Rapid Development of Microsatellite Markers with 454 Pyrosequencing in a Vulnerable Fish, the Mottled Skate, Raja pulchra
Abstract
:1. Introduction
2. Results
2.1. Pyrosequencing, Repeat Identification and Classification
2.2. Selection and Characterization of the SSR
2.3. Genetic Diversity of Raja pulchra Populations
2.4. Cross-Species Amplification
3. Discussion
4. Experimental Section
4.1. Sample
4.2. DNA Sequencing
4.3. De Novo Assembly and SSR Findings
4.4. PCR and Genotyping
4.5. Statistical Analysis
5. Conclusions
Acknowledgment
References
- Jeong, C.H. A review of taxonomic studies and common names of rajid fishes (Elasmobranchii, Rajidae) from Korea. Koren J. Ichthyol 1999, 11, 198–210. [Google Scholar]
- Choi, Y.; Kim, J.H.; Park, J.Y. Marine Fishes of Korea; Kyo_Hak Publishing: Seoul, Korea, 2002. [Google Scholar]
- Ishihara, H. Studies on the Systematics and Resources of the Skates (Rajidae) in the North Pacific Ocean. Ph.D. Dissertation, Tokyo University, Tokyo, Japan, 1990. [Google Scholar]
- Yeon, I.J.; Hong, S.H.; Cha, H.K.; Kim, S.T. Feeding habitats of Raja pulchra in the Yellow Sea. Bull. Natl. Fish. Res. Dev. Inst. Korea 1999, 57, 1–11, (In Korean with English abstract). [Google Scholar]
- Antonenko, D.V.S.; Solomatov, F.; Balanov, A.A.; Kim, S.T.; Kalchugin, P.V. Occurrence of Skate Raja pulchra (Rajidae, Rajiformes) in Russian waters of the sea of Japan. J. Ichthyol 2011, 51, 426–431. [Google Scholar]
- Ishihara, H. The Skates and Rays of the Western North Pacific: An Overview of Their Fisheries, Utilisation and Classification. In Elasmobranchs as Living Resources: Advances in Biology, Ecology, Systematic and the Status of Fisheries; Pratt, H.L., Gruber, S.H., Taniuchi, T., Eds.; NOAA Technical Report NMFS 90; U.S. Department of Commerce: Springfield, VA, USA, 1990. [Google Scholar]
- Fisheries information service. Ministry for Food, Agriculture; Forestry and Fisheries: Gwacheon, Korea, 2009. Available online: http://www/fips.go.kr accessed on 6 March 2012.
- Ishihara, H.; Wang, Y.; Tanaka, S.; Nakaya, K.; Jeong, C.-H. Raja pulchra. IUCN Red List of Threatened Species. Version 2011.2. Available online: http://www.iucnredlist.org accessed on 11 February 2012.
- Chistiakov, D.A.; Hellemans, B.; Volckaert, F.A.M. Microsatellites and their genomic distribution, evolution, function and applications: A review with special reference to fish genetics. Aquaculture 2006, 255, 1–29. [Google Scholar]
- Jarne, P.; Lagoda, P.J.L. Microsatellites from molecules to populations and back. Trends Ecol. Evol 1996, 11, 424–429. [Google Scholar]
- Hamilton, M.; Pincus, E.L.; di Fiore, A.; Fleischer, R.C. Universal linker and ligation procedures for construction of genomic DNA libraries enriched for microsatellites. Biotechniques 1999, 27, 500–507. [Google Scholar]
- Zane, L.; Bargelloni, L.; Patarnello, T. Strategies for microsatellite isolation: A review. Mol. Ecol 2002, 11, 1–16. [Google Scholar]
- Kircher, M.; Kelso, J. High-throughput DNA sequencing-concepts and limitations. BioEssays 2010, 32, 524–536. [Google Scholar]
- Scaglione, D.; Acquadro, A.; Portis, E.; Taylor, C.A.; Lanteri, S.; Knapp, S.J. Ontology and diversity of transcript-associated microsatellites mined from a globe artichoke EST database. BMC Genomics 2009, 10, 1–17. [Google Scholar]
- Abdelkrim, J.; Robertson, B.C.; Stanton, J.-A.L.; Gemmell, N.J. Fast, cost effective development of species-specific microsatellite markers by genomic sequencing. Biol. Tech 2009, 46, 185–191. [Google Scholar]
- Yu, J.N.; Won, C.; Jun, J.; Lim, Y.W.; Kwak, M. Fast and cost-effective mining of microsatellite markers using NGS technology: An example of a Korean Water Deer Hydropotes Inermis Argyropus. PLoS One 2011, 6. [Google Scholar] [CrossRef]
- Setsuko, S.; Uchiyama, K.; Sugai, K.; Yoshimaru, H. Rapid development of microsatellite markers for Pandanus boninensis (Pandanaceae) by pyrosequencing technology. Am. J. Bot 2012, 99, e33–e37. [Google Scholar]
- McEwen, J.R.; Vamosi, J.C.; Rogers, S.M. Rapid isolation and cross-amplification of microsatellite markers in Plectritis congesta (Valerianaceae) with 454 sequencing. Am. J. Bot 2011, 98, e369–e371. [Google Scholar]
- Perry, J.C.; Rowe, L. Rapid microsatellite development for water striders by next-generation sequencing. J. Hered 2010, 102, 125–129. [Google Scholar]
- Castoe, T.A.; Poole, A.W.; Gu, W.; de Konig, A.P.J.; Daza, J.M.; Smith, E.N.; Pollock, D.D. Rapid identification of thousands of copperhead snake microsatellite loci from modest amounts of 454 shotgun genome sequence. Mol. Ecol. Resour 2010, 10, 341–347. [Google Scholar]
- Saarinen, E.V.; Austin, J.D. When technology meets conservation: Increased microsatellite marker production using 454 genome sequencing on the endangered Okaloosa Darter (Etheostoma okaloosae). J. Hered 2010, 101, 784–788. [Google Scholar]
- Wang, J.; Yu, X.; Zhao, K.; Zhang, Y.; Tong, J.; Peng, Z. Microsatellite development for an endangered bream Megalobrama Pellegrini (Teleostei, Cyprinidae) using 454 sequencing. Int. J. Mol. Sci 2012, 13, 3009–3021. [Google Scholar]
- Greenley, A.P.; Muguia-Vega, A.; Saenz-Arroyo, A.; Micheli, F. New tetranucleotide microsatellite loci in pink abalone (Haliotis corrugata) isolated via 454 pyrosequencing. Conserv. Genet. Resour 2012, 4, 265–268. [Google Scholar]
- Gardner, M.G.; Fitch, A.J.; Bertozzi, T.; Lowe, A.J. Rise of the machines—Recommendations for ecologists when using next generation sequencing for microsatellite development. Mol. Ecol. Resour 2011, 11, 1093–1101. [Google Scholar]
- Guichoux, E.; Lagache, L.; Wagner, S.; Chaumeil, P.; Léger, P.; Lepais, O.; Lepoittevin, C.; Malausa, T.; Revardel, E.; Salin, F.; et al. Current trends in microsatellite genotyping. Mol. Ecol. Resour 2011, 211, 591–611. [Google Scholar]
- Zane, L.; Bargelloni, L.; Patarnello, T. Strategies for microsatellite isolation: A review. Mol. Ecol 2002, 11, 1–16. [Google Scholar]
- Csencsics, D.; Brodbeck, S.; Holderegger, R. Cost-effective, species-specific microsatellite development for the endangered Dwarf Bulrush (Typha minima) using next-generation sequencing technology. J. Hered 2010, 101, 789–793. [Google Scholar]
- Malausa, T.; Gilles, A.; Meglécz, E.; Blanquart, H.; Duthoy, S.; Costedoat, C.; Dubut, V.; Pech, N.; Castagnone-Sereno, P.; Délye, C.; et al. High-throughput microsatellite isolation through 454 GS-FLX Titanium pyrosequencing of enriched DNA libraries. Mol. Ecol. Resour 2011, 11, 638–644. [Google Scholar]
- Carvalho, D.C.; Beheregaray, L.B. Rapid development of microsatellites for the endangered Neotropical catfish Conorhynchus conirostris using a modest amount of 454 shot-gun pyrosequencing. Conserv. Genet. Resour 2011, 3, 373–375. [Google Scholar]
- Zalapa, J.E.; Cuevas, H.; Zhu, H.; Steffan, S.; Senalik, D.; Zeldin, E.; McCown, B.; Harbut, R.; Simon, P. Using next-generation sequencing approaches to isolate simple sequence repeat (SSR) loci in the plant sciences. Am. J. Bot 2012, 99, 193–208. [Google Scholar]
- Hoffman, J.I.; Nichols, H.J. A novel approach for mining polymorphic microsatellite markers. PLoS One 2011, 6. [Google Scholar] [CrossRef]
- Griffiths, A.M.; Sims, D.W.; Cotterell, S.P.; Nagar, A.E.; Ellis, J.R.; Lynghammar, A.; McHugh, M.; Neat, F.C.; Pade, N.G.; Queiroz, N.; et al. Molecular markers reveal spatially segregated cryptic species in a critically endangered fish, the common skate (Dipturus batis). Proc. R. Soc. B 2010, 277, 1497–1503. [Google Scholar]
- Barbará, T.; Palma-Silva, C.; Paggi, G.M.; Bered, F.; Fay, M.F.; Lexer, C. Cross-species transfer of nuclear microsatellite markers: Potential and limitations. Mol. Ecol 2007, 16, 3759–3767. [Google Scholar]
- Olivatti, A.M.; Boni, T.A.; Silva-Júnior, N.J.; Resende, L.V.; Gouveia, F.O.; Telles, M.P. Heterologous amplification and characterization of microsatellite markers in the Neotropical fish Leporinus friderici. Genet. Mol. Res 2011, 10, 1403–1408. [Google Scholar]
- Kang, J.H.; Kim, Y.K.; Park, J.Y.; An, C.M.; Nam, M.M.; Byun, S.G.; Lee, B.I.; Lee, J.H.; Choi, T.J. Microsatellite analysis as a tool for discriminating an interfamily hybrid between olive flounder and starry flounder. Genet. Mol. Res 2011, 10, 2786–2794. [Google Scholar]
- Delmas, C.E.; Lhuillier, E.; Pornon, A.; Escaravage, N. Isolation and characterization of microsatellite loci in Rhododendron ferrugineum (Ericaceae) using pyrosequencing technology. Am. J. Bot 2011, 98, e120–e122. [Google Scholar]
- Rozen, S.; Skaletsky, H.J. Primer3 on the WWW for general users and for biologist programmers. In Bioinformatics Methods and Protocols: Methods in Molecular Biology; Krawets, S., Misener, S., Eds.; Humana Press: Totowa, NJ, USA, 2000; pp. 365–386. [Google Scholar]
- Basic Local Alignment Search Tool (BLAST). Available online: http://ncbi.nlm.nih.gov/blast assessed on 9 October 2011.
- Excoffier, L.; Lischer, H.E.L. Arlequin suite ver. 3.5: A new series of programs to perform population genetics analyses under Linux and Windows. Mol. Ecol. Resour. 2010, 10, 564–567. [Google Scholar]
- Raymond, M.; Rousset, F. Genepop (version 1.2), population genetics software for exact test and ecumenicism. J. Hered 1995, 86, 248–249. [Google Scholar]
- Van Oosterhout, C.; Hutchinson, W.F. Micro-checker: Software for identifying and correcting genotyping errors in microsatellite data. Mol. Ecol. Notes 2004, 4, 535–538. [Google Scholar]
- Goudet, J. FSTAT (version 1.2): A computer program to calculate F-statistics. J. Hered 1995, 86, 485–486. [Google Scholar]
Primary sequence data | No. | ||
---|---|---|---|
Total number of reads | 453,549 | ||
Total number of bases | 221,052,902 | ||
Number of contigs | 4,305 | ||
Number of bases | 2,024,317 | ||
Number of Singleton | 307,931 | ||
Total number of reads after trimmed | 288,854 | ||
Total number of read-length after trimmed | 148,321,261 | ||
Di-nucleotide | No. | Di-nucleotide | No. |
AT | 4,164 | CA | 6,544 |
CT | 6,239 | GC | 86 |
Tri-nucleotide | No. | Tri-nucleotide | No. |
AAA | 8 | TAC | 8 |
AAT | 273 | TTG | 124 |
AAG | 164 | TTC | 102 |
AAC | 62 | TGA | 65 |
ATA | 238 | TGG | 124 |
ATG | 53 | TGC | 104 |
ATC | 89 | TCG | 3 |
AGA | 85 | TCC | 134 |
AGT | 10 | GAG | 117 |
AGG | 98 | GAC | 6 |
AGC | 82 | GTG | 54 |
ACA | 56 | GGG | 10 |
ACG | 2 | GGC | 32 |
ACC | 90 | GCG | 26 |
TAA | 261 | CAG | 103 |
TAG | 14 | CGG | 28 |
Locus | Primer Sequence (5′→3′) | Motif | AT | Allele Size | No. of Allele | GenBank Accession No. | |
---|---|---|---|---|---|---|---|
Rp03-nfrdi | F | 6-FAM ACTGCCTAGGATGATGATGAAG | (AT)13 | 54 | 94–106 | 4 | JQ433555 |
R | TCTATATCCCTCCACTTCCTTG | ||||||
Rp11-nfrdi | F | 6-FAM ATACACTCATCACTCACACCCC | (CA)15 | 61 | 108–134 | 10 | JQ433556 |
R | GTGGGTTAGTGCTCTTGTTCTC | ||||||
Rp16-nfrdi | F | 6-FAM AGGAAGGCTTCAGCACATAAT | (TG)13 | 54 | 102–108 | 4 | JQ433557 |
R | CTCATCTGGAAGAGCACACAC | ||||||
Rp18-nfrdi | F | 6-FAM ATTCCCTGATACAGATGGAGG | (CA)16 | 61 | 113–145 | 9 | JQ433558 |
R | TAAACTGTTTGCTCCTCTCTCC | ||||||
Rp19-nfrdi | F | 6-FAM CAGACAATGAAACTCAACAGGA | (AG)12 | 54 | 96 | 1 | JQ433569 |
R | TCTAACTTCAATTAACCTTCGCA | ||||||
Rp22-nfrdi | F | 6-FAM ATAGCATGAATACAATCCCAGG | (AG)12 | 54 | 102–108 | 3 | JQ433559 |
R | GATGATCACTTGGATTCCTGAT | ||||||
Rp24-nfrdi | F | 6-FAM TGTTCTACAAGACACAAGGCAG | (AG)12 | 54 | 105–107 | 2 | JQ433560 |
R | ATTCCTCAGCTAACATCTCCAA | ||||||
Rp27-nfrdi | F | NED CATATTCATCATCAATTAAATCTGTC | (TG)9 | 54 | 224–232 | 3 | JQ433561 |
R | GCATATCCTTTGTCTGTCCAT | ||||||
Rp30-nfrdi | F | NED CGTGTATATGTATGTGTGCATGT | (TG)11 | 61 | 216–230 | 7 | JQ433562 |
R | GCAGAAGCACTACAGAATGTTT | ||||||
Rp34-nfrdi | F | NED TATGATCCATACAATCGCAAAA | (TG)9 | 54 | 240–250 | 6 | JQ433563 |
R | CAAATAGCAAACGACCTACACC | ||||||
Rp35-nfrdi | F | NED CTTACTGGTGAGGAATCTGAGC | (TG)9 | 61 | 226–236 | 5 | JQ433564 |
R | GCATACACTCCACACACCAC | ||||||
Rp39-nfrdi | F | HEX GCTTGGTTTTCTGAAATCAGTG | (AT)13 | 61 | 150–166 | 5 | JQ433565 |
R | ATAAAATTGCAGGGAGAATGC | ||||||
Rp43-nfrdi | F | HEX CTCCTGCCTTTGCTATGTGT | (TG)15 | 61 | 154–162 | 5 | JQ433566 |
R | GACTTTTCAGCGACAGTCTTCT | ||||||
Rp44-nfrdi | F | HEX ACATGGTCACGAGTAGAATGTG | (CA)16 | 54 | 149–161 | 6 | JQ433567 |
R | TTCAGACCCTATTCAAAATGCT | ||||||
Rp53-nfrdi | F | HEX GGACGGAATCCTTCTTTAAACT | (AG)15 | 54 | 140–148 | 5 | JQ433568 |
R | CTTTGTGCCTCTTTGTTAAACC |
Population | Microsatellite Loci | Mean of All Loci. | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Rp3 § | Rp11 § | Rp16 | Rp18 § | Rp22 | Rp24 | Rp27 | Rp30 | Rp34 | Rp35 | Rp39 | Rp43 § | Rp44 | Rp53 | |||
DC | N | 28 | 30 | 30 | 30 | 30 | 30 | 30 | 30 | 30 | 30 | 30 | 29 | 30 | 30 | 29.8 |
Na | 3 | 7 | 4 | 7 | 3 | 2 | 3 | 6 | 6 | 5 | 4 | 5 | 6 | 5 | 4.7 | |
AR | 3.00 | 6.64 | 3.83 | 6.78 | 3.00 | 2.00 | 2.83 | 5.80 | 6.00 | 5.00 | 4.00 | 4.97 | 5.64 | 5.00 | 4.61 | |
R | 94–106 | 108–134 | 102–108 | 113–145 | 102–108 | 105–107 | 224–232 | 216–228 | 240–250 | 226–236 | 150–162 | 154–162 | 149–161 | 140–148 | ||
Ho | 0.393 | 0.400 | 0.567 | 0.433 | 0.600 | 0.567 | 0.333 | 0.667 | 1.000 | 0.800 | 0.567 | 0.276 | 0.433 | 0.800 | 0.560 | |
He | 0.511 | 0.690 | 0.584 | 0.676 | 0.671 | 0.503 | 0.288 | 0.666 | 0.788 | 0.773 | 0.657 | 0.477 | 0.443 | 0.769 | 0.607 | |
FIS | 0.231 | 0.421 | 0.029 | 0.359 | 0.105 | −0.126 | −0.159 | −0.002 | −0.269 | −0.035 | 0.138 | 0.422 | 0.022 | −0.040 | 0.078 | |
HS | N | 29 | 30 | 30 | 30 | 30 | 30 | 30 | 30 | 30 | 30 | 30 | 25 | 30 | 30 | 29.6 |
Na | 4 | 10 | 4 | 8 | 3 | 2 | 2 | 6 | 6 | 5 | 5 | 4 | 5 | 5 | 4.9 | |
AR | 4.00 | 9.79 | 3.98 | 7.62 | 3.00 | 2.00 | 2.00 | 5.81 | 6.00 | 5.00 | 5.00 | 4.00 | 4.80 | 4.83 | 4.84 | |
R | 94–106 | 108–134 | 102–108 | 113–133 | 102–108 | 105–107 | 230–232 | 216–230 | 240–250 | 226–236 | 150–166 | 156–162 | 149–161 | 140–148 | ||
Ho | 0.276 | 0.800 | 0.700 | 0.567 | 0.667 | 0.367 | 0.400 | 0.700 | 0.567 | 0.867 | 0.467 | 0.240 | 0.633 | 0.833 | 0.577 | |
He | 0.603 | 0.797 | 0.595 | 0.732 | 0.608 | 0.481 | 0.364 | 0.676 | 0.746 | 0.801 | 0.494 | 0.487 | 0.573 | 0.702 | 0.619 | |
FIS | 0.542 * | −0.004 | −0.177 | 0.226 | −0.097 | 0.237 | −0.099 | −0.035 | 0.241 | −0.082 | 0.056 | 0.508 * | −0.104 | −0.187 | −0.002 | |
Mean of All Pops. | N | 28.5 | 30.0 | 30.0 | 30.0 | 30.0 | 30.0 | 30.0 | 30.0 | 30.0 | 30.0 | 30.0 | 27.0 | 30.0 | 30.0 | |
Na | 3.5 | 8.5 | 4.0 | 7.5 | 3.0 | 2.0 | 2.5 | 6.0 | 6.0 | 5.0 | 4.5 | 4.5 | 5.5 | 5.0 | ||
AR | 3.50 | 8.22 | 3.90 | 7.20 | 3.00 | 2.00 | 2.42 | 5.81 | 6.00 | 5.00 | 4.50 | 4.48 | 5.22 | 4.92 | ||
R | 94–106 | 108–134 | 102–108 | 113–145 | 102–108 | 105–107 | 224–232 | 216–230 | 240–250 | 226–236 | 150–166 | 154–162 | 149–161 | 140–148 | ||
Ho | 0.334 | 0.600 | 0.633 | 0.500 | 0.633 | 0.467 | 0.367 | 0.683 | 0.783 | 0.833 | 0.517 | 0.258 | 0.533 | 0.817 | ||
He | 0.557 | 0.744 | 0.589 | 0.704 | 0.639 | 0.492 | 0.326 | 0.671 | 0.767 | 0.787 | 0.576 | 0.482 | 0.508 | 0.736 | ||
FIS | 0.387 | 0.208 | −0.074 | 0.293 | 0.004 | 0.056 | −0.129 | −0.018 | −0.014 | −0.058 | 0.097 | 0.465 | −0.041 | −0.113 |
Species Name | N | Microsatellite DNA Markers | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Rp3 | Rp11 | Rp16 | Rp19 | Rp24 | Rp27 | Rp34 | Rp35 | Rp39 | Rp44 | Rp53 | |||
Rajiformes (Skate) | |||||||||||||
Rajidae | Raja pulchra | 60 | ⦾ | ⦾ | ⦾ | ○ | ⦾ | ⦾ | ⦾ | ⦾ | ⦾ | ⦾ | ⦾ |
Okamejei boesemani | 3 | ⦾ | ⦾ | ⦾ | ○ | ⦾ | ⦾ | X | ⦾ | ⦾ | ⦾ | ⦾ | |
Okamejei kenojei | 2 | ⦾ | ⦾ | ⦾ | ○ | ○ | X | ○ | ○ | ○ | ○ | ⦾ | |
Okamejei acutispina | 3 | ○ | ⦾ | ⦾ | ○ | ○ | X | ○ | ⦾ | ⦾ | ⦾ | ⦾ | |
Dasyatididae | Dasyatis akajei | 1 | X | ○ | X | ○ | X | X | X | X | X | X | ○ |
Urolophus aurantiacus | 4 | ⦾ | X | X | ○ | X | X | X | X | X | ○ | X | |
Carcharhiniformes (Shark) | |||||||||||||
Scyliorhinidae | Cephaloscylium isabaellum | 2 | ○ | X | ○ | ⦾ | X | X | ○ | ⦾ | X | X | X |
Scyliorhinus torazame | 1 | ○ | ○ | ○ | X | X | X | X | ○ | X | X | X | |
Triakidae | Mustelus manazo | 2 | ○ | ○ | ○ | ⦾ | X | X | ○ | ⦾ | X | ○ | X |
Triakis scyllium | 1 | ○ | X | ○ | ○ | X | X | X | ○ | X | ○ | X |
© 2012 by the authors; licensee Molecular Diversity Preservation International, Basel, Switzerland. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Kang, J.-H.; Park, J.-Y.; Jo, H.-S. Rapid Development of Microsatellite Markers with 454 Pyrosequencing in a Vulnerable Fish, the Mottled Skate, Raja pulchra. Int. J. Mol. Sci. 2012, 13, 7199-7211. https://doi.org/10.3390/ijms13067199
Kang J-H, Park J-Y, Jo H-S. Rapid Development of Microsatellite Markers with 454 Pyrosequencing in a Vulnerable Fish, the Mottled Skate, Raja pulchra. International Journal of Molecular Sciences. 2012; 13(6):7199-7211. https://doi.org/10.3390/ijms13067199
Chicago/Turabian StyleKang, Jung-Ha, Jung-Youn Park, and Hyun-Su Jo. 2012. "Rapid Development of Microsatellite Markers with 454 Pyrosequencing in a Vulnerable Fish, the Mottled Skate, Raja pulchra" International Journal of Molecular Sciences 13, no. 6: 7199-7211. https://doi.org/10.3390/ijms13067199
APA StyleKang, J. -H., Park, J. -Y., & Jo, H. -S. (2012). Rapid Development of Microsatellite Markers with 454 Pyrosequencing in a Vulnerable Fish, the Mottled Skate, Raja pulchra. International Journal of Molecular Sciences, 13(6), 7199-7211. https://doi.org/10.3390/ijms13067199