Nanostructured Guidance for Peripheral Nerve Injuries: A Review with a Perspective in the Oral and Maxillofacial Area
Abstract
:1. Introduction
2. Electrospun Nanofibers for Neural Tissue Engineering
2.1. Method of Production and Major Characteristics
2.1.1. Electrospun Synthetic Materials
2.1.2. Electrospun Natural Materials
2.1.3. Electrospun Biosynthetic Materials
2.2. In Vitro Studies
2.2.1. Nanostructured Electrospun Scaffold Architecture: Topographical Cues
2.2.2. Bioactive Factor Loaded on Nanostructured Electrospun Scaffolds: Biochemical Cues
2.3. In Vivo Studies
3. Self-Assembling Nanofibers for Neural Tissue Engineering
3.1. Method of Production and Major Characteristics
3.2. In Vitro Studies
3.3. In Vivo Studies
4. Perspectives in Oral and Maxillofacial Surgery
5. Conclusions
Acknowledgments
Conflicts of Interest
References
- Webber, M.J.; Stupp, S.I. Emerging peptide nanomedicine to regenerate tissues and organs. J. Intern. Med 2010, 267, 71–88. [Google Scholar]
- Garisto, G.A.; Gaffen, A.S.; Lawrence, H.P.; Tenenbaum, H.C.; Haas, D.A. Occurrence of paresthesia after dental local anesthetic administration in the United States. J. Am. Dental Assoc 2010, 141, 836–844. [Google Scholar]
- Ozkan, B.T.; Celik, S.; Durmus, E. Paresthesia of the mental nerve stem from periapical infection of mandibular canine tooth: A case report. Oral Surg., Oral Med., Oral Pathol., Oral Radiol., Endodontol 2008, 105, e28–e31. [Google Scholar]
- González-Martín, M.; Torres-Lagares, D.; Gutiérrez-Pérez, J.L.; Segura-Egea, J.J. Inferior alveolar nerve paresthesia after overfilling of endodontic sealer into the mandibular canal. J. Endod 2010, 36, 1419–1421. [Google Scholar]
- Neiva, R.F.; Gapski, R.; Wang, H.L. Morphometric analysis of implant-related anatomy in Caucasian skulls. J. Periodontol 2004, 75, 1061–1067. [Google Scholar]
- Jensen, J.; Reiche-Fischel, O.; Sindet-Pedersen, S. Nerve transposition and implant placement in the atrophic posterior mandibular alveolar ridge. J. Oral Maxillofac. Surg 1994, 52, 662–668. [Google Scholar]
- Singhal, D.; Douglas, R.; Robinson, S.; Wormald, P.J. The incidence of complications using new landmarks and a modified technique of canine fossa puncture. Am. J. Rhinol 2007, 21, 316–319. [Google Scholar]
- Greenstein, G.; Tarnow, D. The mental foramen and nerve: Clinical and anatomical factors related to dental implant placement: A literature review. J. Periodontol 2006, 77, 1933–1943. [Google Scholar]
- Peñarrocha, D.; Candel, E.; Calvo-Guirado, J.L.; Canullo, L.; Peñarrocha, M. Implants placed in the nasopalatine canal to rehabilitate severely atrophic maxillae: A retrospective study with long follow-up. J. Oral Implantol 2013. [Google Scholar] [CrossRef]
- Uchida, Y.; Noguchi, N.; Goto, M.; Yamashita, Y.; Hanihara, T.; Takamori, H.; Sato, I.; Kawai, T.; Yosue, T. Measurement of anterior loop length for the mandibular canal and diameter of the mandibular incisive canal to avoid nerve damage when installing endosseous implants in the interforaminal region: A second attempt introducing cone beam computed tomography. J. Oral Maxillofac. Surg 2009, 67, 744–750. [Google Scholar]
- Misch, C.E.; Resnik, R. Mandibular nerve neurosensory impairment after dental implant surgery: Management and protocol. Implant Dent 2010, 19, 378–386. [Google Scholar]
- Jerjes, W.; Upile, T.; Shah, P.; Nhembe, F.; Gudka, D.; Kafas, P.; McCarthy, E.; Abbas, S.; Patel, S.; Hamdoon, Z.; et al. Risk factors associated with injury to the inferior alveolar and lingual nerves following third molar surgery-revisited. Oral Surg., Oral Med., Oral Pathol., Oral Radiol., Endodontol 2010, 109, 335–345. [Google Scholar]
- Seddon, H.J. Three types of nerve injury. Brain 1943, 6, 237–288. [Google Scholar]
- Xie, J.; MacEwan, M.R.; Schwartz, A.G.; Xia, Y. Electrospun nanofibers for neural tissue engineering. Nanoscale 2010, 2, 35–44. [Google Scholar]
- Bagheri, S.C.; Meyer, R.A. Management of mandibular nerve injuries from dental implants. Atlas Oral Maxillofac. Surg. Clin. N. Am 2011, 19, 47–61. [Google Scholar]
- Gordon, T.; Sulaiman, O.; Boyd, J.G. Experimental strategies to promote functional recovery after peripheral nerve injuries. J. Peripher. Nerv. Syst 2003, 8, 236–250. [Google Scholar]
- Evans, P.J.; Midha, R.; Mackinnon, S.E. The peripheral nerve allograft: A comprehensive review of regeneration and neuroimmunology. Prog. Neurobiol 1994, 43, 187–233. [Google Scholar]
- Platt, J.L.; Vercellotti, G.M.; Dalmasso, A.P.; Matas, A.J.; Bolman, R.M.; Najarian, J.S.; Bach, F.H. Transplantation of discordant xenografts: A review of progress. Immunol. Today 1990, 11, 450–456. [Google Scholar]
- Whitlock, E.L.; Tuffaha, S.H.; Luciano, J.P.; Yan, Y.; Hunter, D.A.; Magill, C.K.; Moore, A.M.; Tong, A.Y.; Mackinnon, S.E.; Borschel, G.H. Processed allografts and type I collagen conduits for repair of peripheral nerve gaps. Muscle Nerve 2009, 39, 787–799. [Google Scholar]
- Saracino, G.A.; Cigognini, D.; Silva, D.; Caprini, A.; Gelain, F. Nanomaterials design and tests for neural tissue engineering. Chem. Soc. Rev 2013, 42, 225–262. [Google Scholar]
- U.S. National Science Foundation, Nanotechnology Definition; National Science Foundation: Arlington, VA, USA, 2000.
- Kumbar, S.G.; Nair, L.S.; Bhattacharyya, S.; Laurencin, C.T. Polymeric nanofibers as novel carriers for the delivery of therapeutic molecules. J. Nanosci. Nanotechnol 2006, 6, 2591–2607. [Google Scholar]
- Dahlin, R.L.; Kasper, F.K.; Mikos, A.G. Polymeric nanofibers in tissue engineering. Tissue Eng. Part B 2011, 17, 349–364. [Google Scholar]
- Liu, W.; Thomopoulos, S.; Xia, Y. Electrospun nanofibers for regenerative medicine. Adv. Healthcare Mater 2011, 1, 10–25. [Google Scholar]
- Liao, S.; Li, B.; Ma, Z.; Wei, H.; Chan, C.; Ramakrishna, S. Biomimetic electrospun nanofibers for tissue regeneration. Biomed. Mater 2006, 1, R45–R53. [Google Scholar]
- Panseri, S.; Cunha, J.; Lowery, C.; Del Carro, U.; Taraballi, F.; Amadio, S.; Vescovi, A.; Gelain, F. Electrospun micro- and nanofiber tubes for functional nervous regeneration in sciatic nerve transections. BMC Biotechnol 2008, 8, 39. [Google Scholar]
- Cao, H.; Liu, T.; Chew, S.Y. The application of nanofibrous scaffolds in neural tissue engineering. Adv. Drug Delivery Rev 2009, 61, 1055–1064. [Google Scholar]
- Koh, H.S.; Yong, T.; Chan, C.K.; Ramakrishna, S. Enhancement of neurite outgrowth using nanostructured scaffolds coupled with laminin. Biomaterials 2008, 29, 3574–3582. [Google Scholar]
- Ghasemi-Mobarakeh, L.; Prabhakaran, M.P.; Morshed, M.; Nasr-Esfahani, M.H.; Ramakrishna, S. Electrospun poly(epsilon-caprolactone)/gelatin nanofibrous scaffolds for nerve tissue engineering. Biomaterials 2008, 29, 4532–4539. [Google Scholar]
- Masaeli, E.; Morshed, M.; Nasr-Esfahani, M.H.; Sadri, S.; Hilderink, J.; van Apeldoorn, A.; van Blitterswijk, C.A.; Moroni, L. Fabrication, characterization and cellular compatibility of poly(hydroxy alkanoate) composite nanofibrous scaffolds for nerve tissue engineering. PLoS One 2013, 8, e57157. [Google Scholar]
- Chow, W.N.; Simpson, D.G.; Bigbee, J.W.; Colello, R.J. Evaluating neuronal and glial growth on electrospun polarized matrices: Bridging the gap in percussive spinal cord injuries. Neuron Glia Biol 2007, 3, 119–126. [Google Scholar]
- Kim, Y.T.; Haftel, V.K.; Kumar, S.; Bellamkonda, R.V. The role of aligned polymer fiber-based constructs in the bridging of long peripheral nerve gaps. Biomaterials 2008, 29, 3117–3127. [Google Scholar]
- Willerth, S.M.; Sakiyama-Elbert, S.E. Approaches to neural tissue engineering using scaffolds for drug delivery. Adv. Drug Delivery Rev 2007, 59, 325–338. [Google Scholar]
- Matthews, J.A.; Wnek, G.E.; Simpson, D.G.; Bowlin, G.L. Electrospinning of collagen nanofibers. Biomacromolecules 2002, 3, 232–238. [Google Scholar]
- Huang, Z.M.; Zhang, Y.Z.; Ramakrishna, S.; Lim, C.T. Electrospinning and mechanical characterization of gelatin nanofibers. Polymer 2004, 45, 5361–5368. [Google Scholar]
- Ohkawa, K.; Cha, D.; Kim, H.; Nishida, A.; Yamamoto, H. Electrospinning of chitosan. Macromol. Rapid Commun 2004, 25, 1600–1605. [Google Scholar]
- Qu, J.; Wang, D.; Wang, H.; Dong, Y.; Zhang, F.; Zuo, B.; Zhang, H. Electrospun silk fibroin nanofibers in different diameters support neurite outgrowth and promote astrocyte migration. J. Biomed. Mater. Res. Part A 2013, 101, 2667–2678. [Google Scholar]
- Yang, F.; Xu, C.Y.; Kotaki, M.; Wang, S.; Ramakrishna, S. Characterization of neural stem cells on electrospun poly(l-lactic acid) nanofibrous scaffold. J. Biomater. Sci., Polym. Ed 2004, 15, 1483–1497. [Google Scholar]
- Yang, F.; Murugan, R.; Wang, S.; Ramakrishna, S. Electrospinning of nano/micro scale poly(l-lactic acid) aligned fibers and their potential in neural tissue engineering. Biomaterials 2005, 26, 2603–2610. [Google Scholar]
- Corey, J.M.; Lin, D.Y.; Mycek, K.B.; Chen, Q.; Samuel, S.; Feldman, E.L.; Martin, D.C. Aligned electrospun nanofibers specify the direction of dorsal root ganglia neurite growth. J. Biomed. Mater. Res. Part A 2007, 83, 636–645. [Google Scholar]
- Subramanian, A.; Krishnan, U.M.; Sethuraman, S. Axially aligned electrically conducting biodegradable nanofibers for neural regeneration. J. Mater. Sci 2012, 23, 1797–1809. [Google Scholar]
- Wang, J.; Ye, R.; Wei, Y.; Wang, H.; Xu, X.; Zhang, F.; Qu, J.; Zuo, B.; Zhang, H. The effects of electrospun TSF nanofiber diameter and alignment on neuronal differentiation of human embryonic stem cells. J. Biomed. Mater. Res. Part A 2012, 100A, 632–645. [Google Scholar]
- Wang, Y.; Yao, M.; Zhou, J.; Zheng, W.; Zhou, C.; Dong, D.; Liu, Y.; Teng, Z.; Jiang, Y.; Wei, G.; et al. The promotion of neural progenitor cells proliferation by aligned and randomly oriented collagen nanofibers through β1 integrin/MAPK signaling pathway. Biomaterials 2011, 32, 6737–6744. [Google Scholar]
- Christopherson, G.T.; Song, H.; Mao, H.Q. The influence of fiber diameter of electrospun substrates on neural stem cell differentiation and proliferation. Biomaterials 2009, 30, 556–564. [Google Scholar]
- Ahmed, I.; Liu, H.Y.; Mamiya, P.C.; Ponery, A.S.; Babu, A.N.; Weik, T.; Schindler, M.; Meiners, S. Three-dimensional nanofibrillar surfaces covalently modified with tenascin-C-derived peptides enhance neuronal growth in vitro. J Biomed Res Part A 2006, 76, 851–860. [Google Scholar]
- Xie, J.; MacEwan, M.R.; Li, X.; Sakiyama-Elbert, S.E.; Xia, Y. Neurite outgrowth on nanofiber scaffolds with different orders, structures, and surface properties. ACS Nano 2009, 3, 1151–1159. [Google Scholar]
- Prabhakaran, M.P.; Venugopal, J.R.; Chyan, T.T.; Hai, L.B.; Chan, C.K.; Lim, A.Y.; Ramakrishna, S. Electrospun biocomposite nanofibrous scaffolds for neural tissue engineering. Tissue Eng. Part A 2008, 14, 1787–1797. [Google Scholar]
- Prabhakaran, M.P.; Vatankhah, E.; Ramakrishna, S. Electrospun aligned PHBV/Collagen nanofibers as substrates for nerve tissue engineering. Biotechnol. Bioeng 2013, 110, 2775–2784. [Google Scholar]
- Lam, H.; Patel, S.; Wang, A.; Chu, J.; Li, S. In vitro regulation of neural differentiation and axon growth by growth factors and bioactive nanofibers. Tissue Eng. Part A 2010, 16, 2641–2648. [Google Scholar]
- Madduri, S.; Papaloïzos, M.; Gander, B. Trophically and topographically functionalized silk fibroin nerve conduits for guided peripheral nerve regeneration. Biomaterials 2010, 31, 2323–2334. [Google Scholar]
- Timnak, A.; Gharebaghi, F.Y.; Shariati, R.P.; Bahrami, S.H.; Javadian, S.; Emami, S.H.; Shokrgozar, M.A. Fabrication of nano-structured electrospun collagen scaffold intended for nerve tissue engineering. J. Mater. Sci 2011, 22, 1555–1567. [Google Scholar]
- Bini, T.B.; Gao, S.; Tan, T.C.; Wang, S.; Lim, A.; Hai, L.B.; Ramakrishna, S. Electrospun poly(l-lactide-co-glycolide) biodegradable polymer nanofibre tubes for peripheral nerve regeneration. Nanotechnology 2004, 15, 1459–1464. [Google Scholar]
- Wang, W.; Itoh, S.; Matsuda, A.; Ichinose, S.; Shinomiya, K.; Hata, Y.; Tanaka, J. Influences of mechanical properties and permeability on chitosan nano/microfiber mesh tubes as a scaffold for nerve regeneration. J. Biomed. Mater. Res. Part A 2008, 84, 557–566. [Google Scholar]
- Wang, W.; Itoh, S.; Matsuda, A.; Aizawa, T.; Demura, M.; Ichinose, S.; Shinomiya, K.; Tanaka, J. Enhanced nerve regeneration through a bilayered chitosan tube: The effect of introduction of glycine spacer into the CYIGSR sequence. J. Biomed. Mater. Res. Part A 2008, 85, 919–928. [Google Scholar]
- Wang, W.; Itoh, S.; Konno, K.; Kikkawa, T.; Ichinose, S.; Sakai, K.; Ohkuma, T.; Watabe, K. Effects of Schwann cell alignment along the oriented electrospun chitosan nanofibers on nerve regeneration. J. Biomed. Mater. Res. Part A 2009, 91, 994–1005. [Google Scholar]
- Zhu, Y.; Wang, A.; Patel, S.; Kurpinski, K.; Diao, E.; Bao, X.; Kwong, G.; Young, W.L.; Li, S. Engineering bi-layer nanofibrous conduits for peripheral nerve regeneration. Tissue Eng. C 2011, 17, 705–715. [Google Scholar]
- Chew, S.Y.; Mi, R.; Hoke, A.; Leong, K.W. Aligned protein–polymer composite fibers enhance nerve regeneration: A potential tissue-engineering platform. Adv. Funct. Mater 2007, 17, 1288–1296. [Google Scholar]
- Hu, A.; Zuo, B.; Zhang, F.; Zhang, H.; Lan, Q. Evaluation of electronspun silk fibroin-based transplants used for facial nerve repair. Otol. Neurotol 2013, 34, 311–318. [Google Scholar]
- Zhou, K.; Nisbet, D.; Thomas, G.; Bernard, C.; Forsythe, J. Bio-nanotechnology approaches to neural tissue engineering. In Tissue Engineering; Eberil, D., Ed.; InTech: Rijeka, Croatia, 2010; pp. 459–483. [Google Scholar]
- Yang, Y.; Chen, X.; Ding, F.; Zhang, P.; Liu, J.; Gu, X. Biocompatibility evaluation of silk fibroin with peripheral nerve tissues and cells in vitro. Biomaterials 2007, 28, 1643–1652. [Google Scholar]
- Zhong, S.; Teo, W.E.; Zhu, X.; Beuerman, R.W.; Ramakrishna, S.; Yung, L.Y. An aligned nanofibrous collagen scaffold by electrospinning and its effects on in vitro fibroblast culture. J. Biomed. Mater. Res. Part A 2006, 79, 456–463. [Google Scholar]
- Zhong, S.P.; Teo, W.E.; Zhu, X.; Beuerman, R.; Ramakrishna, S.; Yung, L.Y. Development of a novel collagen–GAG nanofibrous scaffold via electrospinning. Mater. Sci. Eng.: C 2007, 27, 262–266. [Google Scholar]
- Zhan, X.; Gao, M.; Jiang, Y.; Zhang, W.; Wong, W.M.; Yuan, Q.; Su, H.; Kang, X.; Dai, X.; Zhang, W.; et al. Nanofiber scaffolds facilitate functional regeneration of peripheral nerve injury. Nanomedicine 2013, 9, 305–315. [Google Scholar]
- Whitesides, G.M.; Grzybowski, B. Self-assembly at all scales. Science 2002, 295, 2418–2421. [Google Scholar]
- Gelain, F. Novel opportunities and challenges offered by nanobiomaterials in tissue engineering. Int. J. Nanomed 2008, 3, 415–424. [Google Scholar]
- Jayaraman, K.; Kotaki, M.; Zhang, Y.; Mo, X.; Ramakrishna, S. Recent advances in polymer nanofibers. J. Nanosci. Nanotechnol 2004, 4, 52–65. [Google Scholar]
- Gelain, F.; Bottai, D.; Vescovi, A.; Zhang, S. Designer self-assembling peptide nanofiber scaffolds for adult mouse neural stem cell 3-dimensional cultures. PLoS One 2006, 1, e119. [Google Scholar]
- Silva, G.A.; Czeisler, C.; Niece, K.L.; Beniash, E.; Harrington, D.A.; Kessler, J.A.; Stupp, S.I. Selective differentiation of neural progenitor cells by high-epitope density nanofibers. Science 2004, 303, 1352–1355. [Google Scholar]
- Holmes, T.C.; De Lacalle, S.; Su, X.; Liu, G.; Rich, A.; Zhang, S. Extensive neurite outgrowth and active synapse formation on self-assembling peptide scaffolds. Proc. Natl. Acad. Sci. USA 2000, 97, 6728–6733. [Google Scholar]
- Zou, Z.; Zheng, Q.; Wu, Y.; Guo, X.; Yang, S.; Li, J.; Pan, H. Biocompatibility and bioactivity of designer self-assembling nanofiber scaffold containing FGL motif for rat dorsal root ganglion neurons. J. Biomed. Mater. Res. Part A 2010, 95, 1125–1131. [Google Scholar]
- Gelain, F.; Silva, D.; Caprini, A.; Taraballi, F.; Natalello, A.; Villa, O.; Nam, K.T.; Zuckermann, R.N.; Doglia, S.M.; Vescovi, A. BMHP1-derived self-assembling peptides: Hierarchically assembled structures with self-healing propensity and potential for tissue engineering applications. ACS Nano 2011, 22, 1845–1859. [Google Scholar]
- Zou, Z.; Liu, T.; Li, J.; Li, P.; Ding, Q.; Peng, G.; Zheng, Q.; Zeng, X.; Wu, Y.; Guo, X. Biocompatibility of functionalized designer self-assembling nanofiber scaffolds containing FRM motif for neural stem cells. J. Biomed. Res. Part A 2013. [Google Scholar] [CrossRef]
- Cunha, C.; Panseri, S.; Villa, O.; Silva, D.; Gelain, F. 3D culture of adult mouse neural stem cells within functionalized self-assembling peptide scaffolds. Int. J. Nanomed 2011, 6, 943–955. [Google Scholar]
- Koutsopoulos, S.; Zhang, S. Long-term three-dimensional neural tissue cultures in functionalize self-assembling peptide hydrogels, matrigel and collagen. Acta Biomater 2013, 9, 5162–5169. [Google Scholar]
- Bagheri, S.C.; Meyer, R.A. Management of trigeminal nerve injuries. In Current Therapy in Oral and Maxillofacial Surgery; Saunders: St. Louis, MO, USA, 2012; Volume Chapter 29, pp. 224–237. [Google Scholar]
- Jones, R.H. Repair of the trigeminal nerve: A review. Aust. Dental J 2010, 55, 112–119. [Google Scholar]
- Wolford, L.M.; Rodrigues, D.B. Nerve Grafts and Conduits. In Trigeminal Nerve Injuries; Miloro, M., Ed.; Springer: Chicago, IL, USA, 2013; pp. 271–290. [Google Scholar]
Acronym | Definition |
---|---|
PAN-MA | poly acrylonitrile-co-methylacrylate |
PCL | poly(ɛ-caprolactone) |
PCLEEP | copolymer of caprolactone and ethyl ethylene phosphate |
PDS | polydioxanone |
PES | polyethersulfone |
PGA | poly(glycolic acid) |
PHB | poly(3-hydroxybutyrate) |
PHBV | poly(3-hydroxybutyrate-co-3-hydroxyvalerate) |
PHT | poly(3-hexylthiophene) |
PLCL | poly(l-lactide-co-caprolactone) |
PLGA | poly(lactide-co-glycolide) |
PLLA | poly(l-lactic acid) |
PPG | poly(propylene glycol) |
References | Electrospun materials | Fiber orientation | Diameter of the fibers (nm) | Culture |
---|---|---|---|---|
Yang et al., 2004 [38] | PLLA | Random | 272 ± 77 | neural stem cell line C17.2 |
Yang et al., 2005 [39] | PLLA | Random Aligned | Average diameter: RANDOM 250 (1 wt%) 1500 (3 wt%) ALIGNED 300 (2 wt%) 1500 (5 wt%) | neural stem cell line C17.2 |
Corey et al., 2007 [40] | PLLA | Random Intermediate Aligned | 524 ± 305 (range: 150–1540) | rat dorsal root ganglia (DRG); human neuroblastoma cell lines (SH-EP and SH-SY5Y) |
Chow et al., 2007 [31] | PDS | Random Aligned | Not reported | rat dorsal root ganglia (DRG); rat astrocytes |
Subramanian et al., 2012 [41] | PLGA/PHT | Random Aligned | RANDOM 196 ± 98 ALIGNED 200 ± 80 | rat Schwann cells (CRL-2765) |
Qu et al., 2013 [37] | Silk fibroin (SF) | Random | 400 ± 76 800 ± 37 1200 ± 117 | rat subventricular zone (SVZ)-derived neurons; rat astrocytes |
Wang et al., 2012 [42] | Tussah silk fibroin (TSF) | Random Aligned | 400 ± 67 800 ± 35 | human embryonic stem cells (hESCs)-derived neural precursors (NPs) |
Wang et al., 2011 [43] | Collagen | Random Aligned | ALIGNED 694 ± 157 RANDOM 785 ± 177 | rat spinal cord derived neural progenitor cells (NPCs) |
Koh et al. 2008 [28] | PLLA/laminin | Random | 100–500 | PC 12 cells |
Christopherson et al., 2009 [44] | PES/laminin | 238 ± 45 749 ± 153 1452 ± 312 | rat hippocampus-derived adult NSCs (rNSCs) | |
Ahmed et al., 2006 [45] | Polyamide/neuroactive peptides derived from human tenascin-C | Random | 180 | (rat) cerebellar granule neurons, cerebral cortical neurons, hippocampal and ventral spinal cord neuronal cultures, dorsal root ganglia (DRG) |
Xie et al., 2009 [46] | PCL/laminin | Random Aligned | Not reported | primary dorsal root ganglia (DRG) |
Ghasemi-Mobarakeh et al., 2008 [29] | PCL/gelatine | Random Aligned | PCL: 431 ± 118 PCL/gelatin 50:50: 113 ± 33, PCL/gelatin 70:30: 189 ± 56 | neural stem cell line C17.2 |
Prabhakaran et al. 2008 [47] | PCL/chitosan | Random | PCL: 630 ± 40 Chitosan: 450 ± 48 PCL/chitosan: 190 ± 26 | rat Schwann cell (RT4-D6P2T) |
Prabhakaran et al., 2013 [48] | PHBV PHBV/collagen (50:50; 75:25) | Random Aligned | RANDOM PHBV: 472 ± 85 PHBV/Col(75:25): 266 ± 60 PHBV/Col(50:50): 260 ± 60 ALIGNED PHBV: 386 ± 74 PHBV/Col(75:25): 205 ± 50 PHBV/Col(50:50): 229 ± 65 | PC 12 cells |
Lam et al., 2010 [49] | PLLA PLLA + basic Fibroblast Growth Factor (bFGF) or Epidermal Growth Factor (EGF) PLLA + heparin + bFGF or EGF | Random Aligned | Not reported | human embryonic stem cell (ESC)–derived neural cells |
Madduri et al., 2010 [50] | silk fibroin silk fibroin + glial cell line-derived neurotrophic factor (GDNF) + nerve growth factor (NGF) | Random Aligned | 400–500 nm | chicken embryonic dorsal root ganglions (DRG) and spinal cord (SpC) |
Timnak et al., 2011 [51] | collagen + chondroitin-6-sulfate (C6S) | Random Aligned | 50–350 nm | SK-N-MC human neuroblastoma cell lines and human fibroblast |
References | Electrospun materials | Fiber orientation | Diameter of the fibers (nm) | Nerve injury model | Gap (mm) |
---|---|---|---|---|---|
Bini et al., 2004 [52] | PLGA | Random | - | Rat sciatic nerve | 10 |
Panseri et al., 2008 [26] | PCL PLGA/PCL | Random | PCL: ~2500–8000 PCL/PLGA: 140–500 (279 ± 87) | Rat sciatic nerve | 10 |
Wang et al., 2008 [53] | Chitosan | Random | DAc of 93%: peak <200 and has a downward-sloping distribution of diameters DAc of 78%: there is a single peak in the distribution centered around 400–600 | Rat sciatic nerve | 10 |
Wang et al., 2008 [54] | Chitosan + YIGSR laminin-1 sequence linked to 2 different glycine Spacers | Random | 700 ± 502 | Rat sciatic nerve | 10 |
Wang et al., 2009 [55] | Chitosan | Aligned (IL) + Random (OL) | most distributed under 400 | Rat sciatic nerve | 10 |
Zhu et al., 2011 [56] | PLCL/PPG | Aligned (IL) + Random (OL) | Not reported | Rat sciatic nerve | 10 |
Kim et al., 2008 [32] | PAN-MA | Aligned | 400–600 | Rat tibial nerve | 17 |
Chew et al., 2007 [57] | PCLEEP + Glial cell-Derived Neurotrophic Factor (GDNF) | Aligned | 5080 ± 50 | Rat sciatic nerve | 15 |
Hu et al., 2013 [58] | Silk fibroin (SF) | - | - | Rat facial nerve | 5 |
Sequence | Formula |
---|---|
RAD16-I | + − + − + − + − AcN-RADARADARADARADA-CNH2 |
RAD16-II | + + − − + + − − AcN-RARADADARARADADA-CNH2 |
Motif | Composition |
---|---|
RGD | Arginine-Glycine-Aspartic Acid |
RGDS | Arginine-Glycine-Aspartic Acid-Serine |
PRGDSGYRGDS | from collagen VI |
IKVAV | Isoleucine-lysine-valine-alanine-valine |
BMHP | bone marrow homing peptides |
SKPPGTSS | BMHP1 |
PFSSTKT | BMHP2 |
YIGSR | Tyrosin-Isoleucin-Glycin-Serine-Arginine |
GFLGFPT | bioregulatory mediator peptide from the family of myelo-peptides |
FGL | synthetic fibroblast growth factor receptor (FGFR) ligand derived from neural cell adhesion molecule (NCAM) |
FGL-NS | synthetic fibroblast growth factor receptor (FGFR) ligand derived from neural cell adhesion molecule (NCAM) + RADA16 |
FRM | synthetic fibroblast growth factor receptor (FGFR) ligand derived from the first fibronectin type III domain of neural cell adhesion |
FRM-NS | synthetic fibroblast growth factor receptor (FGFR) ligand derived from the first fibronectin type III domain of neural cell adhesion + RADA16 |
References | Self-assembled material | Cells type | Diameter of the fibers(nm) |
---|---|---|---|
Holmes et al., 2000 [69] | RAD16-I RAD16-II | PC12 cells; mouse cerebellar granule neurons; mouse hippocampal neurons; rat hippocampal neurons | 10 |
Gelain et al., 2006 [67] | RAD16-I + motifs | Adult mouse neural stem cells | 10 |
Zou et al., 2010 [70] | FGL-NS RADA16 | Rat dorsal root ganglions (DRG) | 38.2 ± 2.7 (FGL-NS) 16.9 ± 2.3 (RADA16) |
Gelain et al., 2011 [71] | RAD16-I + BMHP1 RAD16-I + different BMHP1 derived peptide sequence variations | cultured human neural stem cells | depends on scaffold type |
Silva et al., 2004 [68] | IKVAV | Murine neural progenitors cells (NPCs) | 5–8 |
Cunha et al., 2011 [73] | RADA16 RADA16 + BMHP1 RADA16 + BMHP2 RADA16 + RGD | mice neural stem cells | 10 (RADA16) 13–15 (RADA + motifs) |
Zou et al., 2013 [72] | RADA16 FRM-NS | rat neural stem cells | 16.5 ± 2.6 (RADA16) 36.3 ± 4.4 (FRM-NS) |
Koutsopoulos et al., 2013 [74] | (RADA)4 (RADA)4 + BMHP1 (RADA)4 + BMHP2 (RADA)4 + RGDS | rat neural stem cells | 6–10 |
© 2014 by the authors; licensee MDPI, Basel, Switzerland This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Sivolella, S.; Brunello, G.; Ferrarese, N.; Della Puppa, A.; D'Avella, D.; Bressan, E.; Zavan, B. Nanostructured Guidance for Peripheral Nerve Injuries: A Review with a Perspective in the Oral and Maxillofacial Area. Int. J. Mol. Sci. 2014, 15, 3088-3117. https://doi.org/10.3390/ijms15023088
Sivolella S, Brunello G, Ferrarese N, Della Puppa A, D'Avella D, Bressan E, Zavan B. Nanostructured Guidance for Peripheral Nerve Injuries: A Review with a Perspective in the Oral and Maxillofacial Area. International Journal of Molecular Sciences. 2014; 15(2):3088-3117. https://doi.org/10.3390/ijms15023088
Chicago/Turabian StyleSivolella, Stefano, Giulia Brunello, Nadia Ferrarese, Alessandro Della Puppa, Domenico D'Avella, Eriberto Bressan, and Barbara Zavan. 2014. "Nanostructured Guidance for Peripheral Nerve Injuries: A Review with a Perspective in the Oral and Maxillofacial Area" International Journal of Molecular Sciences 15, no. 2: 3088-3117. https://doi.org/10.3390/ijms15023088
APA StyleSivolella, S., Brunello, G., Ferrarese, N., Della Puppa, A., D'Avella, D., Bressan, E., & Zavan, B. (2014). Nanostructured Guidance for Peripheral Nerve Injuries: A Review with a Perspective in the Oral and Maxillofacial Area. International Journal of Molecular Sciences, 15(2), 3088-3117. https://doi.org/10.3390/ijms15023088