prognostic significance of the metastasis-associated protein osteopontin in human breast cancer. Cancer Res 2002, 62, 3417–3427. [Google Scholar]
- Tuck, A.B.; O’Malley, F.P.; Singhal, H.; Harris, J.F.; Tonkin, K.S.; Kerkvliet, N.; Saad, Z.; Doig, G.S.; Chambers, A.F. Osteopontin expression in a group of lymph node negative breast cancer patients. Int. J. Cancer 1998, 79, 502–508. [Google Scholar]
- Wang, G.; Platt-Higgins, A.; Carroll, J.; Silva Rudland, S.; Winstanley, J.; Barraclough, R.; Rudland, P.S. Induction of metastasis by S100P in a rat mammary model and its association with poor survival of breast cancer patients. Cancer Res 2006, 66, 1199–1207. [Google Scholar]
- Bramwell, V.H.; Doig, G.S.; Tuck, A.B.; Wilson, S.M.; Tonkin, K.S.; Tomiak, A.; Perera, F.; Vandenberg, T.A.; Chambers, A.F. Serial plasma osteopontin levels have prognostic value in metastatic breast cancer. Clin. Cancer Res 2006, 12, 3337–3343. [Google Scholar]
- Singhal, H.; Bautista, D.S.; Tonkin, K.S.; O’Malley, F.P.; Tuck, A.B.; Chambers, A.F.; Harris, J.F. Elevated plasma osteopontin in metastatic breast cancer associated with increased tumor burden and decreased survival. Clin. Cancer Res 1997, 3, 605–611. [Google Scholar]
- Schwenk, J.M.; Gry, M.; Rimini, R.; Uhlen, M.; Nilsson, P. Antibody suspension bead arrays within serum proteomics. J. Proteome Res 2008, 7, 3168–3179. [Google Scholar]
- Schwenk, J.M.; Igel, U.; Kato, B.S.; Nicholson, G.; Karpe, F.; Uhlen, M.; Nilsson, P. Comparative protein profiling of serum and plasma using an antibody suspension bead array approach. Proteomics 2010, 10, 532–540. [Google Scholar]
- Boker, L.K.; van Noord, P.A.; van der Schouw, Y.T.; Koot, N.V.; Bueno de Mesquita, H.B.; Riboli, E.; Grobbee, D.E.; Peeters, P.H. Prospect-EPIC Utrecht: Study design and characteristics of the cohort population. European Prospective Investigation into Cancer and Nutrition. Eur. J. Epidemiol 2001, 17, 1047–1053. [Google Scholar]
- Garofalo, C.; Surmacz, E. Leptin and cancer. J. Cell. Physiol 2006, 207, 12–22. [Google Scholar]
- Pepe, M.S.; Feng, Z.; Janes, H.; Bossuyt, P.M.; Potter, J.D. Pivotal evaluation of the accuracy of a biomarker used for classification or prediction: standards for study design. J. Natl. Cancer. Inst 2008, 100, 1432–1438. [Google Scholar]
- Jacobs, I.; Menon, U. The sine qua non of discovering novel biomarkers for early detection of ovarian cancer: Carefully selected preclinical samples. Cancer Prev. Res 2011, 4, 299–302. [Google Scholar]
- Opstal-van Winden, A.W.; Krop, E.J.; Karedal, M.H.; Gast, M.C.; Lindh, C.H.; Jeppsson, M.C.; Jonsson, B.A.; Grobbee, D.E.; Peeters, P.H.; Beijnen, J.H.; et al. Searching for early breast cancer biomarkers by serum protein profiling of pre-diagnostic serum; a nested case-control study. BMC Cancer 2011, 11, 381. [Google Scholar]
- Conrads, T.P.; Fusaro, V.A.; Ross, S.; Johann, D.; Rajapakse, V.; Hitt, B.A.; Steinberg, S.M.; Kohn, E.C.; Fishman, D.A.; Whitely, G.; et al. High-resolution serum proteomic features for ovarian cancer detection. Endocr. Relat. Cancer 2004, 11, 163–178. [Google Scholar]
- Ransohoff, D.F. Bias as a threat to the validity of cancer molecular-marker research. Nat. Rev. Cancer 2005, 5, 142–149. [Google Scholar]
- Banks, R.E.; Stanley, A.J.; Cairns, D.A.; Barrett, J.H.; Clarke, P.; Thompson, D.; Selby, P.J. Influences of blood sample processing on low-molecular-weight proteome identified by surface-enhanced laser desorption/ionization mass spectrometry. Clin. Chem 2005, 51, 1637–1649. [Google Scholar]
- Engwegen, J.Y.; Alberts, M.; Knol, J.C.; Jimenez, C.R.; Depla, A.C.; Tuynman, H.; Snel, P.; Smits, M.E.; Cats, A.; Schellens, J.H.; et al. Influence of variations in sample handling on SELDI-TOF MS serum protein profiles for colorectal cancer. Proteomics Clin. Appl 2008, 2, 936–945. [Google Scholar]
- Hsieh, S.Y.; Chen, R.K.; Pan, Y.H.; Lee, H.L. Systematical evaluation of the effects of sample collection procedures on low-molecular-weight serum/plasma proteome profiling. Proteomics 2006, 6, 3189–3198. [Google Scholar]
- Timms, J.F.; Arslan-Low, E.; Gentry-Maharaj, A.; Luo, Z.; T’Jampens, D.; Podust, V.N.; Ford, J.; Fung, E.T.; Gammerman, A.; Jacobs, I.; et al. Preanalytic influence of sample handling on SELDI-TOF serum protein profiles. Clin. Chem 2007, 53, 645–656. [Google Scholar]
- West-Nielsen, M.; Hogdall, E.V.; Marchiori, E.; Hogdall, C.K.; Schou, C.; Heegaard, N.H. Sample handling for mass spectrometric proteomic investigations of human sera. Anal. Chem 2005, 77, 5114–5123. [Google Scholar]
- Karsan, A.; Eigl, B.J.; Flibotte, S.; Gelmon, K.; Switzer, P.; Hassell, P.; Harrison, D.; Law, J.; Hayes, M.; Stillwell, M.; et al. Analytical and preanalytical biases in serum proteomic pattern analysis for breast cancer diagnosis. Clin. Chem 2005, 51, 1525–1528. [Google Scholar]
- Villanueva, J.; Philip, J.; Chaparro, C.A.; Li, Y.; Toledo-Crow, R.; DeNoyer, L.; Fleisher, M.; Robbins, R.J.; Tempst, P. Correcting common errors in identifying cancer-specific serum peptide signatures. J. Proteome Res 2005, 4, 1060–1072. [Google Scholar]
- Skates, S.J.; Menon, U.; MacDonald, N.; Rosenthal, A.N.; Oram, D.H.; Knapp, R.C.; Jacobs, I.J. Calculation of the risk of ovarian cancer from serial CA-125 values for preclinical detection in postmenopausal women. J. Clin. Oncol 2003, 21, 206s–210s. [Google Scholar]
- Pols, M.A.; Peeters, P.H.; Ocke, M.C.; Slimani, N.; Bueno-de-Mesquita, H.B.; Collette, H.J. Estimation of reproducibility and relative validity of the questions included in the EPIC Physical Activity Questionnaire. Int. J. Epidemiol 1997, 26, S181–S189. [Google Scholar]
- Troyanskaya, O.; Cantor, M.; Sherlock, G.; Brown, P.; Hastie, T.; Tibshirani, R.; Botstein, D.; Altman, R.B. Missing value estimation methods for DNA microarrays. Bioinformatics 2001, 17, 520–525. [Google Scholar]
- The R Project for Statistical Computing. Available online: http://www.R-project.org accessed on 26 October 2009.
- Jackson, J.E. A User’s Guide to Principal Components; Wiley: New York, NY, USA, 2003. [Google Scholar]
- Ringner, M. What is principal component analysis? Nat. Biotechnol 2008, 26, 303–304. [Google Scholar]
- Breiman, L. Random Forests. Mach. Learn 2001, 45, 5–32. [Google Scholar]
- Liaw, A.; Wiener, M. Classification and Regression by Random Forests. R. News 2002, 2, 18–22. [Google Scholar]
- Barrett, J.H.; Cairns, D.A. Application of the random forest classification method to peaks detected from mass spectrometric proteomic profiles of cancer patients and controls. Stat. Appl. Genet. Mol. Biol 2008, 7, Article4. [Google Scholar]
- Diaz-Uriarte, R.; Alvarez de Andrés, S. Gene selection and classification of microarray data using random forest. BMC Bioinf 2006, 7, 3. [Google Scholar]
- Lunetta, K.L.; Hayward, L.B.; Segal, J.; Van, E.P. Screening large-scale association study data: exploiting interactions using random forests. BMC Genet 2004, 5, 32. [Google Scholar]
- Carlsson, A.; Wingren, C.; Ingvarsson, J.; Ellmark, P.; Baldertorp, B.; Ferno, M.; Olsson, H.; Borrebaeck, C.A. Serum proteome profiling of metastatic breast cancer using recombinant antibody microarrays. Eur. J. Cancer 2008, 44, 472–480. [Google Scholar]
Biomarker | Rationale |
---|---|
CA15-3 | Monitoring marker breast cancer a [2,12] |
CEA | Monitoring marker breast cancer a [2,12] |
CA-125 | Monitoring marker breast and ovarian cancer a [11] |
CA19-9 | Monitoring marker pancreatic and gastrointestinal cancer a [2,23] Increased serum levels in human breast cancer cases b [19] |
AFP | Staging marker testis, ovary and liver cancer a [2] Increased serum levels in human breast cancer cases b [22] |
MIF | Higher expression in mammary tumors compared to normal tissue [27] Increased serum levels in human breast cancer cases b [20,21] |
Prolactin | Risk marker for breast cancer a [28] |
Leptin | Higher expression in mammary tumors compared to normal tissue [49] Risk marker for breast cancer [29] Differential plasma levels in human breast cancer cases a [30–32,40] |
OPN | Higher in humanized Mouse models for breast cancer [35] Increased plasma [40] and serum [37] levels in human breast cancer cases b Increasing expression in mammary tumor tissue [41–43] and plasma [44,45] in progressing disease |
Haptoglobin | Higher in humanized Mouse models for breast cancer [35] Increased serum levels in human breast cancer cases b [36] |
Cases (n = 68) | Controls (n = 68) | |
---|---|---|
Age at enrollment (years) | ||
Mean ± SD | 60.2 ± 5.6 | 60.3 ± 5.7 |
Age at menarche (years) | ||
Mean ± SD | 13.4 ± 1.6 | 13.7 ± 1.9 |
Missing | 1 | 2 |
Age at menopause (years) | ||
Mean ± SD | 49.0 ± 5.6 | 49.0 ± 5.3 |
Missing | - | 3 |
BMI | ||
Mean ± SD | 26.6 ± 3.1 | 26.3 ± 3.6 |
Missing | 1 | - |
Use of oral contraceptives, n (%) | ||
No, but used to in the past | 36 (52.9) | 40 (58.8) |
No, never | 32 (47.1) | 28 (41.2) |
Duration of oral contraceptives use a (years) | ||
Median (IQR) | 10.0 (4.0–16.0) | 4.5 (2.0–10.0) |
Use of HT, n (%) | ||
No, but used to in the past | 7 (10.3) | 6 (8.8) |
No, never | 61 (89.7) | 62 (91.2) |
Duration of HT use a (years) | ||
Median (IQR) | 1.0 (1.0–8.0) | 2.0 (1.0–10.0) |
Ovariectomy, n (%) | ||
Both ovaries removed | 5 (7.4) | 3 (4.4) |
Missing | - | 1 |
Parity, n (%) | ||
Nulliparous | 10 (14.7) | 5 (7.4) |
Number of children b | ||
Median (IQR) | 2 (2–3) | 3 (2–3) |
Smoking, n (%) | ||
No, but used to in the past | 31 (45.6) | 34 (50.0) |
No, never | 37 (54.4) | 34 (50.0) |
Pack-years smoking until stop date c | ||
Median (IQR) | 7.9 (1.9–16.4) | 4.1 (1.4–10.2) |
Missing | 1 | 3 |
Alcohol intake d (g/day) | ||
Median (IQR) | 2.0 (0.2–7.2) | 2.5 (0.2–8.4) |
Highest level of education e, n (%) | ||
Level 1 | 35 (51.5) | 37 (54.4) |
Level 2 | 21 (30.9) | 18 (26.5) |
Level 3 | 12 (17.6) | 13 (19.1) |
Cases (n = 68) | Controls (n = 68) | |
---|---|---|
Serum sample storage duration a (years) | ||
Mean ± SD | 13.6 ± 1.1 | 13.5 ± 1.1 |
Hours in refrigerator b | ||
Median (IQR) | 22 (21–23) | 22 (20–23) |
Days at −86 °C c | ||
Median (IQR) | 8 (6–11) | 7 (5–11) |
Subjects use of medicines, minerals or vitamins last week d, n (%) | ||
Yes | 46 (67.6) | 44 (64.7) |
No | 22 (32.4) | 24 (35.3) |
Time since last meal and/or drink of subject d (minutes) | ||
Median (IQR) | 108 (87–137) | 116 (88–137) |
Cases (n = 68) | Controls (n = 68) | Paired T test | |||
---|---|---|---|---|---|
Biomarker | Geometric mean concentration | 95%CI | Geometric mean concentration | 95%CI | P-value |
OPN (ng/mL) | 1.11 | 0.86–1.44 | 1.17 | 0.83–1.66 | 0.82 |
Haptoglobin (mg/mL) | 1.10 | 0.86–1.39 | 1.08 | 0.87–1.33 | 0.89 |
CA15-3 (U/mL) | 8.48 | 7.08–10.15 | 10.34 | 8.72–12.26 | 0.11 |
CEA (ng/mL) | 0.56 | 0.48–0.66 | 0.49 | 0.40–0.60 | 0.29 |
CA-125 (U/mL) | 2.19 | 1.64–2.92 | 1.95 | 1.45–2.63 | 0.56 |
Prolactin (ng/mL) | 4.79 | 4.09–5.60 | 4.03 | 3.48–4.66 | 0.10 |
CA19-9 (U/mL) | 2.30 | 1.74–3.02 | 2.10 | 1.57–2.79 | 0.66 |
AFP (ng/mL) | 0.50 | 0.40–0.64 | 0.46 | 0.36–0.59 | 0.62 |
Leptin (ng/mL) | 17.34 | 14.38–20.92 | 15.67 | 12.91–19.02 | 0.43 |
MIF (pg/mL) | 166.5 | 141.9–195.4 | 199.7 | 165.9–240.4 | 0.13 |
© 2012 by the authors; licensee Molecular Diversity Preservation International, Basel, Switzerland. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Opstal-van Winden, A.W.J.; Rodenburg, W.; Pennings, J.L.A.; Van Oostrom, C.T.M.; Beijnen, J.H.; Peeters, P.H.M.; Van Gils, C.H.; De Vries, A. A Bead-Based Multiplexed Immunoassay to Evaluate Breast Cancer Biomarkers for Early Detection in Pre-Diagnostic Serum. Int. J. Mol. Sci. 2012, 13, 13587-13604. https://doi.org/10.3390/ijms131013587
Opstal-van Winden AWJ, Rodenburg W, Pennings JLA, Van Oostrom CTM, Beijnen JH, Peeters PHM, Van Gils CH, De Vries A. A Bead-Based Multiplexed Immunoassay to Evaluate Breast Cancer Biomarkers for Early Detection in Pre-Diagnostic Serum. International Journal of Molecular Sciences. 2012; 13(10):13587-13604. https://doi.org/10.3390/ijms131013587
Chicago/Turabian StyleOpstal-van Winden, Annemieke W. J., Wendy Rodenburg, Jeroen L. A. Pennings, Conny T. M. Van Oostrom, Jos H. Beijnen, Petra H.M. Peeters, Carla H. Van Gils, and Annemieke De Vries. 2012. "A Bead-Based Multiplexed Immunoassay to Evaluate Breast Cancer Biomarkers for Early Detection in Pre-Diagnostic Serum" International Journal of Molecular Sciences 13, no. 10: 13587-13604. https://doi.org/10.3390/ijms131013587
APA StyleOpstal-van Winden, A. W. J., Rodenburg, W., Pennings, J. L. A., Van Oostrom, C. T. M., Beijnen, J. H., Peeters, P. H. M., Van Gils, C. H., & De Vries, A. (2012). A Bead-Based Multiplexed Immunoassay to Evaluate Breast Cancer Biomarkers for Early Detection in Pre-Diagnostic Serum. International Journal of Molecular Sciences, 13(10), 13587-13604. https://doi.org/10.3390/ijms131013587