P-Glycoprotein and Drug Resistance in Systemic Autoimmune Diseases
Abstract
:1. Introduction
2. P-gp Expression and Function in the Immune System
3. Therapeutic Management and Drug Resistance in Systemic Lupus Erythematosus (SLE), Rheumatoid Arthritis (RA) and Psoriatic Arthritis (PsA)
4. P-gp and Mutidrug Drug Resistance (MDR) in SLE, RA and PsA
5. Conclusions
Acknowledgments
Conflicts of Interest
- Author ContributionsA. Picchianti Diamanti and M.M. Rosado have most contributed to the drafting of the manuscript; R. D’Amelio and B. Laganà carefully read and gave a relevant help in the revision; and M. Scarsella wrote the bibliography of the manuscript.
References
- Rosado, M.M.; Diamanti, A.P.; Capolunghi, F.; Carsetti, R. B cell modulation strategies in autoimmunity: The SLE example. Curr. Pharm. Des. 2011, 17, 3155–3165. [Google Scholar]
- Radstake, T.R.; Svenson, M.; Eijsbouts, A.M.; van den Hoogen, F.H.; Enevold, C.; van Riel, P.L.; Bendtzen, K. Formation of antibodies against infliximab and adalimumab strongly correlates with functional drug levels and clinical responses in rheumatoid arthritis. Ann. Rheum. Dis. 2009, 68, 1739–1745. [Google Scholar]
- Ramesh, R.; Kozhaya, L.; McKevitt, K.; Djuretic, I.M.; Carlson, T.J.; Quintero, M.A.; McCauley, J.L.; Abreu, M.T.; Unutmaz, D.; Sundrud, M.S. Pro-inflammatory human Th17 cells selectively express P-glycoprotein and are refractory to glucocorticoids. J. Exp. Med. 2014, 211, 89–104. [Google Scholar]
- Dean, M.; Rzhetsky, A.; Allikmets, R. The human ATP-binding cassette (ABC) transporter superfamily. Genome Res. 2001, 11, 1156–1166. [Google Scholar]
- Gottesman, M.M.; Pastan, I. Biochemistry of multidrug resistance mediated by the multidrug transporter. Annu. Rev. Biochem. 1993, 62, 385–427. [Google Scholar]
- Aouali, N.; Eddabra, L.; Macadre, J.; Morjani, H. Immunosuppressors and reversion of multidrug-resistance. Crit. Rev. Oncol. Hematol. 2005, 56, 61–70. [Google Scholar]
- Diaz-Borjon, A.; Richaud-Patin, Y.; Alvarado de la Barrera, C.; Jakez-Ocampo, J.; Ruiz-Arguelles, A.; Llorente, L. Multidrug resistance-1 (MDR-1) in rheumatic autoimmune disorders Part II: Increased P-glycoprotein activity in lymphocytes from systemic lupus erythematosus patients might affect steroid requirements for disease control. Jt. Bone Spine 2000, 67, 40–48. [Google Scholar]
- Van de Ven, R.; Oerlemans, R.; van der Heijden, J.W.; Scheffer, G.L.; de Gruijl, T.D.; Jansen, G.; Scheper, R.J. ABC drug transporters and immunity: Novel therapeutic targets in autoimmunity and cancer. J. Leukoc. Biol. 2009, 86, 1075–1087. [Google Scholar]
- Ambudkar, S.V.; Dey, S.; Hrycyna, C.A.; Ramachandra, M.; Pastan, I.; Gottesman, M.M. Biochemical cellular and pharmacological aspects of the multidrug transporter. Annu. Rev. Pharmacol. Toxicol. 1999, 39, 361–398. [Google Scholar]
- Drach, J.; Gsur, A.; Hamilton, G.; Zhao, S.; Angerler, J.; Fiegl, M.; Zojer, N.; Raderer, M.; Haberl, I.; Andreeff, M.; et al. Involvement of P-glycoprotein in the transmembrane transport of interleukin-2 (IL-2) IL-4 and interferon-γ in normal human T lymphocytes. Blood 1996, 88, 1747–1754. [Google Scholar]
- Randolph, G.J.; Beaulieu, S.; Pope, M.; Sugawara, I.; Hoffman, L.; Steinman, R.M.; Muller, W.A. A physiologic function for P-glycoprotein (MDR-1) during the migration of dendritic cells from skin via afferent lymphatic vessels. Proc. Natl. Acad. Sci. USA 1998, 95, 6924–6929. [Google Scholar]
- Zhang, J.; Alston, M.A.; Huang, H.; Rabin, R.L. Human T cell cytokine responses are dependent on multidrug resistance protein-1. Int. Immunol. 2006, 18, 485–493. [Google Scholar]
- Smit, J.J.; Schinkel, A.H.; Mol, C.A.; Majoor, D.; Mooi, W.J.; Jongsma, A.P.; Lincke, C.R.; Borst, P. Tissue distribution of the human MDR3 P-glycoprotein. Lab. Investig. 1994, 71, 638–649. [Google Scholar]
- Wang, Y.; Hao, D.; Stein, W.D.; Yang, L. A kinetic study of rhodamine123 pumping by P-glycoprotein. Biochim. Biophys. Acta 2006, 1758, 1671–1676. [Google Scholar]
- Bommhardt, U.; Cerottini, J.C.; MacDonald, H.R. Heterogeneity in P-glycoprotein (multidrug resistance) activity among murine peripheral T cells: Correlation with surface phenotype and effector function. Eur. J. Immunol. 1994, 24, 2974–2981. [Google Scholar]
- Kyle-Cezar, F.; Echevarria-Lima, J.; dos Santos Goldenberg, R.C.; Rumjanek, V.M. Expression of c-kit and Sca-1 and their relationship with multidrug resistance protein 1 in mouse bone marrow mononuclear cells. Immunology 2007, 121, 122–128. [Google Scholar]
- MacDonald, H.R.; Bommhardt, U.; Cerottini, J.C. Developmentally regulated expression of P-glycoprotein (multidrug resistance) activity in mouse thymocytes. Eur. J. Immunol. 1995, 25, 1457–1460. [Google Scholar]
- Robbiani, D.F.; Finch, R.A.; Jager, D.; Muller, W.A.; Sartorelli, A.C.; Randolph, G.J. The leukotriene C(4) transporter MRP1 regulates CCL19 (MIP-3β ELC)-dependent mobilization of dendritic cells to lymph nodes. Cell 2000, 103, 757–768. [Google Scholar]
- Lee, J.S.; Jung, I.D.; Lee, C.-M.; Noh, K.T.; Park, J.W.; Son, K.H.; Heo, D.R.; Shin, Y.K.; Kim, D.; Park, Y.-M. Venlafaxine inhibits the development and differentiation of dendritic cells through the regulation of P-glycoprotein. Int. Immunopharmacol. 2011, 11, 1348–1357. [Google Scholar]
- Schinkel, A.H.; Smit, J.J.; van Tellingen, O.; Beijnen, J.H.; Wagenaar, E.; van Deemter, L.; Mol, C.A.A.M.; van der Valk, M.A.; Robanus-Maandag, E.C.; te Riele, H.P.J.; et al. Disruption of the mouse mdr1a P-glycoprotein gene leads to a deficiency in the blood-brain barrier and to increased sensitivity to drugs. Cell 1994, 77, 491–502. [Google Scholar]
- Smit, J.J.M.; Schinkel, A.H.; Oude Elferink, R.P.J.; Groen, A.K.; Wagenaar, E.; van Deemter, L.; Mol, C.A.A.M.; Ottenhoff, R.; van der Lugt, N.M.T.; van Roon, M.A.; et al. Homozygous disruption of the murine mdr2 P-glycoprotein gene leads to a complete absence of phospholipid from bile and to liver disease. Cell 1993, 75, 451–462. [Google Scholar]
- Maggio-Price, L.; Bielefeldt-Ohmann, H.; Treuting, P.; Iritani, B.M.; Zeng, W.; Nicks, A.; Tsang, M.; Shows, D.; Morrissey, P.; Viney, J.L. Dual infection with Helicobacter bilis and Helicobacter hepaticus in P-glycoprotein-deficient mdr1a (−/−) mice results in colitis that progresses to dysplasia. Am. J. Pathol. 2005, 166, 1793–1806. [Google Scholar]
- Panwala, C.M.; Jones, J.C.; Viney, J.L. A novel model of inflammatory bowel disease: Mice deficient for the multiple drug resistance gene mdr1a spontaneously develop colitis. J. Immunol. 1998, 161, 5733–5744. [Google Scholar]
- Campbell, D.J.; Koch, M.A. Phenotypical and functional specialization of Foxp3+ regulatory T cells. Nat. Rev. Immunol. 2011, 11, 119–130. [Google Scholar]
- Feuerer, M.; Hill, J.A.; Mathis, D.; Benoist, C. Foxp3+ regulatory T cells: Differentiation specification subphenotypes. Nat. Immunol. 2009, 10, 689–695. [Google Scholar]
- Kim, J.M.; Rasmussen, J.P.; Rudensky, A.Y. Regulatory T cells prevent catastrophic autoimmunity throughout the lifespan of mice. Nat. Immunol. 2007, 8, 191–197. [Google Scholar]
- Sakaguchi, S. Naturally arising Foxp3-expressing CD25+ CD4+ regulatory T cells in immunological tolerance to self and non-self. Nat. Immunol. 2005, 6, 345–352. [Google Scholar]
- Tanner, S.M.; Staley, E.M.; Lorenz, R.G. Altered generation of induced regulatory T cells in the FVB mdr1a (−/−) mouse model of colitis. Mucosal Immunol. 2013, 6, 309–323. [Google Scholar]
- Chaudhary, P.M.; Roninson, I.B. Expression and activity of P-glycoprotein a multidrug efflux pump in human hematopoietic stem cells. Cell 1991, 66, 85–94. [Google Scholar]
- Haraguchi, S.; Ho, S.K.; Morrow, M.; Goodenow, M.M.; Sleasman, J.W. Developmental regulation of P-glycoprotein activity within thymocytes results in increased anti-HIV protease inhibitor activity. J. Leukoc. Biol. 2010, 90, 653–660. [Google Scholar]
- Pilarski, L.M.; Paine, D.; McElhaney, J.E.; Cass, C.E.; Belch, A.R. Multidrug transporter P-glycoprotein 170 as a differentiation antigen on normal human lymphocytes and thymocytes: Modulation with differentiation stage and during aging. Am. J. Hematol. 1995, 49, 323–335. [Google Scholar]
- Chaudhary, P.M.; Mechetner, E.B.; Roninson, I.B. Expression and activity of the multidrug resistance P-glycoprotein in human peripheral blood lymphocytes. Blood 1992, 80, 2735–2739. [Google Scholar]
- Drach, D.; Zhao, S.; Drach, J.; Mahadevia, R.; Gattringer, C.; Huber, H.; Andreeff, M. Subpopulations of normal peripheral blood and bone marrow cells express a functional multidrug resistant phenotype. Blood 1992, 80, 2729–2734. [Google Scholar]
- Klimecki, W.T.; Futscher, B.W.; Grogan, T.M.; Dalton, W.S. P-glycoprotein expression and function in circulating blood cells from normal volunteers. Blood 1994, 83, 2451–2458. [Google Scholar]
- Meaden, E.R.; Hoggard, P.G.; Khoo, S.H.; Back, D.J. Determination of P-gp and MRP1 expression and function in peripheral blood mononuclear cells in vivo. J. Immunol. Methods 2002, 262, 159–165. [Google Scholar]
- Lee, J.S.; Paull, K.; Alvarez, M.; Hose, C.; Monks, A.; Grever, M.; Fojo, A.T.; Bates, S.E. Rhodamine efflux patterns predict P-glycoprotein substrates in the National Cancer Institute drug screen. Mol. Pharmacol. 1994, 46, 627–638. [Google Scholar]
- Gottesman, M.M.; Fojo, T.; Bates, S.E. Multidrug resistance in cancer: Role of ATP-dependent transporters. Nat. Rev. Cancer 2002, 2, 48–58. [Google Scholar]
- Smyth, M.J.; Krasovskis, E.; Sutton, V.R.; Johnstone, R.W. The drug efflux protein P-glycoprotein additionally protects drug-resistant tumor cells from multiple forms of caspase-dependent apoptosis. Proc. Natl. Acad. Sci. USA 1998, 95, 7024–7029. [Google Scholar]
- Jones, K.; Bray, P.G.; Khoo, S.H.; Davey, R.A.; Meaden, E.R.; Ward, S.A.; Back, D.J. P-Glycoprotein and transporter MRP1 reduce HIV protease inhibitor uptake in CD4 cells: Potential for accelerated viral drug resistance? AIDS 2001, 15, 1353–1358. [Google Scholar]
- Tempestilli, M.; Gentilotti, E.; Tommasi, C.; Nicastri, E.; Martini, F.; de Nardo, P.; Narciso, P.; Pucillo, L.P. Determination of P-glycoprotein surface expression and functional ability after in vitro treatment with darunavir or raltegravir in lymphocytes of healthy donors. Int. Immunopharmacol. 2011, 16, 492–497. [Google Scholar]
- Tsujimura, S.; Saito, K.; Nakayamada, S.; Tanaka, Y. Relevance of multidrug resistance 1 and P-glycoprotein to drug resistance in patients with systemic lupus erythematosus. Histol. Histopathol. 2007, 22, 465–468. [Google Scholar]
- Ho, G.T.; Soranzo, N.; Nimmo, E.R.; Tenesa, A.; Goldstein, D.B.; Satsangi, J. ABCB1/MDR1 gene determines susceptibility and phenotype in ulcerative colitis: Discrimination of critical variants using a gene-wide haplotype tagging approach. Hum. Mol. Genet. 2006, 15, 797–805. [Google Scholar]
- Littman, D.R.; Rudensky, A.Y. Th17 and regulatory T cells in mediating and restraining inflammation. Cell 2010, 140, 845–858. [Google Scholar]
- Tan, E.M.; Cohen, A.S.; Fries, J.F.; Masi, A.T.; Mcshane, D.J.; Rothfield, N.F.; Schaller, J.G.; Talal, N.; Winchester, R.J. The 1982 revised criteria for the classification of systemic lupus erythematosus. Arthritis Rheumatol. 1982, 25, 1271–1277. [Google Scholar]
- D’Cruz, D.P.; Khamashta, M.A.; Hughes, G.R. Systemic lupus erythematosus. Lancet 2007, 369, 587–596. [Google Scholar]
- Bertoli, A.M.; Vila, L.M.; Reveille, J.D.; Alarcon, G.S. Systemic lupus erythaematosus in a multiethnic US cohort (LUMINA) LIII: Disease expression and outcome in acute onset lupus. Ann. Rheum. Dis. 2008, 67, 500–504. [Google Scholar]
- Ioannou, Y.; Isenberg, D.A. Current concepts for the management of systemic lupus erythematosus in adults: A therapeutic challenge. Postgrad. Med. J. 2002, 78, 599–606. [Google Scholar]
- Miescher, P.A.; Favre, H.; Lemoine, R.; Huang, Y.P. Drug combination therapy of systemic lupus erythematosus. Semin. Immunopathol. 1994, 16, 295–311. [Google Scholar]
- Isenberg, D.A.; Snaith, M.L.; Morrow, W.J.; Al-Khader, A.A.; Cohen, S.L.; Fisher, C.; Mowbray, J. Cyclosporin A for the treatment of systemic lupus erythematosus. Int. J. Immunopharmacol. 1981, 3, 163–169. [Google Scholar]
- Germano, V.; Picchianti Diamanti, A.; Ferlito, C.; Podesta, E.; Salemi, S.; Migliore, A.; D’Amelio, R.; Lagana, B. Cyclosporine A in the long-term management of systemic lupus erythematosus. J. Biol. Regul. Homeost. Agents 2011, 25, 397–403. [Google Scholar]
- Caccavo, D.; Lagana, B.; Mitterhofer, A.P.; Ferri, G.M.; Afeltra, A.; Amoroso, A.; Bonomo, L. Long-term treatment of systemic lupus erythematosus with cyclosporin A. Arthritis Rheumatol. 1997, 40, 27–35. [Google Scholar]
- Picchianti Diamanti, A.; Germano, V.; Ferlito, C.; Migliore, A.; D’Amelio, R.; Lagana, B. Health-related quality of life and disability in patients with rheumatoid early rheumatoid and early psoriatic arthritis treated with etanercept. Qual. Life Res. 2010, 19, 821–826. [Google Scholar]
- Smolen, J.S.; Landewe, R.; Breedveld, F.C.; Dougados, M.; Emery, P.; Gaujoux-Viala, C.; Gorter, S.; Knevel, R.; Nam, J.; Schoels, M. EULAR recommendations for the management of rheumatoid arthritis with synthetic and biological disease-modifying antirheumatic drugs. Ann. Rheum. Dis. 2010, 69, 964–975. [Google Scholar]
- Van der Heijden, J.W.; Dijkmans, B.A.; Scheper, R.J.; Jansen, G. Drug insight: Resistance to methotrexate and other disease-modifying antirheumatic drugs—From bench to bedside. Nat. Clin. Pract. Rheumatol. 2007, 3, 26–34. [Google Scholar]
- Day, R. Adverse reactions to TNF-α inhibitors in rheumatoid arthritis. Lancet 2002, 359, 540–541. [Google Scholar]
- Fraser, A.D.; van Kuijk, A.W.; Westhovens, R.; Karim, Z.; Wakefield, R.; Gerards, A.H.; Landwew, R.; Steinfeld, S.D.; Emery, P.; Dijkmans, B.A.C.; et al. A randomised double blind placebo controlled multicentre trial of combination therapy with methotrexate plus ciclosporin in patients with active psoriatic arthritis. Ann. Rheum. Dis. 2005, 64, 859–864. [Google Scholar]
- Mazzanti, G.; Coloni, L.; de Sabbata, G.; Paladini, G. Methotrexate and cyclosporin combined therapy in severe psoriatic arthritis A pilot study. Acta Derm. Venereol. Suppl. 1994, 186, 116–117. [Google Scholar]
- Migliore, A.; Bizzi, E.; Massafra, U.; Vacca, F.; Martin, L.S.; Ferlito, C.; Podesta, E.; Granata, M.; Lagana, B. Can Cyclosporine-A associated to methotrexate maintain remission induced by anti-TNF agents in rheumatoid arthritis patients? (Cynar pilot study). Int. J. Immunopathol. Pharmacol. 2010, 23, 783–790. [Google Scholar]
- Maillefert, J.F.; Maynadie, M.; Tebib, J.G.; Aho, S.; Walker, P.; Chatard, C.; Dulieu, V.; Bouvier, M.; Carli, P.M.; Tavernier, C. Expression of the multidrug resistance glycoprotein 170 in the peripheral blood lymphocytes of rheumatoid arthritis patients The percentage of lymphocytes expressing glycoprotein 170 is increased in patients treated with prednisolone. Br. J. Rheumatol. 1996, 35, 430–435. [Google Scholar]
- Yudoh, K.; Matsuno, H.; Nakazawa, F.; Yonezawa, T.; Kimura, T. Increased expression of multidrug resistance of P-glycoprotein on Th1 cells correlates with drug resistance in rheumatoid arthritis. Arthritis Rheumatol. 1999, 42, 2014–2015. [Google Scholar]
- Hider, S.L.; Owen, A.; Hartkoorn, R.; Khoo, S.; Back, D.; Silman, A.J.; Bruce, I.N. Down regulation of multidrug resistance protein-1 expression in patients with early rheumatoid arthritis exposed to methotrexate as a first disease-modifying antirheumatic drug. Ann. Rheum. Dis. 2006, 65, 1390–1393. [Google Scholar]
- Tsujimura, S.; Saito, K.; Nawata, M.; Nakayamada, S.; Tanaka, Y. Overcoming drug resistance induced by P-glycoprotein on lymphocytes in patients with refractory rheumatoid arthritis. Ann. Rheum. Dis. 2008, 67, 380–388. [Google Scholar]
- Tsujimura, S.; Saito, K.; Nakayamada, S.; Tanaka, Y. Etanercept overcomes P-glycoprotein-induced drug resistance in lymphocytes of patients with intractable rheumatoid arthritis. Mod. Rheumatol. 2010, 20, 139–146. [Google Scholar]
- Agarwal, V.; Mittal, S.K.; Misra, R. Expression of multidrug resistance-1 protein correlates with disease activity rather than the refractoriness to methotrexate therapy in rheumatoid arthritis. Clin. Rheumatol. 2009, 28, 427–433. [Google Scholar]
- Suzuki, K.; Saito, K.; Tsujimura, S.; Nakayamada, S.; Yamaoka, K.; Sawamukai, N.; Iwata, S.; Nawata, M.; Nakano, K.; Tanaka, Y. Tacrolimus a calcineurin inhibitor overcomes treatment unresponsiveness mediated by P-glycoprotein on lymphocytes in refractory rheumatoid arthritis. J. Rheumatol. 2010, 37, 512–520. [Google Scholar]
- Choe, J.Y.; Park, K.Y.; Park, S.H.; Lee, S.I.; Kim, S.K. Regulatory effect of calcineurin inhibitor tacrolimus on IL-6/sIL-6R-mediated RANKL expression through JAK2-STAT3-SOCS3 signaling pathway in fibroblast-like synoviocytes. Arthritis Res. Ther. 2013, 15, R26:1–R26:12. [Google Scholar]
- Kang, K.Y.; Ju, J.H.; Song, Y.W.; Yoo, D.H.; Kim, H.Y.; Park, S.H. Tacrolimus treatment increases bone formation in patients with rheumatoid arthritis. Rheumatol. Int. 2013, 33, 2159–2163. [Google Scholar]
- Kis, E.; Nagy, T.; Jani, M.; Molnar, E.; Janossy, J.; Ujhellyi, O.; Nemet, K.; Heredi-Szabo, K.; Krajcsi, P. Leflunomide and its metabolite A771726 are high affinity substrates of BCRP: Implications for drug resistance. Ann. Rheum. Dis. 2009, 68, 1201–1207. [Google Scholar]
- Picchianti Diamanti, A.; Rosado, M.; Germano, V.; Scarsella, M.; Giorda, E.; Podesta, E.; D’Amelio, R.; Carsetti, R.; Lagana, B. Reversion of resistance to immunosuppressive agents in three patients with psoriatic arthritis by cyclosporine A: Modulation of P-glycoprotein function. Clin. Immunol. 2010, 138, 9–13. [Google Scholar]
- Llorente, L.; Richaud-Patin, Y.; Diaz-Borjon, A.; Alvarado de la Barrera, C.; Jakez-Ocampo, J.; de la Fuente, H.; Gonzalez-Amaro, R.; Diaz-Jouanen, E. Multidrug resistance-1 (MDR-1) in rheumatic autoimmune disorders Part I: Increased P-glycoprotein activity in lymphocytes from rheumatoid arthritis patients might influence disease outcome. Jt. Bone Spine 2000, 67, 30–39. [Google Scholar]
- Tsujimura, S.; Saito, K.; Nakayamada, S.; Nakano, K.; Tanaka, Y. Clinical relevance of the expression of P-glycoprotein on peripheral blood lymphocytes to steroid resistance in patients with systemic lupus erythematosus. Arthritis Rheumatol. 2005, 52, 1676–1683. [Google Scholar]
- Henmi, K.; Yoshida, M.; Yoshikawa, N.; Hirano, T. P-glycoprotein functions in peripheral-blood CD4+ cells of patients with systemic lupus erythematosus. Biol. Pharm. Bull. 2008, 31, 873–878. [Google Scholar]
- Zhang, B.; Shi, Y.; Lei, T.C. Detection of active P-glycoprotein in systemic lupus erythematosus patients with poor disease control. Exp. Ther. Med. 2012, 4, 705–710. [Google Scholar]
- Levy, A.S.; Cunningham-Rundles, S.; Mazza, B.; Simm, M.; Gorlick, R.; Bussel, J. High P-glycoprotein-mediated export observed in patients with a history of idiopathic thrombocytopenic purpura. Br. J. Haematol. 2002, 118, 836–838. [Google Scholar]
- Lopez-Karpovitch, X.; Graue, G.; Crespo-Solis, E.; Piedras, J. Multidrug resistance-1 in T lymphocytes and natural killer cells of adults with idiopathic thrombocytopenic purpura: Effect of prednisone treatment. Arch. Med. Res. 2008, 39, 541–545. [Google Scholar]
- Ruiz-Soto, R.; Richaud-Patin, Y.; Lopez-Karpovitch, X.; Llorente, L. Multidrug resistance-1 (MDR-1) in autoimmune disorders III: Increased P-glycoprotein activity in lymphocytes from immune thrombocytopenic purpura patients. Exp. Hematol. 2003, 31, 483–487. [Google Scholar]
- De Iudicibus, S.; Franca, R.; Martelossi, S.; Ventura, A.; Decorti, G. Molecular mechanism of glucocorticoid resistance in inflammatory bowel disease. World J. Gastroenterol. 2011, 17, 1095–1108. [Google Scholar]
- Potocnik, U.; Ferkolj, I.; Glavac, D.; Dean, M. Polymorphisms in multidrug resistance 1 (MDR-1) gene are associated with refractory Crohn’s disease and ulcerative colitis. Genes Immun. 2004, 5, 530–539. [Google Scholar]
- Cucchiara, S.; Latiano, A.; Palmieri, O.; Canani, R.B.; D’Inca, R.; Guariso, G.; Vieni, G.; de Venuto, D.; Riegler, G.; de’Angelis, G.L. Polymorphisms of tumor necrosis factor-α but not MDR-1 influence response to medical therapy in pediatric-onset inflammatory bowel disease. J. Pediatr. Gastroenterol. Nutr. 2007, 44, 171–179. [Google Scholar]
© 2014 by the authors; licensee MDPI, Basel, Switzerland This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Picchianti-Diamanti, A.; Rosado, M.M.; Scarsella, M.; Laganà, B.; D'Amelio, R. P-Glycoprotein and Drug Resistance in Systemic Autoimmune Diseases. Int. J. Mol. Sci. 2014, 15, 4965-4976. https://doi.org/10.3390/ijms15034965
Picchianti-Diamanti A, Rosado MM, Scarsella M, Laganà B, D'Amelio R. P-Glycoprotein and Drug Resistance in Systemic Autoimmune Diseases. International Journal of Molecular Sciences. 2014; 15(3):4965-4976. https://doi.org/10.3390/ijms15034965
Chicago/Turabian StylePicchianti-Diamanti, Andrea, Maria Manuela Rosado, Marco Scarsella, Bruno Laganà, and Raffaele D'Amelio. 2014. "P-Glycoprotein and Drug Resistance in Systemic Autoimmune Diseases" International Journal of Molecular Sciences 15, no. 3: 4965-4976. https://doi.org/10.3390/ijms15034965
APA StylePicchianti-Diamanti, A., Rosado, M. M., Scarsella, M., Laganà, B., & D'Amelio, R. (2014). P-Glycoprotein and Drug Resistance in Systemic Autoimmune Diseases. International Journal of Molecular Sciences, 15(3), 4965-4976. https://doi.org/10.3390/ijms15034965