Integration of DNA Damage and Repair with Murine Double-Minute 2 (Mdm2) in Tumorigenesis
Abstract
:1. Introduction
Human DNA Repair Pathways
2. Discussion
2.1. Base Excision Repair (BER)
2.2. Homologous Recombination (HR)
2.3. Mismatch Repair (MMR)
2.4. Nucleotide Excision Repair (NER)
2.5. Non-Homologous End Joining (NHEJ)
3. Conclusions
- Conflict of InterestThe authors declare no conflict of interest.
Abbreviations
AP | apurinic/apyrmidinic site |
ARF | alternative reading frame |
BER | base excision repair |
BLM | Bloom’s Syndrome Protein |
DNA-PK | DNA-dependent protein kinase |
DSBs | double-strand breaks |
GGR | global genomic repair |
HR | homologous recombination |
MMEJ | microhomology mediated end-joining |
MMR | mismatch repair |
MRN | Mre11-Rad50-Nbs1 |
Mdm2 | murine double-minute 2 |
NHEJ | non-homologous end joining |
NER | nucleotide excision repair |
PARP | poly-ADP ribose polymerase |
PCNA | proliferating cell nuclear antigen |
RPA | replication protein A |
ROS | reactive oxygen species |
SSBs | single-strand breaks |
TCR | transcription coupled repair |
XPA | xeroderma pigmentosum group A protein |
XPC | xeroderma pigmentosum group C protein |
References
- Brooks, C.L.; Gu, W. p53 regulation by ubiquitin. FEBS Lett 2011, 585, 2803–2809. [Google Scholar]
- Kulikov, R.; Letienne, J.; Kaur, M.; Grossman, S.R.; Arts, J.; Blattner, C. Mdm2 facilitates association of p53 with the proteasome. Proc. Natl. Acad. Sci. USA 2010, 107, 10038–10043. [Google Scholar]
- David, S.S.; O’Shea, V.L.; Kundu, S. Base-excision repair of oxidative DNA damage. Nature 2007, 447, 941–950. [Google Scholar]
- Hazra, T.K.; Izumi, T.; Boldogh, I.; Imhoff, B.; Kow, Y.W.; Jaruga, P.; Dizdaroglu, M.; Mitra, S. Identification and characterization of a human DNA glycosylase for repair of modified bases in oxidatively damaged DNA. Proc. Natl. Acad. Sci. USA 2002, 99, 3523–3528. [Google Scholar]
- Hazra, T.K.; Kow, Y.W.; Hatahet, Z.; Imhoff, B.; Boldogh, I.; Mokkapati, S.K.; Mitra, S.; Izumi, T. Identification and characterization of a novel human DNA glycosylase for repair of cytosine-derived lesions. J. Biol. Chem 2002, 277, 30417–30420. [Google Scholar]
- Radicella, J.P.; Dherin, C.; Desmaze, C.; Fox, M.S.; Boiteux, S. Cloning and characterization of hOGG1, a human homolog of the OGG1 gene of Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 1997, 94, 8010–8015. [Google Scholar]
- Arai, K.; Morishita, K.; Shinmura, K.; Kohno, T.; Kim, S.R.; Nohmi, T.; Taniwaki, M.; Ohwada, S.; Yokota, J. Cloning of a human homolog of the yeast OGG1 gene that is involved in the repair of oxidative DNA damage. Oncogene 1997, 14, 2857–2861. [Google Scholar]
- Maynard, S.; Schurman, S.H.; Harboe, C.; de Souza-Pinto, N.C.; Bohr, V.A. Base excision repair of oxidative DNA damage and association with cancer and aging. Carcinogenesis 2009, 30, 2–10. [Google Scholar]
- Liu, Y.; Wilson, S.H. DNA base excision repair: A mechanism of trinucleotide repeat expansion. Trends Biochem. Sci 2012, 37, 162–172. [Google Scholar]
- Prasad, R.; Lavrik, O.I.; Kim, S.J.; Kedar, P.; Yang, X.P.; Vande Berg, B.J.; Wilson, S.H. DNA polymerase beta-mediated long patch base excision repair. Poly(ADP-ribose)polymerase-1 stimulates strand displacement DNA synthesis. J. Biol. Chem 2001, 276, 32411–32414. [Google Scholar]
- Prasad, R.; Liu, Y.; Deterding, L.J.; Poltoratsky, V.P.; Kedar, P.S.; Horton, J.K.; Kanno, S.; Asagoshi, K.; Hou, E.W.; Khodyreva, S.N.; et al. HMGB1 is a cofactor in mammalian base excision repair. Mol. Cell 2007, 27, 829–841. [Google Scholar]
- Ellenberger, T.; Tomkinson, A.E. Eukaryotic DNA ligases: Structural and functional insights. Annu. Rev. Biochem 2008, 77, 313–338. [Google Scholar]
- Xanthoudakis, S.; Smeyne, R.J.; Wallace, J.D.; Curran, T. The redox/DNA repair protein, Ref-1, is essential for early embryonic development in mice. Proc. Natl. Acad. Sci. USA 1996, 93, 8919–8923. [Google Scholar]
- Fung, H.; Demple, B. A vital role for Ape1/Ref1 protein in repairing spontaneous DNA damage in human cells. Mol. Cell 2005, 17, 463–470. [Google Scholar]
- Izumi, T.; Brown, D.B.; Naidu, C.V.; Bhakat, K.K.; Macinnes, M.A.; Saito, H.; Chen, D.J.; Mitra, S. Two essential but distinct functions of the mammalian abasic endonuclease. Proc. Natl. Acad. Sci. USA 2005, 102, 5739–5743. [Google Scholar]
- Busso, C.S.; Iwakuma, T.; Izumi, T. Ubiquitination of mammalian AP endonuclease (APE1) regulated by the p53-MDM2 signaling pathway. Oncogene 2009, 28, 1616–1625. [Google Scholar]
- Busso, C.S.; Wedgeworth, C.M.; Izumi, T. Ubiquitination of human AP-endonuclease 1 (APE1) enhanced by T233E substitution and by CDK5. Nucl. Acids Res 2011, 39, 8017–8028. [Google Scholar]
- Cross, B.; Chen, L.; Cheng, Q.; Li, B.; Yuan, Z.M.; Chen, J. Inhibition of p53 DNA binding function by the MDM2 protein acidic domain. J. Biol. Chem 2011, 286, 16018–16029. [Google Scholar]
- Xu, H.; Zhang, Z.; Li, M.; Zhang, R. MDM2 promotes proteasomal degradation of p21Waf1 via a conformation change. J. Biol. Chem 2010, 285, 18407–18414. [Google Scholar]
- Moynahan, M.E.; Jasin, M. Mitotic homologous recombination maintains genomic stability and suppresses tumorigenesis. Nat. Rev. Mol. Cell Biol 2010, 11, 196–207. [Google Scholar]
- Nimonkar, A.V.; Ozsoy, A.Z.; Genschel, J.; Modrich, P.; Kowalczykowski, S.C. Human exonuclease 1 and BLM helicase interact to resect DNA and initiate DNA repair. Proc. Natl. Acad. Sci. USA 2008, 105, 16906–16911. [Google Scholar]
- Tauchi, H.; Kobayashi, J.; Morishima, K.; van Gent, D.C.; Shiraishi, T.; Verkaik, N.S.; vanHeems, D.; Ito, E.; Nakamura, A.; Sonoda, E.; et al. Nbs1 is essential for DNA repair by homologous recombination in higher vertebrate cells. Nature 2002, 420, 93–98. [Google Scholar]
- Hopfner, K.P.; Craig, L.; Moncalian, G.; Zinkel, R.A.; Usui, T.; Owen, B.A.; Karcher, A.; Henderson, B.; Bodmer, J.L.; McMurray, C.T.; et al. The Rad50 zinc-hook is a structure joining Mre11 complexes in DNA recombination and repair. Nature 2002, 418, 562–566. [Google Scholar]
- Sung, P.; Robberson, D.L. DNA strand exchange mediated by a RAD51-ssDNA nucleoprotein filament with polarity opposite to that of RecA. Cell 1995, 82, 453–461. [Google Scholar]
- Baumann, P.; West, S.C. The human Rad51 protein: Polarity of strand transfer and stimulation by hRP-A. EMBO J 1997, 16, 5198–5206. [Google Scholar]
- New, J.H.; Sugiyama, T.; Zaitseva, E.; Kowalczykowski, S.C. Rad52 protein stimulates DNA strand exchange by Rad51 and replication protein A. Nature 1998, 391, 407–410. [Google Scholar]
- Sugiyama, T.; New, J.H.; Kowalczykowski, S.C. DNA annealing by RAD52 protein is stimulated by specific interaction with the complex of replication protein A and single-stranded DNA. Proc. Natl. Acad. Sci. USA 1998, 95, 6049–6054. [Google Scholar]
- Moynahan, M.E.; Pierce, A.J.; Jasin, M. BRCA2 is required for homology-directed repair of chromosomal breaks. Mol. Cell 2001, 7, 263–272. [Google Scholar]
- Xia, F.; Taghian, D.G.; DeFrank, J.S.; Zeng, Z.C.; Willers, H.; Iliakis, G.; Powell, S.N. Deficiency of human BRCA2 leads to impaired homologous recombination but maintains normal nonhomologous end joining. Proc. Natl. Acad. Sci. USA 2001, 98, 8644–8649. [Google Scholar]
- Li, X.; Heyer, W.D. Homologous recombination in DNA repair and DNA damage tolerance. Cell Res 2008, 18, 99–113. [Google Scholar]
- Alt, J.R.; Bouska, A.; Fernandez, M.R.; Cerny, R.L.; Xiao, H.; Eischen, C.M. Mdm2 binds to Nbs1 at sites of DNA damage and regulates double strand break repair. J. Biol. Chem 2005, 280, 18771–18781. [Google Scholar]
- Bouska, A.; Lushnikova, T.; Plaza, S.; Eischen, C.M. Mdm2 promotes genetic instability and transformation independent of p53. Mol. Cell Biol 2008, 28, 4862–4874. [Google Scholar]
- Bouska, A.; Eischen, C.M. Mdm2 affects genome stability independent of p53. Cancer Res 2009, 69, 1697–1701. [Google Scholar]
- Kunz, C.; Saito, Y.; Schar, P. DNA Repair in mammalian cells: Mismatched repair: Variations on a theme. Cell. Mol. Life Sci 2009, 66, 1021–1038. [Google Scholar]
- Zhang, Y.; Yuan, F.; Presnell, S.R.; Tian, K.; Gao, Y.; Tomkinson, A.E.; Gu, L.; Li, G.M. Reconstitution of 5′-directed human mismatch repair in a purified system. Cell 2005, 122, 693–705. [Google Scholar]
- Constantin, N.; Dzantiev, L.; Kadyrov, F.A.; Modrich, P. Human mismatch repair: Reconstitution of a nick-directed bidirectional reaction. J. Biol. Chem 2005, 280, 39752–39761. [Google Scholar]
- Modrich, P. Mechanisms in eukaryotic mismatch repair. J. Biol. Chem 2006, 281, 30305–30309. [Google Scholar]
- Pena-Diaz, J.; Jiricny, J. Mammalian mismatch repair: Error-free or error-prone? Trends Biochem. Sci 2012, 37, 206–214. [Google Scholar]
- Dzantiev, L.; Constantin, N.; Genschel, J.; Iyer, R.R.; Burgers, P.M.; Modrich, P. A defined human system that supports bidirectional mismatch-provoked excision. Mol. Cell 2004, 15, 31–41. [Google Scholar]
- Banks, D.; Wu, M.; Higa, L.A.; Gavrilova, N.; Quan, J.; Ye, T.; Kobayashi, R.; Sun, H.; Zhang, H. L2DTL/CDT2 and PCNA interact with p53 and regulate p53 polyubiquitination and protein stability through MDM2 and CUL4A/DDB1 complexes. Cell Cycle 2006, 5, 1719–1729. [Google Scholar]
- Nouspikel, T. DNA repair in mammalian cells: Nucleotide excision repair: Variations on versatility. Cell. Mol. Life Sci 2009, 66, 994–1009. [Google Scholar]
- Sugasawa, K.; Ng, J.M.; Masutani, C.; Iwai, S.; van der Spek, P.J.; Eker, A.P.; Hanaoka, F.; Bootsma, D.; Hoeijmakers, J.H. Xeroderma pigmentosum group C protein complex is the initiator of global genome nucleotide excision repair. Mol. Cell 1998, 2, 223–232. [Google Scholar]
- Wang, Q.E.; Zhu, Q.; Wani, G.; El-Mahdy, M.A.; Li, J.; Wani, A.A. DNA repair factor XPC is modified by SUMO-1 and ubiquitin following UV irradiation. Nucl. Acids Res 2005, 33, 4023–4034. [Google Scholar]
- Nag, A.; Bondar, T.; Shiv, S.; Raychaudhuri, P. The xeroderma pigmentosum group E gene product DDB2 is a specific target of cullin 4A in mammalian cells. Mol. Cell Biol 2001, 21, 6738–6747. [Google Scholar]
- Evans, E.; Moggs, J.G.; Hwang, J.R.; Egly, J.M.; Wood, R.D. Mechanism of open complex and dual incision formation by human nucleotide excision repair factors. EMBO J 1997, 16, 6559–6573. [Google Scholar]
- Dominguez-Brauer, C.; Chen, Y.J.; Brauer, P.M.; Pimkina, J.; Raychaudhuri, P. ARF stimulates XPC to trigger nucleotide excision repair by regulating the repressor complex of E2F4. EMBO Rep 2009, 10, 1036–1042. [Google Scholar]
- Kamijo, T.; Weber, J.D.; Zambetti, G.; Zindy, F.; Roussel, M.F.; Sherr, C.J. Functional and physical interactions of the ARF tumor suppressor with p53 and Mdm2. Proc. Natl. Acad. Sci. USA 1998, 95, 8292–8297. [Google Scholar]
- Pomerantz, J.; Schreiber-Agus, N.; Liegeois, N.J.; Silverman, A.; Alland, L.; Chin, L.; Potes, J.; Chen, K.; Orlow, I.; Lee, H.W.; Cordon-Cardo, C.; DePinho, R.A. The Ink4a tumor suppressor gene product, p19Arf, interacts with MDM2 and neutralizes MDM2’s inhibition of p53. Cell 1998, 92, 713–723. [Google Scholar]
- Zhang, Y.; Xiong, Y.; Yarbrough, W.G. ARF promotes MDM2 degradation and stabilizes p53: ARF-INK4a locus deletion impairs both the Rb and p53 tumor suppression pathways. Cell 1998, 92, 725–734. [Google Scholar]
- Stoyanova, T.; Roy, N.; Kopanja, D.; Bagchi, S.; Raychaudhuri, P. DDB2 decides cell fate following DNA damage. Proc. Natl. Acad. Sci. USA 2009, 106, 10690–10695. [Google Scholar]
- Stoyanova, T.; Roy, N.; Kopanja, D.; Raychaudhuri, P.; Bagchi, S. DDB2 (damaged-DNA binding protein 2) in nucleotide excision repair and DNA damage response. Cell Cycle 2009, 8, 4067–4071. [Google Scholar]
- Auclair, Y.; Rouget, R.; Belisle, J.M.; Costantino, S.; Drobetsky, E.A. Requirement for functional DNA polymerase eta in genome-wide repair of UV-induced DNA damage during S phase. DNA Repair 2010, 9, 754–764. [Google Scholar]
- Jung, Y.S.; Qian, Y.; Chen, X. DNA polymerase eta is targeted by Mdm2 for polyubiquitination and proteasomal degradation in response to ultraviolet irradiation. DNA Repair 2012, 11, 177–184. [Google Scholar]
- Lieber, M.R. The mechanism of double-strand DNA break repair by the nonhomologous DNA end-joining pathway. Annu. Rev. Biochem 2010, 79, 181–211. [Google Scholar]
- Weterings, E.; Chen, D.J. The endless tale of non-homologous end-joining. Cell Res 2008, 18, 114–124. [Google Scholar]
- Pawelczak, K.S.; Bennett, S.M.; Turchi, J.J. Coordination of DNA-PK activation and nuclease processing of DNA termini in NHEJ. Antioxid. Redox Signal 2011, 14, 2531–2543. [Google Scholar]
- Andrews, B.J.; Lehman, J.A.; Turchi, J.J. Kinetic analysis of the Ku-DNA binding activity reveals a redox-dependent alteration in protein structure that stimulates dissociation of the Ku-DNA complex. J. Biol. Chem 2006, 281, 13596–13603. [Google Scholar]
- Lehman, J.A.; Hoelz, D.J.; Turchi, J.J. DNA-dependent conformational changes in the Ku heterodimer. Biochemistry 2008, 47, 4359–4368. [Google Scholar]
- Pawelczak, K.S.; Andrews, B.J.; Turchi, J.J. Differential activation of DNA-PK based on DNA strand orientation and sequence bias. Nucl. Acids Res 2005, 33, 152–161. [Google Scholar]
- Pawelczak, K.S.; Turchi, J.J. A mechanism for DNA-PK activation requiring unique contributions from each strand of a DNA terminus and implications for microhomology-mediated nonhomologous DNA end joining. Nucl. Acids Res 2008, 36, 4022–4031. [Google Scholar]
- Ma, Y.; Pannicke, U.; Lu, H.; Niewolik, D.; Schwarz, K.; Lieber, M.R. The DNA-dependent protein kinase catalytic subunit phosphorylation sites in human Artemis. J. Biol. Chem 2005, 280, 33839–33846. [Google Scholar]
- Ma, Y.; Pannicke, U.; Schwarz, K.; Lieber, M.R. Hairpin opening and overhang processing by an Artemis/DNA-dependent protein kinase complex in nonhomologous end joining and V(D)J recombination. Cell 2002, 108, 781–794. [Google Scholar]
- Pannicke, U.; Ma, Y.; Hopfner, K.P.; Niewolik, D.; Lieber, M.R.; Schwarz, K. Functional and biochemical dissection of the structure-specific nuclease ARTEMIS. EMBO J 2004, 23, 1987–1997. [Google Scholar]
- Ramsden, D.A. Polymerases in nonhomologous end joining: Building a bridge over broken chromosomes. Antioxid. Redox Signal 2011, 14, 2509–2519. [Google Scholar]
- Mahajan, K.N.; Nick McElhinny, S.A.; Mitchell, B.S.; Ramsden, D.A. Association of DNA polymerase mu (pol mu) with Ku and ligase IV: Role for pol mu in end-joining double-strand break repair. Mol. Cell Biol 2002, 22, 5194–5202. [Google Scholar]
- Hammel, M.; Yu, Y.; Fang, S.; Lees-Miller, S.P.; Tainer, J.A. XLF regulates filament architecture of the XRCC4.ligase IV complex. Structure 2010, 18, 1431–1442. [Google Scholar]
- Hammel, M.; Rey, M.; Yu, Y.; Mani, R.S.; Classen, S.; Liu, M.; Pique, M.E.; Fang, S.; Mahaney, B.L.; Weinfeld, M.; et al. XRCC4 protein interactions with XRCC4-like factor (XLF) create an extended grooved scaffold for DNA ligation and double strand break repair. J. Biol. Chem 2011, 286, 32638–32650. [Google Scholar]
- Ahnesorg, P.; Smith, P.; Jackson, S.P. XLF interacts with the XRCC4-DNA ligase IV complex to promote DNA nonhomologous end-joining. Cell 2006, 124, 301–313. [Google Scholar]
- Callebaut, I.; Malivert, L.; Fischer, A.; Mornon, J.P.; Revy, P.; de Villartay, J.P. Cernunnos interacts with the XRCC4 x DNA-ligase IV complex and is homologous to the yeast nonhomologous end-joining factor Nej1. J. Biol. Chem 2006, 281, 13857–13860. [Google Scholar]
- Yun, M.H.; Hiom, K. CtIP-BRCA1 modulates the choice of DNA double-strand-break repair pathway throughout the cell cycle. Nature 2009, 459, 460–463. [Google Scholar]
- You, Z.; Shi, L.Z.; Zhu, Q.; Wu, P.; Zhang, Y.W.; Basilio, A.; Tonnu, N.; Verma, I.M.; Berns, M.W.; Hunter, T. CtIP links DNA double-strand break sensing to resection. Mol. Cell 2009, 36, 954–969. [Google Scholar]
- Mayo, L.D.; Turchi, J.J.; Berberich, S.J. Mdm-2 phosphorylation by DNA-dependent protein kinase prevents interaction with p53. Cancer Res 1997, 57, 5013–5016. [Google Scholar]
- Gama, V.; Gomez, J.A.; Mayo, L.D.; Jackson, M.W.; Danielpour, D.; Song, K.; Haas, A.L.; Laughlin, M.J.; Matsuyama, S. Hdm2 is a ubiquitin ligase of Ku70-Akt promotes cell survival by inhibiting Hdm2-dependent Ku70 destabilization. Cell Death Differ 2009, 16, 758–769. [Google Scholar]
- Mayo, L.D.; Donner, D.B. A phosphatidylinositol 3-kinase/Akt pathway promotes translocation of Mdm2 from the cytoplasm to the nucleus. Proc. Natl. Acad. Sci. USA 2001, 98, 11598–11603. [Google Scholar]
- Gomez, J.A.; Gama, V.; Yoshida, T.; Sun, W.; Hayes, P.; Leskov, K.; Boothman, D.; Matsuyama, S. Bax-inhibiting peptides derived from Ku70 and cell-penetrating pentapeptides. Biochem. Soc. Trans 2007, 35, 797–801. [Google Scholar]
DNA repair pathway | Primary repair function | Major proteins involved in repair |
---|---|---|
Base Excision Repair (BER) | Alkylated, oxidized, deaminated bases, abasic sites | Ape1, DNA ligase 1/3, FEN1, HMGB1, NEIL1, NEIL2, OGG1, PARP-1, PCNA, Polymerase β, δ, ɛ, XRCC1 |
Homologous Recombination (HR) | Double strand breaks with strong sequence homology | BLM, BRCA1, Exo1, MRN, RAD51, RAD52, RPA, |
Mismatch Repair (MMR) | Incorrectly paired bases on opposing DNA strands | DNA ligase 1, Exo1, MutSα (MSH2/MSH6), MutSβ (MSH2/MSH3), MutLα (MLH1/PMS2), PCNA, polymerase delta, RFC, RPA, |
Non-Homologous End Joining (NHEJ) | Double strand breaks on blunt DNA ends or overhangs with little or no sequence homology | Artemis, DNA Ligase IV, DNA-PK Ku70/80, XLF, XRCC4, DNA Polymerases β, μ, λ |
Nucleotide Excision Repair (NER) | Repairs bulky DNA adducts such as 6-4 photoproducts or cisplatin crosslinks | DDB1 (XPE), DDB2 (XBD), RPA, TFIIH, XPA, XPC, XPF-ERCC1, XPG, Y-type DNA polymerases |
DNA repair protein interaction/regulation with Mdm2 | DNA repair pathway |
---|---|
Ape1 | BER |
NBS1 | HR |
Cul4/DDB1-PCNA | MMR |
ARF/XPC | NER |
Cul4/DDB1-PCNA | NER |
DDB2 (XPD) | NER |
Polymerase eta (pol H) | NER |
DNA-PK | NHEJ |
Ku70 | NHEJ |
© 2012 by the authors; licensee Molecular Diversity Preservation International, Basel, Switzerland. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Lehman, J.A.; Mayo, L.D. Integration of DNA Damage and Repair with Murine Double-Minute 2 (Mdm2) in Tumorigenesis. Int. J. Mol. Sci. 2012, 13, 16373-16386. https://doi.org/10.3390/ijms131216373
Lehman JA, Mayo LD. Integration of DNA Damage and Repair with Murine Double-Minute 2 (Mdm2) in Tumorigenesis. International Journal of Molecular Sciences. 2012; 13(12):16373-16386. https://doi.org/10.3390/ijms131216373
Chicago/Turabian StyleLehman, Jason A., and Lindsey D. Mayo. 2012. "Integration of DNA Damage and Repair with Murine Double-Minute 2 (Mdm2) in Tumorigenesis" International Journal of Molecular Sciences 13, no. 12: 16373-16386. https://doi.org/10.3390/ijms131216373
APA StyleLehman, J. A., & Mayo, L. D. (2012). Integration of DNA Damage and Repair with Murine Double-Minute 2 (Mdm2) in Tumorigenesis. International Journal of Molecular Sciences, 13(12), 16373-16386. https://doi.org/10.3390/ijms131216373