Intelligent Design of Nano-Scale Molecular Imaging Agents
Abstract
:1. General View of Integrated Nano-Imaging Agents
2. Organic and Inorganic Nano-Imaging Agents
2.1. Synthetic Organic Agents
2.2. Inorganic Nano-Imaging Agents
3. Genetically Encoded Nano-Imaging Agents
3.1. Overview on the Construction of Fluorescent Probes
3.2. Labor-Effective Fabrication of Bioluminescent Probes
3.3 Tutorial Instruction for the Fabrication of Single-Chain Probes
- The amino acid sequence of FLuc can be obtained from the public database, the National Center for Biotechnology Information (NCBI; accession #: M15077).
- The hydrophilicity search of the amino acid sequence of FLuc can be conducted in a specific web service for biological information, e.g., Swiss Institute of Bioinformatics (SIB)’s ExPASy Proteomics service [51]. The scale of Kyte and Doolittle is recommended.
- The hydrophilicity search should reveal a remarkably hydrophilic region at the 4/5th region from the beginning, in the case of FLuc.
- A series of FLuc fragments is generated through a consecutive dissection of the sequence in the chosen hydrophilic region. This fragmentation exerts a temporal inactivation of FLuc. Upon decision of the fragmentation sites, flexible amino acids such as glycine (G) and alanine (A) are preferred, because they are frequently observed in hinge regions and thus minimize decomposition risk after the expression of the fragments.
- A protein of interest, e.g., the ligand binding domain of nuclear receptors (NR LBD) and protein kinases, are sandwiched between the fragmented FLuc via a flexible glycine/serine (GS) linker. This step generates a series of single-chain probes. Nuclear receptors (NR) are preferred because they exert great structural conversion in the presence of an agonist. Optimization of the linker length is tedious and time-consuming. Thus, we recommend researchers to first optimize the length of NR LBD or FLuc. Furthermore, we recommend carrying out examination of the linker length as the final step.
- The relative optical intensity and ligand sensitivity of the probes is examined with an appropriate assay kit, such as Bright-Glo (Promega). Bioluminescence intensity and stability are heavily influenced by buffer conditions such as pH, additives, and temperature. An optimal buffer set according to luciferases may minimize these fidelity risks in signals.
- According to the initial evaluation results, further optimization on the linker length and dissection sites of FLuc is conducted. Extension of the length of NR LBD may also be effective. Routine design fixation and evaluation shape a better efficient imaging agent.
4. Examples of Smartly Designed Molecular Probes
4.1. FRET
4.2. BRET
4.3. CRET
4.4. PRET
4.5. Protein-Fragment Complementation Probes
4.6. Intein-Mediated Protein-Splicing Probe
4.7. Luciferase Cyclisation by Protein Splicing
4.8. The Other Probe Designs
5. Challenges and Perspectives
Acknowledgments
- Conflict of InterestThe authors declare no conflict of interest.
References
- Kelkar, S.S.; Reineke, T.M. Theranostics: Combining imaging and therapy. Bioconjug. Chem 2011, 22, 1879–1903. [Google Scholar]
- Suh, W.H.; Suh, Y.H.; Stucky, G.D. Multifunctional nanosystems at the interface of physical and life sciences. Nanotoday 2009, 4, 27–36. [Google Scholar]
- Amir, R.; Shabat, D. Medicinal Potential of Catalytic Antibodies. In Catalytic Antibodies; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2005; pp. 284–303. [Google Scholar]
- Venisnik, K.M.; Olafsen, T.; Loening, A.M.; Iyer, M.; Gambhir, S.S.; Wu, A.M. Bifunctional antibody-Renilla luciferase fusion protein for in vivo optical detection of tumors. Protein Eng. Des. Sel 2006, 19, 453–460. [Google Scholar]
- Gopin, A.; Pessah, N.; Shamis, M.; Rader, C.; Shabat, D. A chemical adaptor system designed to link a tumor-targeting device with a prodrug and an enzymatic trigger. Angew. Chem. Int. Ed. Engl 2003, 42, 327–332. [Google Scholar]
- Bruchez, M., Jr; Moronne, M.; Gin, P.; Weiss, S.; Alivisatos, A.P. Semiconductor nanocrystals as fluorescent biological labels. Science 1998, 281, 2013–2016. [Google Scholar]
- Bailey, R.E.; Smith, A.M.; Nie, S. Quantum dots in biology and medicine. Physica E 2004, 25, 1–12. [Google Scholar]
- Shi, L.; De Paoli, V.; Rosenzweig, N.; Rosenzweig, Z. Synthesis and application of quantum dots FRET-based protease sensors. J. Am. Chem. Soc 2006, 128, 10378–10379. [Google Scholar]
- Kim, S.B.; Awais, M.; Sato, M.; Umezawa, Y.; Tao, H. Integrated molecule-format bioluminescent probe for visualizing androgenicity of ligands based on the intramolecular association of androgen receptor with its recognition peptide. Anal. Chem 2007, 79, 1874–1880. [Google Scholar]
- Kim, S.B. Labor-effective manipulation of marine and beetle luciferases for bioassays. Protein Eng. Des. Sel 2012, 25, 261–269. [Google Scholar]
- Kim, S.B.; Umezawa, Y.; Kanno, K.A.; Tao, H. An integrated-molecule-format multicolor probe for monitoring multiple activities of a bioactive small molecule. ACS Chem. Biol 2008, 3, 359–372. [Google Scholar]
- Binkowski, B.; Fan, F.; Wood, K. Engineered luciferases for molecular sensing in living cells. Curr. Opin. Biotechnol 2009, 20, 14–18. [Google Scholar]
- Razgulin, A.; Ma, N.; Rao, J. Strategies for in vivo imaging of enzyme activity: An overview and recent advances. Chem. Soc. Rev 2011, 40, 4186–4216. [Google Scholar]
- Sensi, S.L.; Ton-That, D.; Weiss, J.H.; Rothe, A.; Gee, K.R. A new mitochondrial fluorescent zinc sensor. Cell Calcium 2003, 34, 281–284. [Google Scholar]
- Valentine, R.A.; Jackson, K.A.; Christie, G.R.; Mathers, J.C.; Taylor, P.M.; Ford, D. ZnT5 variant B is a bidirectional zinc transporter and mediates zinc uptake in human intestinal Caco-2 cells. J. Biol. Chem 2007, 282, 14389–14393. [Google Scholar]
- Gee, K.R.; Zhou, Z.L.; Ton-That, D.; Sensi, S.L.; Weiss, J.H. Measuring zinc in living cells. A new generation of sensitive and selective fluorescent probes. Cell Calcium 2002, 31, 245–251. [Google Scholar]
- Wu, Y.; Peng, X.; Guo, B.; Fan, J.; Zhang, Z.; Wang, J.; Cui, A.; Gao, Y. Boron dipyrromethene fluorophore based fluorescence sensor for the selective imaging of Zn(II) in living cells. Org. Biomol. Chem 2005, 3, 1387–1392. [Google Scholar]
- Wang, J.; Xiao, Y.; Zhang, Z.; Qian, X.; Yang, Y.; Xu, Q. A pH-resistant Zn(II) sensor derived from 4-aminonaphthalimide: Design, synthesis and intracellular applications. J. Mater. Chem 2005, 15, 2836–2839. [Google Scholar]
- Kiyose, K.; Kojima, H.; Urano, Y.; Nagano, T. Development of a ratiometric fluorescent zinc ion probe in near-infrared region, based on tricarbocyanine chromophore. J. Am. Chem. Soc 2006, 128, 6548–6549. [Google Scholar]
- Lim, N.C.; Schuster, J.V.; Porto, M.C.; Tanudra, M.A.; Yao, L.; Freake, H.C.; Bruckner, C. Coumarin-based chemosensors for zinc(II): Toward the determination of the design algorithm for CHEF-type and ratiometric probes. Inorg. Chem 2005, 44, 2018–2030. [Google Scholar]
- Griffin, B.A.; Adams, S.R.; Tsien, R.Y. Specific covalent labeling of recombinant protein molecules inside live cells. Science 1998, 281, 269–272. [Google Scholar]
- Lelek, M.; Di Nunzio, F.; Henriques, R.; Charneau, P.; Arhel, N.; Zimmer, C. Superresolution imaging of HIV in infected cells with FlAsH-PALM. Proc. Natl. Acad. Sci. USA 2012, 109, 8564–8569. [Google Scholar]
- Shi, L.; Rosenzweig, N.; Rosenzweig, Z. Luminescent Quantum Dot Fluorescence Resonance Energy Transfer-Based Probes in Cellular and Biological Assays. In Cellular and Biomolecular Recognition; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2009; pp. 265–279. [Google Scholar]
- He, X.; Gao, J.; Gambhir, S.S.; Cheng, Z. Near-infrared fluorescent nanoprobes for cancer molecular imaging: status and challenges. Trends Mol. Med 2010, 16, 574–583. [Google Scholar]
- Smith, A.M.; Mancini, M.C.; Nie, S. Bioimaging: Second window for in vivo imaging. Nat. Nanotechnol 2009, 4, 710–711. [Google Scholar]
- De, A.; Ray, P.; Loening, A.M.; Gambhir, S.S. BRET3: A red-shifted bioluminescence resonance energy transfer (BRET)-based integrated platform for imaging protein-protein interactions from single live cells and living animals. FASEB J 2009, 23, 2702–2709. [Google Scholar]
- Xia, Z.; Rao, J. Biosensing and imaging based on bioluminescence resonance energy transfer. Curr. Opin. Biotechnol 2009, 20, 37–44. [Google Scholar]
- Resch-Genger, U.; Grabolle, M.; Cavaliere-Jaricot, S.; Nitschke, R.; Nann, T. Quantum dots versus organic dyes as fluorescent labels. Nat. Methods 2008, 5, 763–775. [Google Scholar]
- Shimomura, O.; Johnson, F.H.; Saiga, Y. Extraction, purification and properties of aequorin, a bioluminescent protein from the luminous hydromedusan, Aequorea. J. Cell. Comp. Physiol 1962, 59, 223–239. [Google Scholar]
- Carson, M. Ribbon models of macromolecules. J. Mol. Graph 1987, 5, 103–106. [Google Scholar]
- Dickson, R.M.; Cubitt, A.B.; Tsien, R.Y.; Moerner, W.E. On/off blinking and switching behaviour of single molecules of green fluorescent protein. Nature 1997, 388, 355–358. [Google Scholar]
- Ando, R.; Mizuno, H.; Miyawaki, A. Regulated fast nucleocytoplasmic shuttling observed by reversible protein highlighting. Science 2004, 306, 1370–1373. [Google Scholar]
- Baird, G.S.; Zacharias, D.A.; Tsien, R.Y. Circular permutation and receptor insertion within green fluorescent proteins. Proc. Natl. Acad. Sci. USA 1999, 96, 11241–11246. [Google Scholar]
- Shui, B.; Wang, Q.; Lee, F.; Byrnes, L.J.; Chudakov, D.M.; Lukyanov, S.A.; Sondermann, H.; Kotlikoff, M.I. Circular permutation of red fluorescent proteins. PLoS One 2011, 6, e20505. [Google Scholar]
- Fan, F.; Wood, K.V. Bioluminescent assays for high-throughput screening. Assay Drug Dev. Technol 2007, 5, 127–136. [Google Scholar]
- Loening, A.M.; Fenn, T.D.; Wu, A.M.; Gambhir, S.S. Consensus guided mutagenesis of Renilla luciferase yields enhanced stability and light output. Protein Eng. Des. Sel 2006, 19, 391–400. [Google Scholar]
- Steipe, B.; Schiller, B.; Pluckthun, A.; Steinbacher, S. Sequence statistics reliably predict stabilizing mutations in a protein domain. J. Mol. Biol 1994, 240, 188–192. [Google Scholar]
- Lehmann, M.; Loch, C.; Middendorf, A.; Studer, D.; Lassen, S.F.; Pasamontes, L.; van Loon, A.P.G.M.; Wyss, M. The consensus concept for thermostability engineering of proteins: Further proof of concept. Protein Eng 2002, 15, 403–411. [Google Scholar]
- Kim, S.B. Superluminescent variants of marine luciferases. Anal. Chem 2011, 83, 8732–8740. [Google Scholar]
- Kaihara, A.; Umezawa, Y. Genetically encoded bioluminescent indicator for ERK2 dimer in living cells. Chem. Asian J 2008, 3, 38–45. [Google Scholar]
- Paulmurugan, R.; Gambhir, S.S. Monitoring protein-protein interactions using split synthetic renilla luciferase protein-fragment-assisted complementation. Anal. Chem 2003, 75, 1584–1589. [Google Scholar]
- Remy, I.; Michnick, S.W. A highly sensitive protein-protein interaction assay based on Gaussia luciferase. Nat. Methods 2006, 3, 977–979. [Google Scholar]
- Kim, S.B.; Kanno, A.; Ozawa, T.; Tao, H.; Umezawa, Y. Nongenomic activity of ligands in the association of androgen receptor with Src. ACS Chem. Biol 2007, 2, 484–492. [Google Scholar]
- Luker, K.E.; Smith, M.C.; Luker, G.D.; Gammon, S.T.; Piwnica-Worms, H.; Piwnica-Worms, D. Kinetics of regulated protein-protein interactions revealed with firefly luciferase complementation imaging in cells and living animals. Proc. Natl. Acad. Sci. USA 2004, 101, 12288–12293. [Google Scholar]
- Paulmurugan, R.; Gambhir, S.S. Firefly luciferase enzyme fragment complementation for imaging in cells and living animals. Anal. Chem 2005, 77, 1295–1302. [Google Scholar]
- Ozawa, T.; Kaihara, A.; Sato, M.; Tachihara, K.; Umezawa, Y. Split luciferase as an optical probe for detecting protein-protein interactions in mammalian cells based on protein splicing. Anal. Chem 2001, 73, 2516–2521. [Google Scholar]
- Kim, S.B.; Otani, Y.; Umezawa, Y.; Tao, H. Bioluminescent indicator for determining protein-protein interactions using intramolecular complementation of split click beetle luciferase. Anal. Chem 2007, 79, 4820–4826. [Google Scholar]
- Villalobos, V.; Naik, S.; Bruinsma, M.; Dothager, R.S.; Pan, M.H.; Samrakandi, M.; Moss, B.; Elhammali, A.; Piwnica-Worms, D. Dual-color click beetle luciferase heteroprotein fragment complementation assays. Chem. Biol 2010, 17, 1018–1029. [Google Scholar]
- Hida, N.; Awais, M.; Takeuchi, M.; Ueno, N.; Tashiro, M.; Takagi, C.; Singh, T.; Hayashi, M.; Ohmiya, Y.; Ozawa, T. High-sensitivity real-time imaging of dual protein-protein interactions in living subjects using multicolor luciferases. PLoS One 2009, 4, e5868. [Google Scholar]
- Kim, S.B.; Sato, M.; Tao, H. Split gaussia luciferase-based bioluminescence template for tracing protein dynamics in living cells. Anal. Chem 2009, 81, 67–74. [Google Scholar]
- Website of Swiss Institute of Bioinformatics (SIB). Available online: http://www.expasy.org/ accessed on 30 August 2012.
- Prescher, J.A.; Contag, C.H. Guided by the light: Visualizing biomolecular processes in living animals with bioluminescence. Curr. Opin. Chem. Biol 2010, 14, 80–89. [Google Scholar]
- Siegel, R.M.; Chan, F.K.-M.; Zacharias, D.A.; Swofford, R.; Holmes, K.L.; Tsien, R.Y.; Lenardo, M.J. Measurement of molecular interactions in living cells by fluorescence resonance energy transfer between variants of the green fluorescent protein. Sci. STKE 2000, 2000, pl1–pl6. [Google Scholar]
- Sato, M.; Ueda, Y.; Takagi, T.; Umezawa, Y. Production of PtdInsP3 at endomembranes is triggered by receptor endocytosis. Nat. Cell Biol 2003, 5, 1016–1022. [Google Scholar]
- Sato, M.; Ueda, Y.; Umezawa, Y. Imaging diacylglycerol dynamics at organelle membranes. Nat. Methods 2006, 3, 797–799. [Google Scholar]
- Tyszkiewicz, A.B.; Muir, T.W. Activation of protein splicing with light in yeast. Nat. Methods 2008, 5, 303–305. [Google Scholar]
- Kim, S.B.; Tao, H.; Umezawa, Y. Cellular and Biomolecular Recognition; Jelinek, R., Ed.; Wiley-VCH: Darmstadt, Germany, 2009; p. 299. [Google Scholar]
- Hoshino, H.; Nakajima, Y.; Ohmiya, Y. Luciferase-YFP fusion tag with enhanced emission for single-cell luminescence imaging. Nat. Methods 2007, 4, 637–639. [Google Scholar]
- Wu, C.; Kawasaki, K.; Ohgiya, S.; Ohmiya, Y. Chemical studies on the BRET system between the bioluminescence of Cypridina and quantum dots. Photochem. Photobiol. Sci 2011, 10, 1531–1534. [Google Scholar]
- Roda, A.; Guardigli, M. Analytical chemiluminescence and bioluminescence: Latest achievements and new horizons. Anal. Bioanal. Chem 2012, 402, 69–76. [Google Scholar]
- Huang, X.; Ren, J. Gold nanoparticles based chemiluminescent resonance energy transfer for immunoassay of alpha fetoprotein cancer marker. Anal. Chim. Acta 2010, 686, 115–120. [Google Scholar]
- Sannomiya, T.; Voros, J. Single plasmonic nanoparticles for biosensing. Trends Biotechnol 2011, 29, 343–351. [Google Scholar]
- Liu, G.L.; Long, Y.T.; Choi, Y.; Kang, T.; Lee, L.P. Quantized plasmon quenching dips nanospectroscopy via plasmon resonance energy transfer. Nat. Methods 2007, 4, 1015–1017. [Google Scholar]
- Kim, S.B.; Ozawa, T. Creating bioluminescent indicators to visualise biological events in living cells and animals. Supramol. Chem 2010, 22, 440–449. [Google Scholar]
- Kim, S.B.; Takenaka, Y.; Torimura, M. A bioluminescent probe for salivary cortisol. Bioconjug. Chem 2011, 22, 1835–1841. [Google Scholar]
- Kim, S.B.; Sato, M.; Tao, H. Genetically encoded bioluminescent indicators for stress hormones. Anal. Chem 2009, 81, 3760–3768. [Google Scholar]
- Yamada, T.; Yoshimura, H.; Inaguma, A.; Ozawa, T. Visualization of non-engineered single mRNAs in living cells using genetically encoded fluorescent probes. Anal. Chem 2011, 83, 5708–5714. [Google Scholar]
- Ozawa, T.; Natori, Y.; Sato, M.; Umezawa, Y. Imaging dynamics of endogenous mitochondrial RNA in single living cells. Nat. Methods 2007, 4, 413–419. [Google Scholar]
- Misawa, N.; Kafi, A.K.; Hattori, M.; Miura, K.; Masuda, K.; Ozawa, T. Rapid and high-sensitivity cell-based assays of protein-protein interactions using split click beetle luciferase complementation: An approach to the study of G-protein-coupled receptors. Anal. Chem 2010, 82, 2552–2560. [Google Scholar]
- Takakura, H.; Hattori, M.; Takeuchi, M.; Ozawa, T. Visualization and quantitative analysis of G protein-coupled receptor-beta-arrestin interaction in single cells and specific organs of living mice using split luciferase complementation. ACS Chem. Biol 2012, 7, 901–910. [Google Scholar]
- Gimble, F.S. Putting protein splicing to work. Chem. Biol 1998, 5, R251–R256. [Google Scholar]
- Ozawa, T.; Nogami, S.; Sato, M.; Ohya, Y.; Umezawa, Y. A fluorescent indicator for detecting protein-protein interactions in vivo based on protein splicing. Anal. Chem 2000, 72, 5151–5157. [Google Scholar]
- Kanno, A.; Yamanaka, Y.; Hirano, H.; Umezawa, Y.; Ozawa, T. Cyclic luciferase for real-time sensing of caspase-3 activities in living mammals. Angew. Chem. Int. Ed 2007, 46, 7595–7599. [Google Scholar]
- Kanno, A.; Umezawa, Y.; Ozawa, T. Detection of apoptosis using cyclic luciferase in living mammals. Methods Mol. Biol 2009, 574, 105–114. [Google Scholar]
- Kim, S.B.; Sato, M.; Tao, H. Molecular tension-indexed bioluminescent probe for determining protein-protein interactions. Bioconjug. Chem 2009, 20, 2324–2330. [Google Scholar]
© 2012 by the authors; licensee Molecular Diversity Preservation International, Basel, Switzerland. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Kim, S.B.; Hattori, M.; Ozawa, T. Intelligent Design of Nano-Scale Molecular Imaging Agents. Int. J. Mol. Sci. 2012, 13, 16986-17005. https://doi.org/10.3390/ijms131216986
Kim SB, Hattori M, Ozawa T. Intelligent Design of Nano-Scale Molecular Imaging Agents. International Journal of Molecular Sciences. 2012; 13(12):16986-17005. https://doi.org/10.3390/ijms131216986
Chicago/Turabian StyleKim, Sung Bae, Mitsuru Hattori, and Takeaki Ozawa. 2012. "Intelligent Design of Nano-Scale Molecular Imaging Agents" International Journal of Molecular Sciences 13, no. 12: 16986-17005. https://doi.org/10.3390/ijms131216986
APA StyleKim, S. B., Hattori, M., & Ozawa, T. (2012). Intelligent Design of Nano-Scale Molecular Imaging Agents. International Journal of Molecular Sciences, 13(12), 16986-17005. https://doi.org/10.3390/ijms131216986