Role of Sam68 in Post-Transcriptional Gene Regulation
Abstract
:1. Introduction
2. Sam68 Structure and Posttranscriptional Modifications
3. Role of Sam68 in Signaling
4. Sam68 in RBP Complexes
5. Sam68 and Alternative Splicing
6. Other Sam68 Functions in RNA Metabolism: Transcription, Translation, miRNA Processing and RNA Transport
7. Conclusions
Acknowledgments
Conflicts of Interest
References
- Dreyfuss, G.; Kim, V.N.; Kataoka, N. Messenger-RNA-binding proteins and the messages they carry. Nat. Rev. Mol. Cell Biol 2002, 3, 195–205. [Google Scholar]
- Wang, D.; Liang, X.; Chen, X.; Guo, J. Ribonucleoprotein complexes that control circadian clocks. Int. J. Mol. Sci 2013, 14, 9018–9036. [Google Scholar]
- Cruz-Alvarez, M.; Pellicer, A. Cloning of a full-length complementary DNA for an artemia salina glycine-rich protein. Structural relationship with RNA binding proteins. J. Biol. Chem 1987, 262, 13377–13380. [Google Scholar]
- Jones, A.R.; Schedl, T. Mutations in gld-1, a female germ cell-specific tumor suppressor gene in caenorhabditis elegans, affect a conserved domain also found in Src-associated protein Sam68. Genes Dev 1995, 9, 1491–1504. [Google Scholar]
- Baehrecke, E.H. Who encodes a KH RNA binding protein that functions in muscle development. Development 1997, 124, 1323–1332. [Google Scholar]
- Di Fruscio, M.; Chen, T.; Bonyadi, S.; Lasko, P.; Richard, S. The identification of two drosophila K homology domain proteins. KEP1 and SAM are members of the Sam68 family of GSG domain proteins. J. Biol. Chem 1998, 273, 30122–30130. [Google Scholar]
- Zorn, A.M.; Krieg, P.A. The KH domain protein encoded by quaking functions as a dimer and is essential for notochord development in xenopus embryos. Genes Dev 1997, 11, 2176–2190. [Google Scholar]
- Ebersole, T.A.; Chen, Q.; Justice, M.J.; Artzt, K. The quaking gene product necessary in embryogenesis and myelination combines features of RNA binding and signal transduction proteins. Nat. Genet 1996, 12, 260–265. [Google Scholar]
- Mezquita, J.; Pau, M.; Mezquita, C. Four isoforms of the signal-transduction and RNA-binding protein QKI expressed during chicken spermatogenesis. Mol. Reprod. Dev 1998, 50, 70–78. [Google Scholar]
- Richard, S.; Yu, D.; Blumer, K.J.; Hausladen, D.; Olszowy, M.W.; Connelly, P.A.; Shaw, A.S. Association of p62, a multifunctional SH2-and SH3-domain-binding protein, with src family tyrosine kinases, Grb2, and phospholipase C Gamma-1. Mol. Cell. Biol 1995, 15, 186–197. [Google Scholar]
- Di Fruscio, M.; Chen, T.; Richard, S. Characterization of Sam68-Like mammalian proteins SLM-1 and SLM-2: SLM-1 is a Src substrate during mitosis. Proc. Natl. Acad. Sci. USA 1999, 96, 2710–2715. [Google Scholar]
- Venables, J.P.; Vernet, C.; Chew, S.L.; Elliott, D.J.; Cowmeadow, R.B.; Wu, J.; Cooke, H.J.; Artzt, K.; Eperon, I.C. T-STAR/ETOILE: A novel relative of SAM68 that interacts with an RNA-binding protein implicated in spermatogenesis. Hum. Mol. Genet 1999, 8, 959–969. [Google Scholar]
- Vernet, C.; Artzt, K. STAR, a gene family involved in signal transduction and activation of RNA. Trends Genet 1997, 13, 479–484. [Google Scholar]
- Arning, S.; Gruter, P.; Bilbe, G.; Kramer, A. Mammalian splicing factor SF1 is encoded by variant cDNAs and binds to RNA. RNA 1996, 2, 794–810. [Google Scholar]
- Burd, C.G.; Dreyfuss, G. Conserved structures and diversity of functions of RNA-binding proteins. Science 1994, 265, 615–621. [Google Scholar]
- Chen, T.; Damaj, B.B.; Herrera, C.; Lasko, P.; Richard, S. Self-association of the single-KH-domain family members Sam68, GRP33, GLD-1, and Qk1: Role of the KH domain. Mol. Cell. Biol 1997, 17, 5707–5718. [Google Scholar]
- Lin, Q.; Taylor, S.J.; Shalloway, D. Specificity and determinants of Sam68 RNA binding. Implications for the biological function of K homology domains. J. Biol. Chem 1997, 272, 27274–27280. [Google Scholar]
- Galarneau, A.; Richard, S. The STAR RNA binding proteins GLD-1, QKI, SAM68 and SLM-2 bind bipartite RNA motifs. BMC Mol. Biol 2009, 10, 47. [Google Scholar]
- Taylor, S.J.; Anafi, M.; Pawson, T.; Shalloway, D. Functional interaction between c-Src and its mitotic target, Sam 68. J. Biol. Chem 1995, 270, 10120–10124. [Google Scholar]
- Resnick, R.J.; Taylor, S.J.; Lin, Q.; Shalloway, D. Phosphorylation of the Src substrate Sam68 by Cdc2 during mitosis. Oncogene 1997, 15, 1247–1253. [Google Scholar]
- Fumagalli, S.; Totty, N.F.; Hsuan, J.J.; Courtneidge, S.A. A target for Src in mitosis. Nature 1994, 368, 871–874. [Google Scholar]
- Lukong, K.E.; Richard, S. Sam68, the KH domain-containing superSTAR. Biochim. Biophys. Acta 2003, 1653, 73–86. [Google Scholar]
- Taylor, S.J.; Shalloway, D. An RNA-binding protein associated with Src through its SH2 and SH3 domains in mitosis. Nature 1994, 368, 867–871. [Google Scholar]
- Itoh, M.; Haga, I.; Li, Q.H.; Fujisawa, J. Identification of cellular mRNA targets for RNA-binding protein Sam68. Nucleic Acids Res 2002, 30, 5452–5464. [Google Scholar]
- Tremblay, G.A.; Richard, S. MRNAs associated with the Sam68 RNA binding protein. RNA Biol 2006, 3, 90–93. [Google Scholar]
- Meyer, N.H.; Tripsianes, K.; Vincendeau, M.; Madl, T.; Kateb, F.; Brack-Werner, R.; Sattler, M. Structural basis for homodimerization of the Src-associated during mitosis, 68-kDa protein (Sam68) qua1 domain. J. Biol. Chem 2010, 285, 28893–28901. [Google Scholar]
- Barlat, I.; Maurier, F.; Duchesne, M.; Guitard, E.; Tocque, B.; Schweighoffer, F. A role for Sam68 in cell cycle progression antagonized by a spliced variant within the KH domain. J. Biol. Chem 1997, 272, 3129–3132. [Google Scholar]
- Wang, L.L.; Richard, S.; Shaw, A.S. P62 Association with RNA is regulated by tyrosine phosphorylation. J. Biol. Chem 1995, 270, 2010–2013. [Google Scholar]
- Matter, N.; Herrlich, P.; Konig, H. Signal-dependent regulation of splicing via phosphorylation of Sam68. Nature 2002, 420, 691–695. [Google Scholar]
- Paronetto, M.P.; Zalfa, F.; Botti, F.; Geremia, R.; Bagni, C.; Sette, C. The nuclear RNA-binding protein Sam68 translocates to the cytoplasm and associates with the polysomes in mouse spermatocytes. Mol. Biol. Cell 2006, 17, 14–24. [Google Scholar]
- Babic, I.; Jakymiw, A.; Fujita, D.J. The RNA binding protein Sam68 is acetylated in tumor cell lines, and its acetylation correlates with enhanced RNA binding activity. Oncogene 2004, 23, 3781–3789. [Google Scholar]
- Cote, J.; Boisvert, F.M.; Boulanger, M.C.; Bedford, M.T.; Richard, S. Sam68 RNA binding protein is an in vivo substrate for protein arginine N-methyltransferase 1. Mol. Biol. Cell 2003, 14, 274–287. [Google Scholar]
- Bedford, M.T.; Frankel, A.; Yaffe, M.B.; Clarke, S.; Leder, P.; Richard, S. Arginine methylation inhibits the binding of proline-rich ligands to Src homology 3, but not WW, domains. J. Biol. Chem 2000, 275, 16030–16036. [Google Scholar]
- Babic, I.; Cherry, E.; Fujita, D.J. SUMO modification of Sam68 enhances its ability to repress cyclin D1 expression and inhibits its ability to induce apoptosis. Oncogene 2006, 25, 4955–4964. [Google Scholar]
- Ishidate, T.; Yoshihara, S.; Kawasaki, Y.; Roy, B.C.; Toyoshima, K.; Akiyama, T. Identification of a novel nuclear localization signal in Sam68. FEBS Lett 1997, 409, 237–241. [Google Scholar]
- Maa, M.C.; Leu, T.H.; Trandel, B.J.; Chang, J.H.; Parsons, S.J. A Protein that is highly related to GTPase-activating protein-associated p62 complexes with phospholipase C gamma. Mol. Cell. Biol 1994, 14, 5466–5473. [Google Scholar]
- Najib, S.; Sanchez-Margalet, V. Sam68 associates with the SH3 domains of Grb2 recruiting GAP to the Grb2-SOS complex in insulin receptor signaling. J. Cell. Biochem 2002, 86, 99–106. [Google Scholar]
- Trub, T.; Frantz, J.D.; Miyazaki, M.; Band, H.; Shoelson, S.E. The role of a lymphoid-restricted, Grb2-Like SH3-SH2-SH3 protein in T cell receptor signaling. J. Biol. Chem 1997, 272, 894–902. [Google Scholar]
- Lawe, D.C.; Hahn, C.; Wong, A.J. The Nck SH2/SH3 adaptor protein is present in the nucleus and associates with the nuclear protein SAM68. Oncogene 1997, 14, 223–231. [Google Scholar]
- Locatelli, A.; Lange, C.A. Met receptors induce Sam68-dependent cell migration by activation of alternate extracellular signal-regulated kinase family members. J. Biol. Chem 2011, 286, 21062–21072. [Google Scholar]
- Derry, J.J.; Richard, S.; Valderrama Carvajal, H.; Ye, X.; Vasioukhin, V.; Cochrane, A.W.; Chen, T.; Tyner, A.L. Sik (BRK) phosphorylates Sam68 in the nucleus and negatively regulates its RNA binding ability. Mol. Cell. Biol 2000, 20, 6114–6126. [Google Scholar]
- Chen, Z.Y.; Cai, L.; Zhu, J.; Chen, M.; Chen, J.; Li, Z.H.; Liu, X.D.; Wang, S.G.; Bie, P.; Jiang, P.; et al. Fyn requires HnRNPA2B1 and Sam68 to synergistically regulate apoptosis in pancreatic cancer. Carcinogenesis 2011, 32, 1419–1426. [Google Scholar]
- Fusaki, N.; Iwamatsu, A.; Iwashima, M.; Fujisawa, J. Interaction between Sam68 and Src family tyrosine kinases, Fyn and Lck, in T cell receptor signaling. J. Biol. Chem 1997, 272, 6214–6219. [Google Scholar]
- Lang, V.; Mege, D.; Semichon, M.; Gary-Gouy, H.; Bismuth, G. A dual participation of ZAP-70 and Scr protein tyrosine kinases is required for TCR-induced tyrosine phosphorylation of Sam68 in Jurkat T cells. Eur. J. Immunol 1997, 27, 3360–3367. [Google Scholar]
- Sanchez-Margalet, V.; Najib, S. P68 Sam is a substrate of the insulin receptor and associates with the SH2 domains of p85 PI3K. FEBS Lett 1999, 455, 307–310. [Google Scholar]
- Guitard, E.; Barlat, I.; Maurier, F.; Schweighoffer, F.; Tocque, B. Sam68 is a Ras-GAP-associated protein in mitosis. Biochem. Biophys. Res. Commun 1998, 245, 562–566. [Google Scholar]
- Sanchez-Margalet, V.; Najib, S. Sam68 is a docking protein linking GAP and PI3K in insulin receptor signaling. Mol. Cell. Endocrinol 2001, 183, 113–121. [Google Scholar]
- Andreotti, A.H.; Bunnell, S.C.; Feng, S.; Berg, L.J.; Schreiber, S.L. Regulatory intramolecular association in a tyrosine kinase of the Tec family. Nature 1997, 385, 93–97. [Google Scholar]
- Ramakrishnan, P.; Baltimore, D. Sam68 is required for both NF-kappaB activation and apoptosis signaling by the TNF receptor. Mol. Cell 2011, 43, 167–179. [Google Scholar]
- Jabado, N.; Pallier, A.; le Deist, F.; Bernard, F.; Fischer, A.; Hivroz, C. CD4 Ligands inhibit the formation of multifunctional transduction complexes involved in T Cell activation. J. Immunol 1997, 158, 94–103. [Google Scholar]
- Jauliac, S.; Mazerolles, F.; Jabado, N.; Pallier, A.; Bernard, F.; Peake, J.; Fischer, A.; Hivroz, C. Ligands of CD4 inhibit the association of phospholipase cgamma1 with phosphoinositide 3 kinase in T cells: Regulation of this association by the phosphoinositide 3 Kinase activity. Eur. J. Immunol 1998, 28, 3183–3191. [Google Scholar]
- Hawkins, J.; Marcy, A. Characterization of Itk tyrosine kinase: Contribution of noncatalytic domains to enzymatic activity. Protein Expr. Purif 2001, 22, 211–219. [Google Scholar]
- Sanchez-Margalet, V.; Gonzalez-Yanes, C.; Najib, S.; Fernandez-Santos, J.M.; Martin-Lacave, I. The expression of Sam68, a protein involved in insulin signal transduction, is enhanced by insulin stimulation. Cell Mol. Life Sci 2003, 60, 751–758. [Google Scholar]
- Sanchez-Margalet, V.; Martin-Romero, C.; Santos-Alvarez, J.; Goberna, R.; Najib, S.; Gonzalez-Yanes, C. Role of leptin as an immunomodulator of blood mononuclear cells: Mechanisms of action. Clin. Exp. Immunol 2003, 133, 11–19. [Google Scholar]
- Martin-Romero, C.; Sanchez-Margalet, V. Human leptin activates PI3K and MAPK pathways in human peripheral blood mononuclear cells: Possible role of Sam68. Cell. Immunol 2001, 212, 83–91. [Google Scholar]
- Sanchez-Margalet, V.; Martin-Romero, C. Human leptin signaling in human peripheral blood mononuclear cells: Activation of the JAK-STAT pathway. Cell. Immunol 2001, 211, 30–36. [Google Scholar]
- Sanchez-Jimenez, F.; Perez-Perez, A.; Gonzalez-Yanes, C.; Najib, S.; Varone, C.L.; Sanchez-Margalet, V. Leptin receptor activation increases Sam68 tyrosine phosphorylation and expression in human trophoblastic cells. Mol. Cell. Endocrinol 2011, 332, 221–227. [Google Scholar]
- Kunkel, G.T.; Wang, X. Sam68 guest STARs in TNF-alpha signaling. Mol. Cell 2011, 43, 157–158. [Google Scholar]
- Lukong, K.E.; Larocque, D.; Tyner, A.L.; Richard, S. Tyrosine phosphorylation of sam68 by breast tumor kinase regulates intranuclear localization and cell cycle progression. J. Biol. Chem 2005, 280, 38639–38647. [Google Scholar]
- Locatelli, A.; Lofgren, K.A.; Daniel, A.R.; Castro, N.E.; Lange, C.A. Mechanisms of HGF/Met signaling to Brk and Sam68 in breast cancer progression. Horm. Cancer 2012, 3, 14–25. [Google Scholar]
- Venigalla, R.K.; Turner, M. RNA-binding proteins as a point of convergence of the PI3K and p38 MAPK pathways. Front. Immunol 2012, 3, 398. [Google Scholar]
- Sanchez-Jimenez, F.; Perez-Perez, A.; Gonzalez-Yanes, C.; Varone, C.L.; Sanchez-Margalet, V. Sam68 mediates leptin-stimulated growth by modulating leptin receptor signaling in human trophoblastic JEG-3 cells. Hum. Reprod 2011, 26, 2306–2315. [Google Scholar]
- Najib, S.; Martin-Romero, C.; Gonzalez-Yanes, C.; Sanchez-Margalet, V. Role of Sam68 as an adaptor protein in signal transduction. Cell Mol. Life Sci 2005, 62, 36–43. [Google Scholar]
- Lukong, K.E.; Richard, S. Targeting the RNA-binding protein Sam68 as a treatment for cancer? Future Oncol 2007, 3, 539–544. [Google Scholar]
- Liu, K.; Li, L.; Nisson, P.E.; Gruber, C.; Jessee, J.; Cohen, S.N. Neoplastic transformation and tumorigenesis associated with sam68 protein deficiency in cultured murine fibroblasts. J. Biol. Chem 2000, 275, 40195–40201. [Google Scholar]
- Taylor, S.J.; Resnick, R.J.; Shalloway, D. Sam68 exerts separable effects on cell cycle progression and apoptosis. BMC Cell Biol 2004, 5, 5. [Google Scholar]
- Paronetto, M.P.; Farini, D.; Sammarco, I.; Maturo, G.; Vespasiani, G.; Geremia, R.; Rossi, P.; Sette, C. Expression of a truncated form of the c-Kit tyrosine kinase receptor and activation of Src kinase in human prostatic cancer. Am. J. Pathol 2004, 164, 1243–1251. [Google Scholar]
- Busa, R.; Paronetto, M.P.; Farini, D.; Pierantozzi, E.; Botti, F.; Angelini, D.F.; Attisani, F.; Vespasiani, G.; Sette, C. The RNA-binding protein Sam68 contributes to proliferation and survival of human prostate cancer cells. Oncogene 2007, 26, 4372–4382. [Google Scholar]
- Richard, S.; Vogel, G.; Huot, M.E.; Guo, T.; Muller, W.J.; Lukong, K.E. Sam68 haploinsufficiency delays onset of mammary tumorigenesis and metastasis. Oncogene 2008, 27, 548–556. [Google Scholar]
- Bielli, P.; Busa, R.; Paronetto, M.P.; Sette, C. The RNA-binding protein Sam68 is a multifunctional player in human cancer. Endocr. Relat. Cancer 2011, 18, R91–R102. [Google Scholar]
- Li, Z.; Yu, C.P.; Zhong, Y.; Liu, T.J.; Huang, Q.D.; Zhao, X.H.; Huang, H.; Tu, H.; Jiang, S.; Zhang, Y.; et al. Sam68 expression and cytoplasmic localization is correlated with lymph node metastasis as well as prognosis in patients with early-stage cervical cancer. Ann. Oncol 2012, 23, 638–646. [Google Scholar]
- Chen, S.W.; Zhang, Q.; Yang, A.K.; Li, Z.; Zhong, Y.; Li, H.; Zeng, Y.; Zhuang, S.M.; Wang, L.P.; Song, L.B.; et al. Overexpression and cytoplasmic localization of Sam68 correlate with tumour progression and poor prognosis in patients with clinically N0 oral tongue cancer. Head. Neck. Oncol 2012, 4, 61. [Google Scholar]
- Liao, W.T.; Liu, J.L.; Wang, Z.G.; Cui, Y.M.; Shi, L.; Li, T.T.; Zhao, X.H.; Chen, X.T.; Ding, Y.Q.; Song, L.B. High expression level and nuclear localization of Sam68 are associated with progression and poor prognosis in colorectal cancer. BMC Gastroenterol 2013, 13, 126. [Google Scholar]
- Richard, S.; Torabi, N.; Franco, G.V.; Tremblay, G.A.; Chen, T.; Vogel, G.; Morel, M.; Cleroux, P.; Forget-Richard, A.; Komarova, S.; et al. Ablation of the Sam68 RNA binding protein protects mice from age-related bone loss. PLoS Genet 2005, 1, e74. [Google Scholar]
- Bianchi, E.; Barbagallo, F.; Valeri, C.; Geremia, R.; Salustri, A.; de Felici, M.; Sette, C. Ablation of the Sam68 gene impairs female fertility and gonadotropin-dependent follicle development. Hum. Mol. Genet 2010, 19, 4886–4894. [Google Scholar]
- Paronetto, M.P.; Messina, V.; Bianchi, E.; Barchi, M.; Vogel, G.; Moretti, C.; Palombi, F.; Stefanini, M.; Geremia, R.; Richard, S.; et al. Sam68 regulates translation of target mRNAs in male germ cells, necessary for mouse spermatogenesis. J. Cell Biol 2009, 185, 235–249. [Google Scholar]
- Lukong, K.E.; Richard, S. Motor coordination defects in mice deficient for the Sam68 RNA-binding protein. Behav. Brain Res 2008, 189, 357–363. [Google Scholar]
- Huot, M.E.; Vogel, G.; Zabarauskas, A.; Ngo, C.T.; Coulombe-Huntington, J.; Majewski, J.; Richard, S. The Sam68 STAR RNA-binding protein regulates mTOR alternative splicing during adipogenesis. Mol. Cell 2012, 46, 187–199. [Google Scholar]
- Yang, J.P.; Reddy, T.R.; Truong, K.T.; Suhasini, M.; Wong-Staal, F. Functional interaction of Sam68 and heterogeneous nuclear ribonucleoprotein K. Oncogene 2002, 21, 7187–7194. [Google Scholar]
- Paronetto, M.P.; Achsel, T.; Massiello, A.; Chalfant, C.E.; Sette, C. The RNA-binding protein Sam68 modulates the alternative splicing of Bcl-x. J. Cell Biol 2007, 176, 929–939. [Google Scholar]
- Ulke-Lemee, A.; Trinkle-Mulcahy, L.; Chaulk, S.; Bernstein, N.K.; Morrice, N.; Glover, M.; Lamond, A.I.; Moorhead, G.B. The nuclear PP1 interacting protein ZAP3 (ZAP) is a putative nucleoside kinase that complexes with SAM68, CIA, NF110/45, and HNRNP-G. Biochim. Biophys. Acta 2007, 1774, 1339–1350. [Google Scholar]
- Simarro, M.; Mauger, D.; Rhee, K.; Pujana, M.A.; Kedersha, N.L.; Yamasaki, S.; Cusick, M.E.; Vidal, M.; Garcia-Blanco, M.A.; Anderson, P. Fas-activated serine/threonine phosphoprotein (FAST) is a regulator of alternative splicing. Proc. Natl. Acad. Sci. USA 2007, 104, 11370–11375. [Google Scholar]
- Kim, H.J.; Kim, N.C.; Wang, Y.D.; Scarborough, E.A.; Moore, J.; Diaz, Z.; MacLea, K.S.; Freibaum, B.; Li, S.; Molliex, A.; et al. Mutations in prion-like domains in hnRNPA2B1 and hnRNPA1 cause multisystem proteinopathy and ALS. Nature 2013, 495, 467–473. [Google Scholar]
- Berson, A.; Barbash, S.; Shaltiel, G.; Goll, Y.; Hanin, G.; Greenberg, D.S.; Ketzef, M.; Becker, A.J.; Friedman, A.; Soreq, H. Cholinergic-associated loss of hnRNP-A/B in Alzheimer’s disease impairs cortical splicing and cognitive function in mice. EMBO Mol. Med 2012, 4, 730–742. [Google Scholar]
- Chen, T.; Boisvert, F.M.; Bazett-Jones, D.P.; Richard, S. A role for the GSG domain in localizing Sam68 to novel nuclear structures in cancer cell lines. Mol. Biol. Cell 1999, 10, 3015–3033. [Google Scholar]
- Huot, M.E.; Vogel, G.; Richard, S. Identification of a Sam68 ribonucleoprotein complex regulated by epidermal growth factor. J. Biol. Chem 2009, 284, 31903–31913. [Google Scholar]
- Hartmann, A.M.; Nayler, O.; Schwaiger, F.W.; Obermeier, A.; Stamm, S. The interaction and colocalization of Sam68 with the splicing-associated factor YT521-B in nuclear dots is regulated by the Src family kinase p59(Fyn). Mol. Biol. Cell 1999, 10, 3909–3926. [Google Scholar]
- Rajan, P.; Dalgliesh, C.; Bourgeois, C.F.; Heiner, M.; Emami, K.; Clark, E.L.; Bindereif, A.; Stevenin, J.; Robson, C.N.; Leung, H.Y.; et al. Proteomic identification of heterogeneous nuclear ribonucleoprotein L as a novel component of SLM/Sam68 nuclear bodies. BMC Cell Biol 2009, 10, 82. [Google Scholar]
- Biamonti, G.; Caceres, J.F. Cellular stress and RNA splicing. Trends Biochem. Sci 2009, 34, 146–153. [Google Scholar]
- Biamonti, G. Nuclear stress bodies: A heterochromatin affair? Nat. Rev. Mol. Cell Biol 2004, 5, 493–498. [Google Scholar]
- Denegri, M.; Chiodi, I.; Corioni, M.; Cobianchi, F.; Riva, S.; Biamonti, G. Stress-induced nuclear bodies are sites of accumulation of Pre-mRNA processing factors. Mol. Biol. Cell 2001, 12, 3502–3514. [Google Scholar]
- Busa, R.; Geremia, R.; Sette, C. Genotoxic stress causes the accumulation of the splicing regulator Sam68 in nuclear foci of transcriptionally active chromatin. Nucleic Acids Res 2010, 38, 3005–3018. [Google Scholar]
- Anderson, P.; Kedersha, N. RNA granules: Post-transcriptional and epigenetic modulators of gene expression. Nat. Rev. Mol. Cell Biol 2009, 10, 430–436. [Google Scholar]
- Henao-Mejia, J.; He, J.J. Sam68 relocalization into stress granules in response to oxidative stress through complexing with TIA-1. Exp. Cell Res 2009, 315, 3381–3395. [Google Scholar]
- Piotrowska, J.; Hansen, S.J.; Park, N.; Jamka, K.; Sarnow, P.; Gustin, K.E. Stable formation of compositionally unique stress granules in virus-infected cells. J. Virol 2010, 84, 3654–3665. [Google Scholar]
- Finnen, R.L.; Pangka, K.R.; Banfield, B.W. Herpes simplex Virus 2 infection impacts stress granule accumulation. J. Virol 2012, 86, 8119–8130. [Google Scholar]
- Messina, V.; Meikar, O.; Paronetto, M.P.; Calabretta, S.; Geremia, R.; Kotaja, N.; Sette, C. The RNA binding protein SAM68 transiently localizes in the chromatoid body of male germ cells and influences expression of select microRNAs. PLoS One 2012, 7, e39729. [Google Scholar]
- Lynch, K.W. Regulation of alternative splicing by signal transduction pathways. Adv. Exp. Med. Biol 2007, 623, 161–174. [Google Scholar]
- Grossman, J.S.; Meyer, M.I.; Wang, Y.C.; Mulligan, G.J.; Kobayashi, R.; Helfman, D.M. The use of antibodies to the Polypyrimidine Tract Binding protein (PTB) to analyze the protein components that assemble on alternatively spliced pre-mRNAs that use distant branch points. RNA 1998, 4, 613–625. [Google Scholar]
- Chawla, G.; Lin, C.H.; Han, A.; Shiue, L.; Ares, M., Jr.; Black, D.L. Sam68 regulates a set of alternatively spliced exons during neurogenesis. Mol. Cell. Biol 2009, 29, 201–213. [Google Scholar]
- Stoss, O.; Novoyatleva, T.; Gencheva, M.; Olbrich, M.; Benderska, N.; Stamm, S. P59(Fyn)-mediated phosphorylation regulates the activity of the tissue-specific splicing factor rSLM-1. Mol. Cell. Neurosci 2004, 27, 8–21. [Google Scholar]
- Song, L.; Wang, L.; Li, Y.; Xiong, H.; Wu, J.; Li, J.; Li, M. Sam68 up-regulation correlates with, and its down-regulation inhibits, proliferation and tumourigenicity of breast cancer cells. J. Pathol 2010, 222, 227–237. [Google Scholar]
- Rajan, P.; Gaughan, L.; Dalgliesh, C.; El-Sherif, A.; Robson, C.N.; Leung, H.Y.; Elliott, D.J. The RNA-binding and adaptor protein Sam68 modulates signal-dependent splicing and transcriptional activity of the androgen receptor. J. Pathol 2008, 215, 67–77. [Google Scholar]
- Zhang, Z.; Li, J.; Zheng, H.; Yu, C.; Chen, J.; Liu, Z.; Li, M.; Zeng, M.; Zhou, F.; Song, L. Expression and cytoplasmic localization of SAM68 is a significant and independent prognostic marker for renal cell carcinoma. Cancer Epidemiol. Biomark. Prev 2009, 18, 2685–2693. [Google Scholar]
- Naor, D.; Nedvetzki, S.; Golan, I.; Melnik, L.; Faitelson, Y. CD44 in cancer. Crit. Rev. Clin. Lab. Sci 2002, 39, 527–579. [Google Scholar]
- Cheng, C.; Sharp, P.A. Regulation of CD44 alternative splicing by SRm160 and its potential role in tumor cell invasion. Mol. Cell. Biol 2006, 26, 362–370. [Google Scholar]
- Batsche, E.; Yaniv, M.; Muchardt, C. The human SWI/SNF subunit Brm is a regulator of alternative splicing. Nat. Struct. Mol. Biol 2006, 13, 22–29. [Google Scholar]
- Cappellari, M.; Bielli, P.; Paronetto, M.P.; Ciccosanti, F.; Fimia, G.M.; Saarikettu, J.; Silvennoinen, O.; Sette, C. The transcriptional co-activator SND1 is a novel regulator of alternative splicing in prostate cancer cells. Oncogene 2013. [Google Scholar] [CrossRef] [Green Version]
- Rosenberger, S.; De-Castro Arce, J.; Langbein, L.; Steenbergen, R.D.; Rosl, F. Alternative splicing of human papillomavirus type-16 E6/E6* early mRNA is coupled to EGF signaling via Erk1/2 activation. Proc. Natl. Acad. Sci. USA 2010, 107, 7006–7011. [Google Scholar]
- Tisserant, A.; Konig, H. Signal-regulated pre-mRNA occupancy by the general splicing factor U2AF. PLoS One 2008, 3, e1418. [Google Scholar]
- Valacca, C.; Bonomi, S.; Buratti, E.; Pedrotti, S.; Baralle, F.E.; Sette, C.; Ghigna, C.; Biamonti, G. Sam68 regulates EMT through alternative splicing-activated nonsense-mediated mRNA decay of the SF2/ASF proto-oncogene. J. Cell Biol 2010, 191, 87–99. [Google Scholar]
- Paronetto, M.P.; Cappellari, M.; Busa, R.; Pedrotti, S.; Vitali, R.; Comstock, C.; Hyslop, T.; Knudsen, K.E.; Sette, C. Alternative splicing of the cyclin D1 proto-oncogene is regulated by the RNA-binding protein Sam68. Cancer Res 2010, 70, 229–239. [Google Scholar]
- Morishita, E.C.; Murayama, K.; Kato-Murayama, M.; Ishizuka-Katsura, Y.; Tomabechi, Y.; Hayashi, T.; Terada, T.; Handa, N.; Shirouzu, M.; Akiyama, T.; et al. Crystal structures of the armadillo repeat domain of adenomatous polyposis coli and its complex with the tyrosine-rich domain of Sam68. Structure 2011, 19, 1496–1508. [Google Scholar]
- Paronetto, M.P.; Messina, V.; Barchi, M.; Geremia, R.; Richard, S.; Sette, C. Sam68 marks the transcriptionally active stages of spermatogenesis and modulates alternative splicing in male germ cells. Nucleic Acids Res 2011, 39, 4961–4974. [Google Scholar]
- Tassone, F.; Hagerman, R. The fragile X-associated tremor ataxia syndrome. Results Probl. Cell Differ 2012, 54, 337–357. [Google Scholar]
- Iijima, T.; Wu, K.; Witte, H.; Hanno-Iijima, Y.; Glatter, T.; Richard, S.; Scheiffele, P. SAM68 regulates neuronal activity-dependent alternative splicing of neurexin-1. Cell 2011, 147, 1601–1614. [Google Scholar]
- Sellier, C.; Rau, F.; Liu, Y.; Tassone, F.; Hukema, R.K.; Gattoni, R.; Schneider, A.; Richard, S.; Willemsen, R.; Elliott, D.J.; et al. Sam68 sequestration and partial loss of function are associated with splicing alterations in FXTAS patients. EMBO J 2010, 29, 1248–1261. [Google Scholar]
- Pedrotti, S.; Bielli, P.; Paronetto, M.P.; Ciccosanti, F.; Fimia, G.M.; Stamm, S.; Manley, J.L.; Sette, C. The splicing regulator Sam68 binds to a novel exonic splicing silencer and functions in SMN2 alternative splicing in spinal muscular atrophy. EMBO J 2010, 29, 1235–1247. [Google Scholar]
- Pedrotti, S.; Sette, C. Spinal muscular atrophy: A new player joins the battle for SMN2 Exon 7 splicing. Cell Cycle 2010, 9, 3874–3879. [Google Scholar]
- Hong, W.; Resnick, R.J.; Rakowski, C.; Shalloway, D.; Taylor, S.J.; Blobel, G.A. Physical and functional interaction between the transcriptional cofactor CBP and the KH domain protein Sam68. Mol. Cancer Res 2002, 1, 48–55. [Google Scholar]
- Auboeuf, D.; Dowhan, D.H.; Dutertre, M.; Martin, N.; Berget, S.M.; O’Malley, B.W. A subset of nuclear receptor coregulators act as coupling proteins during synthesis and maturation of RNA transcripts. Mol. Cell Biol 2005, 25, 5307–5316. [Google Scholar]
- Sette, C. Post-translational regulation of star proteins and effects on their biological functions. Adv. Exp. Med. Biol 2010, 693, 54–66. [Google Scholar]
- Subramanyam, D.; Blelloch, R. From microRNAs to targets: Pathway discovery in cell fate transitions. Curr. Opin. Genet. Dev 2011, 21, 498–503. [Google Scholar]
- Porkka, K.P.; Pfeiffer, M.J.; Waltering, K.K.; Vessella, R.L.; Tammela, T.L.; Visakorpi, T. MicroRNA expression profiling in prostate cancer. Cancer Res 2007, 67, 6130–6135. [Google Scholar]
- Ru, P.; Steele, R.; Newhall, P.; Phillips, N.J.; Toth, K.; Ray, R.B. miRNA-29b suppresses prostate cancer metastasis by regulating epithelial-mesenchymal transition signaling. Mol. Cancer. Ther 2012, 11, 1166–1173. [Google Scholar]
- Suhasini, M.; Reddy, T.R. Cellular proteins and HIV-1 Rev function. Curr. HIV Res 2009, 7, 91–100. [Google Scholar]
- Reddy, T.R.; Xu, W.; Mau, J.K.; Goodwin, C.D.; Suhasini, M.; Tang, H.; Frimpong, K.; Rose, D.W.; Wong-Staal, F. Inhibition of HIV replication by dominant negative mutants of Sam68, a functional homolog of HIV-1. Rev. Nat. Med 1999, 5, 635–642. [Google Scholar]
- Soros, V.B.; Carvajal, H.V.; Richard, S.; Cochrane, A.W. Inhibition of human immunodeficiency virus type 1 Rev function by a dominant-negative mutant of Sam68 through sequestration of unspliced RNA at perinuclear bundles. J. Virol 2001, 75, 8203–8215. [Google Scholar]
- Modem, S.; Badri, K.R.; Holland, T.C.; Reddy, T.R. Sam68 is absolutely required for Rev function and HIV-1 production. Nucleic Acids Res 2005, 33, 873–879. [Google Scholar]
- Klein, M.E.; Younts, T.J.; Castillo, P.E.; Jordan, B.A. RNA-binding protein Sam68 controls synapse number and local beta-actin mRNA metabolism in dendrites. Proc. Natl. Acad. Sci. USA 2013, 110, 3125–3130. [Google Scholar]
Disease | Effect | Role of Sam68 | Suggested mechanism | Ref. |
---|---|---|---|---|
Fragile X-associated tremor/ataxia syndrome (FXTAS) | Clinical disease | Regulation of alternative splicing | CGG repeats recruit Sam68 | [117] |
Spinal muscular atrophy (SMA) | Clinical disease | Regulation of alternative splicing | Sam68 is repressor of exon 7 inclusion of SMN2 | [118] |
Breast cancer | Tumor progression, tumorigenesis, metastasis | -Sam68 overexpression and cytoplasmic localization -Sam68 haploinsuficiency delays onset of mammary tumorigenesis and metastasis | -Complex formation (Brk, ERK5, Sam68) under MET receptor activation | [60] |
-Cell cycle regulation | [102] | |||
-Sam68 modulation of Tyr kinase activity | [69] | |||
Prostatic cancer | Neoplasmic transformation of prostatic cells | -Src depending Sam68 phosphorylation -Sam68 overexpression | -Nonregulated Sam68 phosphorylation may alter truncated c-kit expression | [67] |
-Cell cycle regulation | [68] | |||
Colorectal cancer | Tumor progression | Sam68 overexpression and nuclear localization | Unknown | [73] |
Cervical cancer | Tumor progression | Sam68 overexpression and cytoplasmic localization | Regulation of epithelial/mesenquimal transition | [71] |
Renal cell carcinoma | Tumor progression | Sam68 overexpression and cytoplasmic localization | Unknown | [104] |
N0 oral tongue cancer | Tumor progression | Sam68 overexpression and cytoplasmic localization | Unknown | [72] |
Infertility/Subfertility | Alteration of ovary function and spermatogenesis defects | -Disregulation of RNA metabolism in Sam68 knockout mice | -Binding/downregulation of FSH and LH receptors mRNAs | [75] |
-Regulation of protein translation | -Interaction with translational machinery in polysomes. | [76] |
© 2013 by the authors; licensee MDPI, Basel, Switzerland This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Sánchez-Jiménez, F.; Sánchez-Margalet, V. Role of Sam68 in Post-Transcriptional Gene Regulation. Int. J. Mol. Sci. 2013, 14, 23402-23419. https://doi.org/10.3390/ijms141223402
Sánchez-Jiménez F, Sánchez-Margalet V. Role of Sam68 in Post-Transcriptional Gene Regulation. International Journal of Molecular Sciences. 2013; 14(12):23402-23419. https://doi.org/10.3390/ijms141223402
Chicago/Turabian StyleSánchez-Jiménez, Flora, and Víctor Sánchez-Margalet. 2013. "Role of Sam68 in Post-Transcriptional Gene Regulation" International Journal of Molecular Sciences 14, no. 12: 23402-23419. https://doi.org/10.3390/ijms141223402
APA StyleSánchez-Jiménez, F., & Sánchez-Margalet, V. (2013). Role of Sam68 in Post-Transcriptional Gene Regulation. International Journal of Molecular Sciences, 14(12), 23402-23419. https://doi.org/10.3390/ijms141223402