Gold-Coated Iron Composite Nanospheres Targeted the Detection of Escherichia coli
Abstract
:1. Introduction
2. Results and Discussion
2.1. Characterization of Core Shell Structured Magnetic Nanoparticles
2.2. Interaction of Developed Core Shell Nanoparticles with E. coli
3. Experimental Section
3.1. General
3.2. Preparation of Buffer Solutions
3.3. Microorganisms
3.4. Synthesis of Iron Nanoparticles
3.5. Synthesis of Gold-Coated Fe3O4 Nanoparticles
3.6. Surface Modification of Core–Shell Structured Magnetic Nanoparticles
3.7. Preparation of Nanoparticle–Bacteria Conjugates for the Determination of Capturing Efficiency
3.8. Preparation of Nanoparticle-Bacteria Conjugates for SERS, SEM and TEM Measurements
3.9. Instrumentation
4. Conclusions
Supplementary Information
ijms-14-06223-s001.docAcknowledgments
Conflict of Interest
References
- Brown, K.R.; Walter, D.G.; Natan, M.J. Seeding of colloidal au nanoparticle solutions. 2. improved control of particle size and shape. Chem. Mat 2000, 12, 306–313. [Google Scholar]
- Cheng, F.Y.; Su, C.H.; Yang, Y.S.; Yeh, C.S.; Tsai, C.Y.; Wu, C.L.; Wu, M.T.; Shieh, D.B. Characterization of aqueous dispersions of Fe3O4 nanoparticles and their biomedical applications. Biomaterials 2005, 26, 729–738. [Google Scholar]
- Cheng, Y.X.; Liu, Y.J.; Huang, J.J.; Li, K.; Zhang, W.; Xian, Y.Z.; Jin, L.T. Combining biofunctional magnetic nanoparticles and atp bioluminescence for rapid detection of escherichia coli. Talanta 2009, 77, 1332–1336. [Google Scholar]
- Wang, S.F.; Tan, Y.M.; Zhao, D.M.; Liu, G.D. Amperometric tyrosinase biosensor based on Fe3O4 nanoparticles-chitosan nanocomposite. Biosens. Bioelectron 2008, 23, 1781–1787. [Google Scholar]
- Zhang, W.; Yang, T.; Li, X.; Wang, D.B.; Jiao, K. Conductive architecture of Fe2O3 microspheres/self-doped polyaniline nanofibers on carbon ionic liquid electrode for impedance sensing of DNA hybridization. Biosens. Bioelectron 2009, 25, 428–434. [Google Scholar]
- Xu, H.; Cui, L.L.; Tong, N.H.; Gu, H.C. Development of high magnetization Fe3O4/polystyrene/ silica nanospheres via combined miniemulsion/emulsion polymerization. J. Am. Chem. Soc 2006, 128, 15582–15583. [Google Scholar]
- Meldrum, F.C.; Heywood, B.R.; Mann, S. Magnetoferritin-in vitro synthesis of a novel magnetic protein. Science 1992, 257, 522–523. [Google Scholar]
- Tanaka, T.; Matsunaga, T. Fully automated chemiluminescence immunoassay of insulin using antibody-protein a-bacterial magnetic particle complexes. Anal. Chem 2000, 72, 3518–3522. [Google Scholar]
- Tamer, U.; Gundogdu, Y.; Boyaci, I.H.; Pekmez, K. Synthesis of magnetic core-shell Fe3O4-Au nanoparticle for biomolecule immobilization and detection. J. Nanopart. Res 2010, 12, 1187–1196. [Google Scholar]
- Mirkin, C.A.; Letsinger, R.L.; Mucic, R.C.; Storhoff, J.J. A DNA-based method for rationally assembling nanoparticles into macroscopic materials. Nature 1996, 382, 607–609. [Google Scholar]
- Lin, J.; Zhou, W.; Kumbhar, A.; Wiemann, J.; Fang, J.; Carpenter, E.E.; O’Connor, C.J. Gold-coated iron (Fe@Au) nanoparticles: Synthesis, characterization, and magnetic field-induced self-assembly. J. Solid State Chem 2001, 159, 26–31. [Google Scholar]
- Cho, S.-J.; Idrobo, J.-C.; Olamit, J.; Liu, K.; Browning, N.D.; Kauzlarich, S.M. Growth mechanism and oxidation resistance of gold-coated iron nanoparticles. Chem. Mater 2005, 17, 3181–3186. [Google Scholar]
- Mikhaylova, M.; Kim, D.K.; Bobrysheva, N.; Osmolowsky, M.; Semenov, V.; Tsakalakos, T.; Muhammed, M. Superparamagnetism of magnetite nanoparticles: Dependence on surface modification. Langmuir 2004, 20, 2472–2477. [Google Scholar]
- Mandal, M.; Kundu, S.; Ghosh, S.K.; Panigrahi, S.; Sau, T.K.; Yusuf, S.M.; Pal, T. Magnetite nanoparticles with tunable gold or silver shell. J. Colloid Interf. Sci 2005, 286, 187–194. [Google Scholar]
- Wang, L.Y.; Luo, J.; Maye, M.M.; Fan, Q.; Qiang, R.D.; Engelhard, M.H.; Wang, C.M.; Lin, Y.H.; Zhong, C.J. Iron oxide-gold core-shell nanoparticles and thin film assembly. J. Mater. Chem 2005, 15, 1821–1832. [Google Scholar]
- Wang, L.Y.; Luo, J.; Fan, Q.; Suzuki, M.; Suzuki, I.S.; Engelhard, M.H.; Lin, Y.H.; Kim, N.; Wang, J.Q.; Zhong, C.J. Monodispersed core-shell Fe3O4@Au nanoparticles. J. Phys. Chem. B 2005, 109, 21593–21601. [Google Scholar]
- Pham, T.T.H.; Cao, C.; Sim, J. Application of citrate-stabilized gold-coated ferric oxide composite nanoparticles for biological separations. J. Magn. Magn. Mater 2008, 320, 2049–2055. [Google Scholar]
- Carpenter, E.E.; Kumbhar, A.; Wiemann, J.A.; Srikanth, H.; Wiggins, J.; Zhou, W.L.; O’Connor, C.J. Synthesis and magnetic properties of gold-iron-gold nanocomposites. Mat. Sci. Eng 2000, 286, 81–86. [Google Scholar]
- Carpenter, E.E. Iron nanoparticles as potential magnetic carriers. J. Magn. Magn. Mater 2001, 225, 17–20. [Google Scholar]
- Zhou, W.L.; Carpenter, E.E.; Lin, J.; Kumbhar, A.; Sims, J.; O’Connor, C.J. Nanostructures of gold coated iron core-shell nanoparticles and the nanobands assembled under magnetic field. Eur. Phys. J. D 2001, 16, 289–292. [Google Scholar]
- Jeong, J.; Ha, T.H.; Chung, B.H. Enhanced reusability of hexa-arginine-tagged esterase immobilized on gold-coated magnetic nanoparticles. Anal. Chim. Acta 2006, 569, 203–209. [Google Scholar]
- Lyon, J.L.; Fleming, D.A.; Stone, M.B.; Schiffer, P.; Williams, M.E. Synthesis of Fe oxide core/au shell nanoparticles by iterative hydroxylamine seeding. Nano Lett 2004, 4, 719–723. [Google Scholar]
- Heitsch, A.T.; Smith, D.K.; Patel, R.N.; Ress, D.; Korgel, B.A. Multifunctional particles: Magnetic nanocrystals and gold nanorods coated with fluorescent dye-doped silica shells. J. Solid State Chem 2008, 181, 1590–1599. [Google Scholar]
- Tamer, U.; Boyaci, I.H.; Temur, E.; Zengin, A.; Dincer, I.; Elerman, Y. Fabrication of magnetic gold nanorod particles for immunomagnetic separation and sers application. J. Nanopart. Res 2011, 13, 3167–3176. [Google Scholar]
- El-Boubbou, K.; Gruden, C.; Huang, X. Magnetic glyco-nanoparticles: A unique tool for rapid pathogen detection, decontamination, and strain differentiation. J. Am. Chem. Soc 2007, 129, 13392–13393. [Google Scholar]
- Cheng, Y.X.; Liu, Y.J.; Huang, J.J.; Li, K.; Xian, Y.Z.; Zhang, W.; Jin, L.T. Amperometric tyrosinase biosensor based on fe3o4 nanoparticles-coated carbon nanotubes nanocomposite for rapid detection of coliforms. Electrochim. Acta 2009, 54, 2588–2594. [Google Scholar]
- Varshney, M.; Li, Y.B. Interdigitated array microelectrode based impedance biosensor coupled with magnetic nanoparticle-antibody conjugates for detection of escherichia coli o157 : H7 in food samples. Biosens. Bioelectron 2007, 22, 2408–2414. [Google Scholar]
- Chen, W.; Shen, H.B.; Li, X.Y.; Jia, N.Q.; Xu, J.M. Synthesis of immunomagnetic nanoparticles and their application in the separation and purification of cd34(+) hematopoietic stem cells. Appl. Surf. Sci 2006, 253, 1762–1769. [Google Scholar]
- Gupta, A.K.; Curtis, A.S.G. Lactoferrin and ceruloplasmin derivatized superparamagnetic iron oxide nanoparticles for targeting cell surface receptors. Biomaterials 2004, 25, 3029–3040. [Google Scholar]
- Premasiri, W.R.; Moir, D.T.; Klempner, M.S.; Krieger, N.; Jones, G.; Ziegler, L.D. Characterization of the surface enhanced raman scattering (SERS) of bacteria. J. Phys. Chem. B 2005, 109, 312–320. [Google Scholar]
- Sengupta, A.; Mujacic, M.; Davis, E.J. Detection of bacteria by surface-enhanced raman spectroscopy. Anal. Bioanal. Chem 2006, 386, 1379–1386. [Google Scholar]
- Kahraman, M.; Yazici, M.M.; Sahin, F.; Culha, M. Experimental parameters influencing surface-enhanced Raman scattering of bacteria. J. Biomed. Opt. 2007, 12. [Google Scholar] [CrossRef]
- Marotta, N.E.; Bottomley, L.A. Surface-enhanced Raman scattering of bacterial cell culture growth media. Appl. Spectrosc 2010, 64, 601–606. [Google Scholar]
- Guven, B.; Basaran-Akgul, N.; Temur, E.; Tamer, U.; Boyaci, I.H. SERS-based sandwich immunoassay using antibody coated magnetic nanoparticles for escherichia coli enumeration. Analyst 2011, 136, 740–748. [Google Scholar]
- Wannapob, R.; Kanatharana, P.; Limbut, W.; Numnuam, A.; Asawatreratanakul, P.; Thammakhet, C.; Thavarungkul, P. Affinity sensor using 3-aminophenylboronic acid for bacteria detection. Biosens. Bioelectron 2010, 26, 357–364. [Google Scholar]
- Ciftci, H.; Tamer, U. Electrochemical determination of iodide by poly(3-aminophenylboronic acid) film electrode at moderately low ph ranges. Anal. Chim. Acta 2011, 687, 137–140. [Google Scholar]
- Ertl, P.; Mikkelsen, S.R. Electrochemical biosensor array for the identification of microorganisms based on lectin-lipopolysaccharide recognition. Anal. Chem 2001, 73, 4241–4248. [Google Scholar]
- Lau, O.W.; Shao, B.; Lee, M.T.W. Affinity mass sensors: Determination of fructose. Anal. Chim. Acta 2000, 403, 49–56. [Google Scholar]
- Yonzon, C.R.; Haynes, C.L.; Zhang, X.Y.; Walsh, J.T.; van Duyne, R.P. A glucose biosensor based on surface-enhanced Raman scattering: Improved partition layer, temporal stability, reversibility, and resistance to serum protein interference. Anal. Chem 2004, 76, 78–85. [Google Scholar]
- Suo, Z.Y.; Yang, X.H.; Avci, R.; Deliorman, M.; Rugheimer, P.; Pascual, D.W.; Idzerda, Y. Antibody selection for immobilizing living bacteria. Anal. Chem 2009, 81, 7571–7578. [Google Scholar]
- Premkumar, J.R.; Lev, O.; Marks, R.S.; Polyak, B.; Rosen, R.; Belkin, S. Antibody-based immobilization of bioluminescent bacterial sensor cells. Talanta 2001, 55, 1029–1038. [Google Scholar]
- Temur, E.; Zengin, A.; Boyaci, I.H.; Dudak, F.C.; Torul, H.; Tamer, U. Attomole sensitivity of staphylococcal enterotoxin B detection using an aptamer-modified surface-enhanced raman scattering probe. Anal. Chem 2012, 84, 10600–10606. [Google Scholar]
© 2013 by the authors; licensee MDPI, Basel, Switzerland. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Tamer, U.; Cetin, D.; Suludere, Z.; Boyaci, I.H.; Temiz, H.T.; Yegenoglu, H.; Daniel, P.; Dinçer, İ.; Elerman, Y. Gold-Coated Iron Composite Nanospheres Targeted the Detection of Escherichia coli. Int. J. Mol. Sci. 2013, 14, 6223-6240. https://doi.org/10.3390/ijms14036223
Tamer U, Cetin D, Suludere Z, Boyaci IH, Temiz HT, Yegenoglu H, Daniel P, Dinçer İ, Elerman Y. Gold-Coated Iron Composite Nanospheres Targeted the Detection of Escherichia coli. International Journal of Molecular Sciences. 2013; 14(3):6223-6240. https://doi.org/10.3390/ijms14036223
Chicago/Turabian StyleTamer, Ugur, Demet Cetin, Zekiye Suludere, Ismail Hakkı Boyaci, Havva Tumay Temiz, Hande Yegenoglu, Philippe Daniel, İlker Dinçer, and Yalçın Elerman. 2013. "Gold-Coated Iron Composite Nanospheres Targeted the Detection of Escherichia coli" International Journal of Molecular Sciences 14, no. 3: 6223-6240. https://doi.org/10.3390/ijms14036223
APA StyleTamer, U., Cetin, D., Suludere, Z., Boyaci, I. H., Temiz, H. T., Yegenoglu, H., Daniel, P., Dinçer, İ., & Elerman, Y. (2013). Gold-Coated Iron Composite Nanospheres Targeted the Detection of Escherichia coli. International Journal of Molecular Sciences, 14(3), 6223-6240. https://doi.org/10.3390/ijms14036223