Current Strategies to Improve the Bioactivity of PEEK
Abstract
:1. Introduction
2. Surface Modification
2.1. Surface Treatment
2.1.1. Physical Treatment
2.1.2. Chemical Treatment
2.2. Surface Coating
3. PEEK Composites
3.1. Conventional PEEK Composites
3.2. Nano-Sized PEEK Composites
4. Conclusions and Outlooks
Acknowledgments
Conflicts of Interest
References
- Adell, R.; Lekholm, U.; Rockler, B.; Branemark, P.I. A 15-year study of osseointegrated implants in the treatment of the edentulous jaw. Int. J. Oral Surg 1981, 10, 387–416. [Google Scholar]
- Aziz-Kerrzo, M.; Conroy, K.G.; Fenelon, A.M.; Farrell, S.T.; Breslin, C.B. Electrochemical studies on the stability and corrosion resistance of titanium-based implant materials. Biomaterials 2001, 22, 1531–1539. [Google Scholar]
- Ribeiro, D.A.; Matsumoto, M.A.; Padovan, L.E.; Marques, M.E.; Salvadori, D.M. Genotoxicity of corrosion eluates obtained from endosseous implants. Implant. Dent 2007, 16, 101–109. [Google Scholar]
- Huiskes, R. Stress shieding and bone resorption in THA: Clinical vs. computer-simulation studies. Acta Orthop. Belg 1993, 59, 118–129. [Google Scholar]
- Huiskes, R.; Weinans, H.; Rietberge, V.B. The relationship between stress shielding and bone resorption around total hip stems and the effects of flexible materials. Clin. Orthop. Relat. Res 1992, 274, 124–134. [Google Scholar]
- Kitamura, E.; Stegaroiu, R.; Nomura, S. Biomechanical aspects of marginal bone resorption around osseointegrated implants: Considerations based on a three-dimensional finite element analysis. Clin. Oral Implant. Res 2004, 15, 401–412. [Google Scholar]
- Isidor, F. Influence of forces on peri-implant bone. Clin. Oral Implant. Res 2006, 17, 8–17. [Google Scholar]
- Thomas, P.; Maier, S.; Summer, B. Allergie reactions to metal implants. Materialwissenschaft Werkstofftechnik 2004, 35, 997–1000. [Google Scholar]
- Kokubo, T.; Kim, H.-M.; Kawashita, M. Novel bioactive materials with different mechanical properties. Biomaterials 2003, 24, 2161–2175. [Google Scholar]
- Ramakrishna, S.; Mayer, J.; Wintermantel, E.; Leong, K.W. Biomedical applications of polyer-composite materials: A review. Compos. Sci. Technol 2001, 61, 1189–1224. [Google Scholar]
- Boccaccini, A.R.; Blaker, J.J. Bioactive composite materials for tissue engineering scaffolds. Expert Rev. Med. Devices 2005, 2, 303–317. [Google Scholar]
- Black, J.; Hastings, G.W. Handbook of Biomaterials Properties; Chapman and Hall: London, UK, 1998; pp. 270–283. [Google Scholar]
- Eschbach, L. Nonresorbable polymers in bone surgery. Injury 2000, 31, 22–27. [Google Scholar]
- Rigby, R.B. Engineering Thermoplastics Properties and Applications; Marcel Dekker: New York, NY, USA, 1985; p. 15. [Google Scholar]
- Kurtz, S.M.; Devine, J.N. PEEK biomaterials in trauma, orthopedic, and spinal implants. Biomaterials 2007, 28, 4845–4869. [Google Scholar]
- Jiya, T.; Smit, T.; Deddens, J. Posterior lumbar interbody fusion using nonresorbable polyetheretherketone vs. resorbable Poly-l-Lactide-Co-d,l-lactide fusion devices. Spine 2009, 34, 233–237. [Google Scholar]
- Park, H.W.; Lee, J.K.; Moon, S.J.; Seo, S.K.; Lee, J.H.; Kim, S.H. The efficacy of the synthetic interbody cage and grafton for anterior cervical fusion. Spine 2009, 34, E591–E595. [Google Scholar]
- Toth, J.M.; Wang, M.; Estes, B.T.; Scifert, J.L.; Seim, H.B., 3rd; Turner, A.S. Polyetheretherketone as a biomaterial for spinal applications. Biomaterials 2006, 27, 324–334. [Google Scholar]
- Jarman-Smith, M. Evolving uses for implantable PEEK and PEEK based compounds. Med. Device Technol 2008, 19, 12–15. [Google Scholar]
- Williams, D. Polyetheretherketone for long-term implantable devices. Med. Device Technol 2008, 19, 10–11. [Google Scholar]
- Godara, A.; Raabe, D.; Green, S. The influence of sterilization processes on the micromechanical properties of carbon fiber-reinforced PEEK composites for bone implant applications. Acta Biomater 2007, 3, 209–220. [Google Scholar]
- Wenz, L.M.; Merritt, K.; Brown, S.A.; Moet, A.; Steffee, A.D. In vitro biocompatibility of polyetheretherketone and polysulfone composites. J. Biomed. Mater. Res 1990, 24, 207–215. [Google Scholar]
- Rivard, C.-H.; Rhalmi, S.; Coillard, C. In vivo biocompatibility testing of peek polymer for a spinal implant system: A study in rabbits. J. Biomed. Mater. Res 2002, 62, 488–498. [Google Scholar]
- Nieminen, T.; Kallela, I.; Wuolijoki, E.; Kainulainen, H.; Hiidenheimo, I.; Rantala, I. Amorphous and crystalline polyetheretherketone: Mechanical properties and tissue reactions during a 3-year follow-up. J. Biomed. Mater. Res. A 2008, 84, 377–383. [Google Scholar]
- Katzer, A.; Marquardt, H.; Westendorf, J.; Wening, J.V.; Foerster, G.V. Polyetheretherketonecytotoxicity and mutagenicityin vitro. Biomaterials 2002, 23, 1749–1759. [Google Scholar]
- Wang, H.; Xu, M.; Zhang, W.; Kwok, D.T.; Jiang, J.; Wu, Z.; Chu, P.K. Mechanical and biological characteristics of diamond-like carbon coated poly aryl-ether-ether-ketone. Biomaterials 2010, 31, 8181–8187. [Google Scholar]
- Briem, D.; Strametz, S.; Schröder, K.; Meenen, N.M.; Lehmann, W.; Linhart, W.; Ohl, A.; Rueger, J.M. Response of primary fibroblasts and osteoblasts to plasma treated polyetheretherketone (PEEK) surfaces. J. Mater. Sci. Mater. Med 2005, 16, 671–677. [Google Scholar]
- Liston, E.M. Plasma treatment for improved bonding: A review. J. Adhes 1989, 30, 199–218. [Google Scholar]
- Ha, S.-W.; Kirch, M.; Birchler, F.; Eckert, K.-L.; Mayer, J.; Wintermantel, E.; Sittig, C.; Pfund-Klingenfuss, I.; Textor, M.; Spencer, N.D.; et al. Surface activation of polyetheretherketone (PEEK) and formation of calcium phosphate coatings by precipitation. Mater. Sci. Mater. Med 1997, 8, 683–690. [Google Scholar]
- Awaja, F.; Zhang, S.; James, N.; McKenzie, D.R. Enhanced autohesive bonding of polyetheretherketone (PEEK) for biomedical applications using a methane/oxygen plasma treatment. Plasma Process. Polym 2010, 7, 1010–1021. [Google Scholar]
- Awaja, F.; Bax, D.V.; Zhang, S.; James, N.; McKenzie, D.R. Cell adhesion to PEEK treated by plasma immersion ion implantation and deposition for active medical implants. Plasma Proc. Polym 2012, 9, 355–362. [Google Scholar]
- Brydone, A.S.; Morrison, D.S.S.; Stormonth-Darling, J.; Meek, R.D.M.; Tanner, K.E.; Gadegaard, N. Design and fabrication of a 3D nanopatterned PEEK implant for cortical bone regeneration in a rabbit model. Eur. Cells Mater 2012, 24, 39. [Google Scholar]
- Waser-Althaus, J.; Salamon, A.; Waser, M.; Padeste, C.; Kreutzer, M.; Pieles, U.; Müller, B.; Peters, K. Differentiation of human mesenchymal stem cells on plasma-treated polyetheretherketone. J. Mater. Sci. Mater. Med 2014, 25, 515–525. [Google Scholar]
- Khoury, J.; Kirkpatrick, S.R.; Maxwell, M.; Cherian, R.E.; Kirkpatrick, A.; Svrluga, R.C. Neutral atom beam technique enhances bioactivity of PEEK. Nucl. Instrum. Meth. B 2013, 307, 630–634. [Google Scholar]
- Kirkpatrick, A.; Kirkpatrick, S.; Walsh, M.; Chau, S.; Mack, M.; Harrison, S.; Svrluga, R.; Khoury, J. Investigation of accelerated neutral atom beams created from gas cluster ion beams. Nucl. Instrum. Meth. B 2013, 307, 281–289. [Google Scholar]
- Noiset, O.; Schneider, Y.J.; Marchand-Brynaert, J. Fibronectin adsorption or/and covalent grafting on chemically modified PEEK film surfaces. J. Biomater. Sci. Polym. Ed 1999, 10, 657–677. [Google Scholar]
- Noiset, O.; Schneider, Y.J.; Marchand-Brynaert, J. Adhesion and growth of CaCo2 cells on surface-modified PEEK substrata. J. Biomater. Sci. Polym. Ed 2000, 11, 767–786. [Google Scholar]
- Zhao, Y.; Wong, H.M.; Wang, W.; Li, P.; Xu, Z.; Chong, E.Y.; Yan, C.H.; Yeung, K.W.; Chu, P.K. Cytocompatibility, osseointegration, and bioactivity of three-dimensional porous and nanostructured network on polyetheretherketone. Biomaterials 2013, 34, 9264–9277. [Google Scholar]
- Hench, L.L.; Wilson, J. An Introduction to Bioceramics; World Scientific Publishing Co: Singapore, Singapore, 1993; pp. 139–171. [Google Scholar]
- Roeder, R.K.; Converse, G.L.; Kane, R.J.; Yue, W. Hydroxyapatite-reinforced polymer biocomposites for synthetic bone substitutes. JOM 2008, 60, 38–45. [Google Scholar]
- Thamaraiselvi, T.V.; Rajeswari, S. Biological evaluation of bioceramic materials—A review. Trends Biomater. Artif. Organs 2004, 18, 9–17. [Google Scholar]
- Jarcho, M. Calcium phosphate ceramics as hard tissue prosthetics. Clin. Orthop. Relat. Res 1981, 157, 259–278. [Google Scholar]
- Lee, J.H.; Jang, H.L.; Lee, K.M.; Baek, H.R.; Jin, K.; Hong, K.S.; Noh, J.H.; Lee, H.K. In vitro and in vivo evaluation of the bioactivity of hydroxyapatite-coated polyetheretherketone biocomposites created by cold spray technology. Acta Biomater 2013, 9, 6177–6187. [Google Scholar]
- Barkarmo, S.; Wennerberg, A.; Hoffman, M.; Kjellin, P.; Breding, K.; Handa, P.; Stenport, V. Nano-hydroxyapatite-coated PEEK implants: A pilot study in rabbit bone. J. Biomed. Mater. Res. A 2012, 101A, 456–471. [Google Scholar]
- Hahn, B.-D.; Park, D.-S.; Choi, J.-J.; Ryu, J.; Yoon, W.-H.; Choi, J.-H.; Kim, J.-W.; Ahn, C.-W.; Kim, H.-E.; Yoon, B.-H.; et al. Osteoconductive hydroxyapatite coated PEEK for spinal fusion surgery. Appl. Surf. Sci 2013, 283, 6–11. [Google Scholar]
- Rabiei, A.; Sandukas, S. Processing and evaluation of bioactive coatings on polymeric implants. J. Biomed. Mater. Res. A 2013, 101A, 2621–2629. [Google Scholar]
- Jung, H.-D.; Sun Park, H.; Kang, M.-H.; Lee, S.-M.; Kim, H.-E.; Estrin, Y.; Koh, Y.-H. Polyetheretherketone/magnesium composite selectively coated with hydroxyapatite for enhanced In vitro bio-corrosion resistance and biocompatibility. Mater. Lett 2014, 116, 20–22. [Google Scholar]
- Noort, R.V. Titanium: The implant material of today. J. Mater. Sci 1987, 22, 3801–3811. [Google Scholar]
- Yao, C.; Storey, D.; Webster, T.J. Nanostructured metal coatings on polymers increase osteoblast attachment. Int. J. Nanomed 2007, 2, 487–492. [Google Scholar]
- Cook, S.D.; Rust-Dawicki, A.M. Preliminary evaluation of titanium-coated PEEK dental implants. J. Oral Implantol 1995, 21, 176–181. [Google Scholar]
- Han, C.M.; Lee, E.J.; Kim, H.E.; Koh, Y.H.; Kim, K.N.; Ha, Y.; Kuh, S.U. The electron beam deposition of titanium on polyetheretherketone (PEEK) and the resulting enhanced biological properties. Biomaterials 2010, 31, 3465–3470. [Google Scholar]
- Ha, S.-W.; Eckert, K.-L.; Wintermantel, E.; Gruner, H.; Guecheva, M.; Vonmont, H. NaOH treatment of vacuum-plasma-sprayed titanium on carbon fibre-reinforced poly(etheretherketone). J. Mater. Sci. Mater. Med 1997, 8, 881–886. [Google Scholar]
- Devine, D.M.; Hahn, J.; Richards, R.G.; Gruner, H.; Wieling, R.; Pearce, S.G. Coating of carbon fiber-reinforced polyetheretherketone implants with titanium to improve bone apposition. J. Biomed. Mater. Res. B 2013, 101, 591–598. [Google Scholar]
- Shan, C.X.; Hou, X.; Choy, K.-L. Corrosion resistance of TiO2 films grown on stainless steel by atomic layer deposition. Surf. Coat. Technol 2008, 202, 2399–2402. [Google Scholar]
- Harle, J.; Kim, H.W.; Mordan, N.; Knowles, J.C.; Salih, V. Initial responses of human osteoblasts to sol-gel modified titanium with hydroxyapatite and titania composition. Acta Biomater 2006, 2, 547–556. [Google Scholar]
- Tsou, H.-K.; Hsieh, P.-Y.; Chung, C.-J.; Tang, C.-H.; Shyr, T.-W.; He, J.-L. Low-temperature deposition of anatase TiO2 on medical grade polyetheretherketone to assist osseous integration. Surf. Coat. Technol 2009, 204, 1121–1125. [Google Scholar]
- Tsou, H.K.; Hsieh, P.Y.; Chi, M.H.; Chung, C.J.; He, J.L. Improved osteoblast compatibility of medical-grade polyetheretherketone using arc ionplated rutile/anatase titanium dioxide films for spinal implants. J. Biomed. Mater. Res. A 2012, 100, 2787–2792. [Google Scholar]
- Chi, M.-H.; Tsou, H.-K.; Chung, C.-J.; He, J.-L. Biomimetic hydroxyapatite grown on biomedical polymer coated with titanium dioxide interlayer to assist osteocompatible performance. Thin Solid Films 2013, 549, 98–102. [Google Scholar]
- Han, C.M.; Jang, T.S.; Kim, H.E.; Koh, Y.H. Creation of nanoporous TiO2 surface onto polyetheretherketone for effective immobilization and delivery of bone morphogenetic protein. J. Biomed. Mater. Res. A 2014, 102, 793–800. [Google Scholar]
- Dennes, T.J.; Schwartz, J. A nanoscale adhesion layer to promote cell attachment on PEEK. J. Am. Chem. Soc 2009, 131, 3456–3457. [Google Scholar]
- Boccaccini, A.R.; Peters, C.; Roether, J.A.; Eifler, D.; Misra, S.K.; Minay, E.J. Electrophoretic deposition of polyetheretherketone (PEEK) and PEEK/bioglass® coatings on NiTi shape memory alloy wires. J. Mater. Sci 2006, 41, 8152–8159. [Google Scholar]
- Moskalewicz, T.; Seuss, S.; Boccaccini, A.R. Microstructure and properties of composite polyetheretherketone/bioglass® coatings deposited on Ti-6Al-7Nb alloy for medical applications. Appl. Sur. Sci 2013, 273, 62–67. [Google Scholar]
- Bakar, M.S.A.; Cheang, P.; Khor, K.A. Tensile properties and microstructural analysis of spheroidized hydroxyapatite/poly(etheretherketone) biocomposites. Mater. Sci. Eng. A 2003, 345, 55–63. [Google Scholar]
- Tang, S.; Cheang, P.; AbuBakar, M.S.; Khor, K.A.; Liao, K. Tension–tension fatigue behavior of hydroxyapatite reinforced polyetheretherketone composites. Int. J. Fatigue 2004, 26, 49–57. [Google Scholar]
- Converse, G.L.; Yue, W.; Roeder, R.K. Processing and tensile properties of hydroxyapatite-whisker-reinforced polyetheretherketone. Biomaterials 2007, 28, 927–935. [Google Scholar]
- Abu Bakar, M.S.; Cheng, M.H.W.; Tang, S.M.; Yu, S.C.; Liao, K.; Tan, C.T.; Khor, K.A.; Cheang, P. Tensile properties, tension–tension fatigue and biological response of polyetheretherketone-hydroxyapatite composites for load-bearing orthopedic implants. Biomaterials 2003, 24, 2245–2250. [Google Scholar]
- Bakar, M.S.A.; Cheang, P.; Khor, K.A. Mechanical properties of injection molded hydroxyapatite–polyetheretherketone. Compos. Sci. Technol 2003, 63, 421–425. [Google Scholar]
- Zhang, Y.; Hao, L.; Savalani, M.M.; Harris, R.A.; di Silvio, L.; Tanner, K.E. In vitro biocompatibility of hydroxyapatite-reinforced polymeric composites manufactured by selective laser sintering. J. Biomed. Mater. Res. A 2009, 91, 1018–1027. [Google Scholar]
- Ma, R.; Weng, L.; Bao, X.; Ni, Z.; Song, S.; Cai, W. Characterization of in situ synthesized hydroxyapatite/polyetheretherketone composite materials. Mater. Lett 2012, 71, 117–119. [Google Scholar]
- Ma, R.; Weng, L.; Bao, X.; Song, S.; Zhang, Y. In vivo biocompatibility and bioactivity of in situ synthesized hydroxyapatite/polyetheretherketone composite materials. J. Appl. Polym. Sci 2013, 127, 2581–2587. [Google Scholar]
- Kokubo, T.; Takadama, H. How useful is SBF in predicting in vivo bone bioactivity? Biomaterials 2006, 27, 2907–2915. [Google Scholar]
- Yu, S.; Hariram, K.P.; Kumar, R.; Cheang, P.; Aik, K.K. In vitro apatite formation and its growth kinetics on hydroxyapatite/polyetheretherketone biocomposites. Biomaterials 2005, 26, 2343–2352. [Google Scholar]
- Invibio Biomaterial Solutions Announces Global Launch of “PEEK-OPTIMA HA Enhanced Polymer”—A New PEEK-Based Biomaterial Designed for Superior Bone Apposition. Available online: http://www.prweb.com/releases/2013/9/prweb11099082.htm (accessed on 14 Match 2014).
- Tan, K.H.; Chua, C.K.; Leong, K.F.; Cheah, C.M.; Cheang, P.; Abu Bakar, M.S.; Cha, S.W. Scaffold development using selective laser sintering of polyetheretherketone-hydroxyapatite biocomposite blends. Biomaterials 2003, 24, 3115–3123. [Google Scholar]
- Tan, K.H.; Chua, C.K.; Leong, K.F.; Naing, M.W.; Cheah, C.M. Fabrication and characterization of three-dimensional poly(ether-ether-ketone)/hydroxyapatite biocomposite scaffolds using laser sintering. Proc. Inst. Mech. Eng. H 2005, 219, 183–194. [Google Scholar]
- Converse, G.L.; Conrad, T.L.; Merrill, C.H.; Roeder, R.K. Hydroxyapatite whisker-reinforced polyetherketoneketone bone ingrowth scaffolds. Acta Biomater 2010, 6, 856–863. [Google Scholar]
- Wong, K.L.; Wong, C.T.; Liu, W.C.; Pan, H.B.; Fong, M.K.; Lam, W.M.; Cheung, W.L.; Tang, W.M.; Chiu, K.Y.; Luk, K.D.; et al. Mechanical properties and in vitro response of strontium-containing hydroxyapatite/polyetheretherketone composites. Biomaterials 2009, 30, 3810–3817. [Google Scholar]
- Kim, I.Y.; Sugino, A.; Kikuta, K.; Ohtsuki, C.; Cho, S.B. Bioactive composites consisting of PEEK and calcium silicate powders. J. Biomater. Appl 2009, 24, 105–118. [Google Scholar]
- Lin, T.W.; Corvelli, A.A.; Frondoza, C.G.; Roberts, J.C.; Hungerford, D.S. Glass peek composite promotes proliferation and osteocalcin production of human osteoblastic cells. J. Biomed. Mater. Res 1997, 36, 137–144. [Google Scholar]
- Corvelli, A.A.; Roberts, J.C.; Biermann, P.J.; Cranmer, J.H. Characterization of a PEEK composite segmental bone replacement implant. J. Mater. Sci 1999, 34, 2421–2431. [Google Scholar]
- Pohle, D.; Ponader, S.; Rechtenwald, T.; Schmidt, M.; Schlegel, K.A.; Münstedt, H.; Neukam, F.W.; Nkenke, E.; von Wilmowsky, C. Processing of three-dimensional laser sintered polyetheretherketone composites and testing of osteoblast proliferation in vitro. Macromol. Symp. 2007, 253, 65–70. [Google Scholar]
- Von Wilmowsky, C.; Vairaktaris, E.; Pohle, D.; Rechtenwald, T.; Lutz, R.; Munstedt, H.; Koller, G.; Schmidt, M.; Neukam, F.W.; Schlegel, K.A.; et al. Effects of bioactive glass and beta-TCP containing three-dimensional laser sintered polyetheretherketone composites on osteoblasts in vitro. J. Biomed. Mater. Res. A 2008, 87, 896–902. [Google Scholar]
- Petrovic, L.; Pohle, D.; Munstedt, H.; Rechtenwald, T.; Schlegel, K.A.; Rupprecht, S. Effect of βTCP filled polyetheretherketone on osteoblast cell proliferation in vitro. J. Biomed. Sci. 2006, 13, 41–46. [Google Scholar]
- Wang, L.; Weng, L.; Song, S.; Sun, Q. Mechanical properties and microstructure of polyetheretherketone—Hydroxyapatite nanocomposite materials. Mater. Lett 2010, 64, 2201–2204. [Google Scholar]
- Wang, L.; Weng, L.; Song, S.; Zhang, Z.; Tian, S.; Ma, R. Characterization of polyetheretherketone-hydroxyapatite nanocomposite materials. Mater. Sci. Eng. A 2011, 528, 3689–3696. [Google Scholar]
- Horch, R.A.; Shahid, N.; Mistry, A.S.; Timmer, M.D.; Mikos, A.G.; Barron, A.R. Nanoreinforcement of poly(propylene fumarate)-based networks with surface modified alumoxane nanoparticles for bone tissue engineering. Biomacromolecules 2004, 5, 1990–1998. [Google Scholar]
- Shi, X.; Hudson, J.L.; Spicer, P.P.; Tour, J.M.; Krishnamoorti, R.; Mikos, A.G. Rheological behaviour and mechanical characterization of injectable poly(propylene fumarate)/single-walled carbon nanotube composites for bone tissue engineering. Nanotechnology 2005, 16, S531–S538. [Google Scholar]
- Ma, R.; Weng, L.; Fang, L.; Luo, Z.; Song, S. Structure and mechanical performance of in situ synthesized hydroxyapatite/polyetheretherketone nanocomposite materials. J. Sol-Gel Sci. Technol 2012, 62, 52–56. [Google Scholar]
- Kriparamanan, R.; Aswath, P.; Zhou, A.; Tang, L.; Nguyen, K.T. Nanotopography: Cellular responses to nanostructured materials. J. Nanosci. Nanotechnol 2006, 6, 1905–919. [Google Scholar]
- Stevens, B.; Yang, Y.; Mohandas, A.; Stucker, B.; Nquyen, K.T. A review of materials, fabrication methods, and strategies used to enhance bone regeneration in engineered bone tissues. J. Biomed. Mater. Res. B 2008, 8, 573–582. [Google Scholar]
- Njuguna, J.; Pielichowski, K.; Desai, S. Nanofiller-reinforced polymer nanocomposites. Polym. Adv. Technol 2008, 19, 947–959. [Google Scholar] [Green Version]
- Díez-Pascual, A.M.; Naffakh, M.; Marco, C.; Ellis, G.; Gómez-Fatou, M.A. High-performance nanocomposites based on polyetherketones. Prog. Mater. Sci 2012, 57, 1106–1190. [Google Scholar]
- Webster, T.J.; Siegel, R.W.; Biios, R. Design and evaluation of nanophase alumina for orthopaedic dental applications. Nanostruct. Mater 1999, 12, 983–986. [Google Scholar]
- Webster, T.J.; Siegel, R.W.; Bizios, R. Osteoblast adhesion on nanophase ceramics. Biomaterials 1999, 20, 1221–1227. [Google Scholar]
- Webster, T.J.; Ergun, C.; Doremus, R.H.; Siegel, R.W.; Bizios, R. Enhanced functions of osteoblasts on nanophase ceramics. Biomaterials 2000, 21, 1803–1810. [Google Scholar]
- Gutwein, L.G.; Webster, T.J. Osteoblast and chrondrocyte proliferation in the presence of alumina and titania nanoparticles. J. Nanopart. Res 2002, 4, 231–238. [Google Scholar]
- Webster, T.J.; Ergun, C.; Doremus, R.H.; Siegel, R.W.; Bizios, R. Enhanced osteoclast-like cell functions on nanophase ceramics. Biomaterials 2001, 22, 1327–1333. [Google Scholar]
- Li, K.; Yeung, C.Y.; Yeung, K.W.K.; Tjong, S.C. Sintered hydroxyapatite/polyetheretherketone nanocomposites: Mechanical behavior and biocompatibility. Adv. Eng. Mater 2012, 14, B155–B165. [Google Scholar]
- Wu, X.; Liu, X.; Wei, J.; Ma, J.; Deng, F.; Wei, S. Nano-TiO2/PEEK bioactive composite as a bone substitute material: In vitro and in vivo studies. Int. J. Nanomed 2012, 7, 1215–1225. [Google Scholar]
PEEK composites | Fillers (name, size, form) | Processing techniques | Research results related the bioactivity of the composites | Reference |
---|---|---|---|---|
HA/PEEK | Conventional HA particles | Melt compounding, granulation and injection molding | N/R | [63,64,66,67] |
HA/PEEK | Conventional HA whiskers | Powder processing and compression molding | N/R | [65] |
HA/PEEK | Conventional HA particles | Selective laser sintering | Cell tests: with improved osteoblast growth compared to TMX and PVC; higher HA contents with enhanced cell proliferation and osteogenic differentiation. | [68] |
HA/PEEK | Conventional HA powders | In situ synthetic process | In vivo: the new bone tissues surrounding the composite grow faster with a higher HA content. | [69,70] |
HA/PEEK | Conventional HA powders | Mixing, compaction and pressureless sintering | SBF immersion test: the 40 vol %-HA composite was covered by apatite-layer after 3 days; the growth rate increased with HA volume fraction. | [72] |
Porous HA/PEEK | Conventional HA particles | Leaching of particulate technique | In vivo: formation of fibro-vascular tissue within the pores at 6 weeks and mature bone at 16 weeks. | [66] |
Porous HA/PEEK | Conventional HA powers | Selective laser sintering | SBF immersion test and cell tests: with precipitation of apatite-layers; with positive cell adhesion and growth compared to control (no specimens). | [74,75] |
Sr-HA/ PEEK | Conventional Sr-HA powers | Mixing, compression and molding | SBF immersion test and cell tests: with improved apatite-formation ability and mineralization compared to HA/PEEK or pure PEEK. | [77] |
CS/PEEK | Conventional CS powers | Mixing and compaction | SBF immersion test: except for pure PEEK, all of the CS-containing composites promoted apatite-formation. | [78] |
Glass/PEEK | Conventional Chopped E-glass fibers | N/A | Cell tests: with improved cell proliferation, ALP activity and OC production compared to polystyrene. | [79] |
β-TCP/PEEK | Conventional β-TCP powers | Injection and molding | Cell tests: with inhibited cell proliferation, but with no concentration-dependent decrease. | [83] |
Carbon black/ β-TCP/PEEK | Nano-sized carbon black powers, Conventional β-TCP powers | Laser sintering | Cell tests: with no improvement of cell proliferation compared to pure PEEK and carbon black/PEEK. | [81,82] |
Carbon black/ bioglass/PEEK | Nano-sized carbon black powers, Conventional bioglass powers | Laser sintering | Cell tests: with improvement of cell proliferation compared to PEEK, carbon black/PEEK, and carbon black/β-TCP/PEEK. | [82] |
HA/PEEK | Nano-sized HA particles | Compounding and injection molding | N/R | [84,85] |
HA/PEEK | Nano-sized HA particles | In situ synthetic process | N/R | [88] |
HA/PEEK | Nano-sized HA rods | Powder processing and sintering | Cell tests: with improved apatite-formation ability, cell adhesion and proliferation compared to pure PEEK. | [98] |
TiO2/PEEK | Nano-sized TiO2 particles | Mixing compression and molding | Cell tests: with improved cell attachment and spreading compared with pure PEEK; In vivo: with improved bone regeneration around the implants compared to pure PEEK. | [99] |
© 2014 by the authors; licensee MDPI, Basel, Switzerland This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Ma, R.; Tang, T. Current Strategies to Improve the Bioactivity of PEEK. Int. J. Mol. Sci. 2014, 15, 5426-5445. https://doi.org/10.3390/ijms15045426
Ma R, Tang T. Current Strategies to Improve the Bioactivity of PEEK. International Journal of Molecular Sciences. 2014; 15(4):5426-5445. https://doi.org/10.3390/ijms15045426
Chicago/Turabian StyleMa, Rui, and Tingting Tang. 2014. "Current Strategies to Improve the Bioactivity of PEEK" International Journal of Molecular Sciences 15, no. 4: 5426-5445. https://doi.org/10.3390/ijms15045426
APA StyleMa, R., & Tang, T. (2014). Current Strategies to Improve the Bioactivity of PEEK. International Journal of Molecular Sciences, 15(4), 5426-5445. https://doi.org/10.3390/ijms15045426