Symbiotic Nitrogen Fixation in Legume Nodules: Metabolism and Regulatory Mechanisms
Abstract
:Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Udvardi, M.; Poole, P.S. Transport and metabolism in legume-rhizobia symbioses. Annu. Rev. Plant Biol. 2013, 64, 781–805. [Google Scholar]
- Oldroyd, G.E.; Murray, J.D.; Poole, P.S.; Downie, J.A. The rules of engagement in the legume-rhizobial symbiosis. Annu. Rev. Genet. 2011, 45, 119–144. [Google Scholar]
- Van Hameren, B.; Hayashi, S.; Gresshoff, P.M.; Ferguson, B.J. Advances in the identification of novel factors required in soybean nodulation, a process critical to sustainable agriculture and food security. J. Plant Biol. Soil Health 2013, 1, 6. [Google Scholar]
- Nasr Esfahani, M.; Sulieman, S.; Schulze, J.; Yamaguchi-Shinozaki, K.; Shinozaki, K.; Tran, LS. Mechanisms of physiological adjustment of N2 fixation in Cicer arietinum L. (chickpea) during early stages of water deficit: single or multi-factor controls. Plant J. 2014, 79, 964–980. [Google Scholar]
- Oldroyd, G.E.; Downie, J.A. Coordinating nodule morphogenesis with rhizobial infection in legumes. Annu. Rev. Plant Biol. 2008, 59, 519–546. [Google Scholar]
- Terpolilli, J.J.; Hood, G.A.; Poole, P.S. What determines the efficiency of N2-fixing Rhizobium-legume symbioses? Adv. Microb. Physiol. 2012, 60, 325–389. [Google Scholar]
- Sulieman, S.; Schulze, J.; Tran, LS. N-feedback regulation is synchronized with nodule carbon alteration in Medicago truncatula under excessive nitrate or low phosphorus conditions. J. Plant Physiol. 2014, 171, 407–410. [Google Scholar]
- Charpentier, M.; Oldroyd, G. How close are we to nitrogen-fixing cereals? Curr. Opin. Plant Biol. 2010, 13, 556–564. [Google Scholar]
- Beatty, P.H.; Good, A.G. Plant science—Future prospects for cereals that fix nitrogen. Science 2011, 333, 416–417. [Google Scholar]
- Oldroyd, G.E.; Dixon, R. Biotechnological solutions to the nitrogen problem. Curr. Opin. Biotechnol. 2014, 26, 19–24. [Google Scholar]
- Rogers, C.; Oldroyd, G.E. Synthetic biology approaches to engineering the nitrogen symbiosis in cereals. J. Exp. Bot. 2014, 65, 1939–1946. [Google Scholar]
- Symbiotic Nitrogen Fixation in Legume Nodules: Metabolism and Regulatory Mechanisms. Available online: https://www.mdpi.com/journal/ijms/special_issues/metabolism-regulatory (accessed on 10 September 2014).
- Janczarek, M.; Rachwał, K. Mutation in the pssA gene involved in exopolysaccharide synthesis leads to several physiological and symbiotic defects in Rhizobium leguminosarum bv trifolii. Int. J. Mol. Sci. 2013, 14, 23711–23735. [Google Scholar]
- Janczarek, M. Environmental signals and regulatory pathways that influence exopolysaccharide production in rhizobia. Int. J. Mol. Sci. 2011, 12, 7898–7933. [Google Scholar]
- Cabeza, R.A.; Lingner, A.; Liese, R.; Sulieman, S.; Senbayram, M.; Tränkner, M.; Dittert, K.; Schulze, J. The activity of nodules of the supernodulating mutant Mtsunn is not limited by photosynthesis under optimal growth conditions. Int. J. Mol. Sci. 2014, 15, 6031–6045. [Google Scholar]
- Schnabel, E.; Journet, E.P.; de Carvalho-Niebel, F.; Duc, G.; Frugoli, J. The Medicago truncatula SUNN gene encodes a CLV1-like leucine-rich repeat receptor kinase that regulates nodule number and root length. Plant Mol. Biol. 2005, 58, 809–822. [Google Scholar]
- Saito, A.; Tanabata, S.; Tanabata, T.; Tajima, S.; Ueno, M.; Ishikawa, S.; Ohtake, N.; Sueyoshi, K.; Ohyama, T. Effect of nitrate on nodule and root growth of soybean (Glycine max (L.) Merr.). Int. J. Mol. Sci. 2014, 15, 4464–4480. [Google Scholar]
- Delmotte, N.; Mondy, S.; Alunni, B.; Fardoux, J.; Chaintreuil, C.; Vorholt, J.A.; Giraud, E.; Gourion, B. A proteomic approach of Bradyrhizobium/Aeschynomene root and stem symbioses reveals the importance of the fixA locus for symbiosis. Int. J. Mol. Sci. 2014, 15, 3660–3670. [Google Scholar]
- Dean, J.M.; Mescher, M.C.; de Moraes, C.M. Plant dependence on rhizobia for nitrogen influences induced plant defenses and herbivore performance. Int. J. Mol. Sci. 2014, 15, 1466–1480. [Google Scholar]
- Zhang, S.; Wang, Y.; Li, K.; Zou, Y.; Chen, L.; Li, X. Identification of cold-responsive miRNAs and their target genes in nitrogen-fixing nodules of soybean. Int. J. Mol. Sci. 2014, 15, 13596–13614. [Google Scholar]
- Biswas, B.; Gresshoff, P.M. The role of symbiotic nitrogen fixation in sustainable production of biofuels. Int. J. Mol. Sci. 2014, 15, 7380–7397. [Google Scholar]
© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sulieman, S.; Tran, L.-S.P. Symbiotic Nitrogen Fixation in Legume Nodules: Metabolism and Regulatory Mechanisms. Int. J. Mol. Sci. 2014, 15, 19389-19393. https://doi.org/10.3390/ijms151119389
Sulieman S, Tran L-SP. Symbiotic Nitrogen Fixation in Legume Nodules: Metabolism and Regulatory Mechanisms. International Journal of Molecular Sciences. 2014; 15(11):19389-19393. https://doi.org/10.3390/ijms151119389
Chicago/Turabian StyleSulieman, Saad, and Lam-Son Phan Tran. 2014. "Symbiotic Nitrogen Fixation in Legume Nodules: Metabolism and Regulatory Mechanisms" International Journal of Molecular Sciences 15, no. 11: 19389-19393. https://doi.org/10.3390/ijms151119389
APA StyleSulieman, S., & Tran, L. -S. P. (2014). Symbiotic Nitrogen Fixation in Legume Nodules: Metabolism and Regulatory Mechanisms. International Journal of Molecular Sciences, 15(11), 19389-19393. https://doi.org/10.3390/ijms151119389