Next Issue
Volume 15, May
Previous Issue
Volume 15, March
 
 
ijms-logo

Journal Browser

Journal Browser

Int. J. Mol. Sci., Volume 15, Issue 4 (April 2014) – 121 articles , Pages 5193-7048

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Section
Select all
Export citation of selected articles as:
1616 KiB  
Article
LIM Mineralization Protein-1 Inhibits the Malignant Phenotypes of Human Osteosarcoma Cells
by Huiwen Liu, Lu Huang, Zhongzu Zhang, Zhanming Zhang, Zhiming Yu, Xiang Chen, Zhuo Chen, Yongping Zen, Dong Yang, Zhimin Han, Yong Shu, Min Dai and Kai Cao
Int. J. Mol. Sci. 2014, 15(4), 7037-7048; https://doi.org/10.3390/ijms15047037 - 23 Apr 2014
Cited by 10 | Viewed by 6245
Abstract
Osteosarcoma (OS), also known as osteogenic sarcoma, is the most common primary malignancy of bone tumor in children and adolescents. However, its underlying molecular pathogenesis is still only vaguely understood. Recently, LIM mineralization protein-1 (LMP-1) was reported to be an essential [...] Read more.
Osteosarcoma (OS), also known as osteogenic sarcoma, is the most common primary malignancy of bone tumor in children and adolescents. However, its underlying molecular pathogenesis is still only vaguely understood. Recently, LIM mineralization protein-1 (LMP-1) was reported to be an essential positive regulator of osteoblast differentiation. In the present study, we found that the expression of LMP-1 is downregulated in OS tissues compared with adjacent normal tissues. Moreover, we restored the expression of LMP-1 through a recombinant adenovirus. Overexpression of LMP-1 inhibited cell proliferation and invasion, arrested cell cycle progression, and induced apoptosis in vitro. Finally, ectopic LMP-1 expression suppressed the expression of Runx2 and BMP-2 in OS cells. These data demonstrate that LMP-1 is an essential tumor suppressor in the OS pathological process, which will provide a new opportunity for discovering and identifying novel effective treatment strategies. Full article
(This article belongs to the Section Biochemistry)
Show Figures

207 KiB  
Short Note
Single Nucleotide Polymorphisms in Growth Hormone Gene and Their Association with Growth Traits in Siniperca chuatsi (Basilewsky)
by Changxu Tian, Min Yang, Liyuan Lv, Yongchao Yuan, Xufang Liang, Wenjie Guo, Yi Song and Cheng Zhao
Int. J. Mol. Sci. 2014, 15(4), 7029-7036; https://doi.org/10.3390/ijms15047029 - 22 Apr 2014
Cited by 39 | Viewed by 5822
Abstract
Growth hormone (GH) has been considered as a candidate gene for growth traits in fish. In this study, polymorphisms of the GH gene were evaluated for associations with growth traits in 282 Siniperca chuatsi individuals. Using directly sequencing, four single nucleotide [...] Read more.
Growth hormone (GH) has been considered as a candidate gene for growth traits in fish. In this study, polymorphisms of the GH gene were evaluated for associations with growth traits in 282 Siniperca chuatsi individuals. Using directly sequencing, four single nucleotide polymorphisms (SNPs) were identified in GH gene, with two mutations in intron 4 (g.4940A>C, g.4948A>T), one mutation in exon 5 (g.5045T>C) and one in intron 5 (g.5234T>G). Notably, three of them were significantly associated with growth performance, particularly for g.4940A>C which was highly correlated with all the four growth traits. In conclusion, our results demonstrated that these SNPs in GH gene could influence growth performance of S.chuatsi and could be used for marker-assisted selection (MAS) in this species. Full article
(This article belongs to the Section Biochemistry)
7471 KiB  
Article
Human Bone Marrow Mesenchymal Stem Cell-Derived Hepatocytes Improve the Mouse Liver after Acute Acetaminophen Intoxication by Preventing Progress of Injury
by Peggy Stock, Sandra Brückner, Sandra Winkler, Matthias M. Dollinger and Bruno Christ
Int. J. Mol. Sci. 2014, 15(4), 7004-7028; https://doi.org/10.3390/ijms15047004 - 22 Apr 2014
Cited by 54 | Viewed by 10499
Abstract
Mesenchymal stem cells from human bone marrow (hMSC) have the potential to differentiate into hepatocyte-like cells in vitro and continue to maintain important hepatocyte functions in vivo after transplantation into host mouse livers. Here, hMSC were differentiated into hepatocyte-like cells in vitro (hMSC-HC) [...] Read more.
Mesenchymal stem cells from human bone marrow (hMSC) have the potential to differentiate into hepatocyte-like cells in vitro and continue to maintain important hepatocyte functions in vivo after transplantation into host mouse livers. Here, hMSC were differentiated into hepatocyte-like cells in vitro (hMSC-HC) and transplanted into livers of immunodeficient Pfp/Rag2−/− mice treated with a sublethal dose of acetaminophen (APAP) to induce acute liver injury. APAP induced a time- and dose-dependent damage of perivenous areas of the liver lobule. Serum levels of aspartate aminotransferase (AST) increased to similar levels irrespective of hMSC-HC transplantation. Yet, hMSC-HC resided in the damaged perivenous areas of the liver lobules short-term preventing apoptosis and thus progress of organ destruction. Disturbance of metabolic protein expression was lower in the livers receiving hMSC-HC. Seven weeks after APAP treatment, hepatic injury had completely recovered in groups both with and without hMSC-HC. Clusters of transplanted cells appeared predominantly in the periportal portion of the liver lobule and secreted human albumin featuring a prominent quality of differentiated hepatocytes. Thus, hMSC-HC attenuated the inflammatory response and supported liver regeneration after acute injury induced by acetaminophen. They hence may serve as a novel source of hepatocyte-like cells suitable for cell therapy of acute liver diseases. Full article
(This article belongs to the Special Issue Molecular Mechanisms of Human Liver Diseases)
Show Figures

196 KiB  
Review
Drug-Induced Hepatotoxicity: Metabolic, Genetic and Immunological Basis
by Dolores B. Njoku
Int. J. Mol. Sci. 2014, 15(4), 6990-7003; https://doi.org/10.3390/ijms15046990 - 22 Apr 2014
Cited by 60 | Viewed by 10362
Abstract
Drug-induced hepatotoxicity is a significant cause of acute liver failure and is usually the primary reason that therapeutic drugs are removed from the commercial market. Multiple mechanisms can culminate in drug hepatotoxicity. Metabolism, genetics and immunology separately and in concert play distinct and [...] Read more.
Drug-induced hepatotoxicity is a significant cause of acute liver failure and is usually the primary reason that therapeutic drugs are removed from the commercial market. Multiple mechanisms can culminate in drug hepatotoxicity. Metabolism, genetics and immunology separately and in concert play distinct and overlapping roles in this process. This review will cover papers we feel have addressed these mechanisms of drug-induced hepatotoxicity in adults following the consumption of commonly used medications. The aim is to generate discussion around “trigger point” papers where the investigators generated new science or provided additional contribution to existing science. Hopefully these discussions will assist in uncovering key areas that need further attention. Full article
(This article belongs to the Special Issue Xenobiotic Metabolism)
Show Figures

Graphical abstract

744 KiB  
Article
Synthesis of Environmentally Friendly Highly Dispersed Magnetite Nanoparticles Based on Rosin Cationic Surfactants as Thin Film Coatings of Steel
by Ayman M. Atta, Gamal A. El-Mahdy, Hamad A. Al-Lohedan and Sami A. Al-Hussain
Int. J. Mol. Sci. 2014, 15(4), 6974-6989; https://doi.org/10.3390/ijms15046974 - 22 Apr 2014
Cited by 56 | Viewed by 11103
Abstract
This work presents a new method to prepare monodisperse magnetite nanoparticles capping with new cationic surfactants based on rosin. Core/shell type magnetite nanoparticles were synthesized using bis-N-(3-levopimaric maleic acid adduct-2-hydroxy) propyl-triethyl ammonium chloride (LPMQA) as capping agent. Fourier transform infrared [...] Read more.
This work presents a new method to prepare monodisperse magnetite nanoparticles capping with new cationic surfactants based on rosin. Core/shell type magnetite nanoparticles were synthesized using bis-N-(3-levopimaric maleic acid adduct-2-hydroxy) propyl-triethyl ammonium chloride (LPMQA) as capping agent. Fourier transform infrared spectroscopy (FTIR) was employed to characterize the nanoparticles chemical structure. Transmittance electron microscopies (TEM) and X-ray powder diffraction (XRD) were used to examine the morphology of the modified magnetite nanoparticles. The magnetite dispersed aqueous acid solution was evaluated as an effective anticorrosion behavior of a hydrophobic surface on steel. The inhibition effect of magnetite nanoparticles on steel corrosion in 1 M HCl solution was investigated using potentiodynamic polarization curves and electrochemical impedance spectroscopy (EIS). Results obtained from both potentiodynamic polarisation and EIS measurements reveal that the magnetite nanoparticle is an effective inhibitor for the corrosion of steel in 1.0 M HCl solution. Polarization data show that magnetite nanoparticles behave as a mixed type inhibitor. The inhibition efficiencies obtained from potentiodynamic polarization and EIS methods are in good agreement. Full article
(This article belongs to the Section Materials Science)
Show Figures

733 KiB  
Article
Systemic Immune Effects of Titanium Dioxide Nanoparticles after Repeated Intratracheal Instillation in Rat
by Yanyun Fu, Yanqiu Zhang, Xuhong Chang, Yingjian Zhang, Shumei Ma, Jing Sui, Lihong Yin, Yuepu Pu and Geyu Liang
Int. J. Mol. Sci. 2014, 15(4), 6961-6973; https://doi.org/10.3390/ijms15046961 - 22 Apr 2014
Cited by 38 | Viewed by 8077
Abstract
The potential immune effects of titanium dioxide nanoparticles (nano-TiO2) are raising concern. Our previous study verified that nano-TiO2 induce local immune response in lung tissue followed by intratracheal instillation administration. In this study, we aim to evaluate the systemic immune [...] Read more.
The potential immune effects of titanium dioxide nanoparticles (nano-TiO2) are raising concern. Our previous study verified that nano-TiO2 induce local immune response in lung tissue followed by intratracheal instillation administration. In this study, we aim to evaluate the systemic immune effects of nano-TiO2. Sprague Dawley rats were treated by intratracheal instillation with nano-TiO2 at doses of 0.5, 4, and 32 mg/kg body weight, micro-TiO2 with 32 mg/kg body weight and 0.9% NaCl, respectively. The exposure was conducted twice a week, for four consecutive weeks. Histopathological immune organs from exposed animals showed slight congestion in spleen, generally brown particulate deposition in cervical and axillary lymph node. Furthermore, immune function response was characterized by increased proliferation of T cells and B cells following mitogen stimulation and enhanced natural killer (NK) cell killing activity in spleen, accompanying by increased number of B cells in blood. No significant changes of Th1-type cytokines (IL-2 and INF-γ) and Th2-type cytokines (TNF-α and IL-6) were observed. Intratracheal exposure to nano-TiO2 may be one of triggers to be responsible for the systemic immune response. Further study is needed to confirm long-lasting lymphocyte responses and the potential mechanisms. Full article
(This article belongs to the Section Molecular Toxicology)
Show Figures

1636 KiB  
Article
Doublecortin May Play a Role in Defining Chondrocyte Phenotype
by Dongxia Ge, Qing-Song Zhang, Jovanny Zabaleta, Qiuyang Zhang, Sen Liu, Brendan Reiser, Bruce A. Bunnell, Stephen E. Braun, Michael J. O'Brien, Felix H. Savoie and Zongbing You
Int. J. Mol. Sci. 2014, 15(4), 6941-6960; https://doi.org/10.3390/ijms15046941 - 22 Apr 2014
Cited by 6 | Viewed by 6959
Abstract
Embryonic development of articular cartilage has not been well understood and the role of doublecortin (DCX) in determination of chondrocyte phenotype is unknown. Here, we use a DCX promoter-driven eGFP reporter mouse model to study the dynamic gene expression profiles in [...] Read more.
Embryonic development of articular cartilage has not been well understood and the role of doublecortin (DCX) in determination of chondrocyte phenotype is unknown. Here, we use a DCX promoter-driven eGFP reporter mouse model to study the dynamic gene expression profiles in mouse embryonic handplates at E12.5 to E13.5 when the condensed mesenchymal cells differentiate into either endochondral chondrocytes or joint interzone cells. Illumina microarray analysis identified a variety of genes that were expressed differentially in the different regions of mouse handplate. The unique expression patterns of many genes were revealed. Cytl1 and 3110032G18RIK were highly expressed in the proximal region of E12.5 handplate and the carpal region of E13.5 handplate, whereas Olfr538, Kctd15, and Cited1 were highly expressed in the distal region of E12.5 and the metacarpal region of E13.5 handplates. There was an increasing gradient of Hrc expression in the proximal to distal direction in E13.5 handplate. Furthermore, when human DCX protein was expressed in human adipose stem cells, collagen II was decreased while aggrecan, matrilin 2, and GDF5 were increased during the 14-day pellet culture. These findings suggest that DCX may play a role in defining chondrocyte phenotype. Full article
(This article belongs to the Special Issue The Chondrocyte Phenotype in Cartilage Biology)
Show Figures

Graphical abstract

577 KiB  
Article
Protective Effect of Resveratrol against IL-1β-Induced Inflammatory Response on Human Osteoarthritic Chondrocytes Partly via the TLR4/MyD88/NF-κB Signaling Pathway: An “in Vitro Study”
by Li Liu, Hailun Gu, Huimin Liu, Yongliang Jiao, Keyu Li, Yue Zhao, Li An and Jun Yang
Int. J. Mol. Sci. 2014, 15(4), 6925-6940; https://doi.org/10.3390/ijms15046925 - 22 Apr 2014
Cited by 87 | Viewed by 8074
Abstract
Resveratrol is a natural polyphenolic compound that prevents inflammation in chondrocytes and animal models of osteoarthritis (OA) via yet to be defined mechanisms. The purpose of this study was to determine whether the protective effect of resveratrol on IL-1β-induced human articular chondrocytes was [...] Read more.
Resveratrol is a natural polyphenolic compound that prevents inflammation in chondrocytes and animal models of osteoarthritis (OA) via yet to be defined mechanisms. The purpose of this study was to determine whether the protective effect of resveratrol on IL-1β-induced human articular chondrocytes was associated with the TLR4/MyD88/NF-кB signaling pathway by incubating human articular chondrocytes (harvested from osteoarthritis patients) with IL-1β before treatment with resveratrol. Cell viability was evaluated using the MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay and TNFα levels in culture supernatants were measured by ELISA(Enzymelinked immunosorbent assay). The levels of TLR4 and its downstream signaling targets (MyD88 and TRAF6) and IL-1β were assessed by measuring the levels of mRNA and protein expression by real-time RT-PCR and western blot analysis, respectively, in addition to assessing NF-кB activation. In addition, TLR4 siRNA was used to block TLR4 expression in chondrocytes further demonstrating that resveratrol prevented IL-1β-mediated inflammation by TLR4 inhibition. We found that resveratrol prevented IL-1β-induced reduction in cell viability. Stimulation of chondrocytes with IL-1β caused a significant up-regulation of TLR4 and its downstream targets MyD88 and TRAF6 resulting in NF-кB activation associated with the synthesis of IL-1β and TNFα. These IL-1β-induced inflammatory responses were all effectively reversed by resveratrol. Furthermore, activation of NF-кB in chondrocytes treated with TLR4 siRNA was significantly attenuated, but not abolished, and exposure to resveratrol further reduced NF-кB translocation. These data suggested that resveratrol prevented IL-1β-induced inflammation in human articular chondrocytes at least in part by inhibiting the TLR4/MyD88/NF-кB signaling pathway suggesting that resveratrol has the potential to be used as a nutritional supplement to counteract OA symptoms. Full article
(This article belongs to the Section Biochemistry)
Show Figures

805 KiB  
Article
Treatment of Single or Multiple Brain Metastases by Hypofractionated Stereotactic Radiotherapy Using Helical Tomotherapy
by Aiko Nagai, Yuta Shibamoto, Masanori Yoshida, Koichi Wakamatsu and Yuzo Kikuchi
Int. J. Mol. Sci. 2014, 15(4), 6910-6924; https://doi.org/10.3390/ijms15046910 - 22 Apr 2014
Cited by 24 | Viewed by 8357
Abstract
This study investigated the clinical outcomes of a 4-fraction stereotactic radiotherapy (SRT) study using helical tomotherapy for brain metastases. Between August 2009 and June 2013, 54 patients with a total of 128 brain metastases underwent SRT using tomotherapy. A total dose of 28 [...] Read more.
This study investigated the clinical outcomes of a 4-fraction stereotactic radiotherapy (SRT) study using helical tomotherapy for brain metastases. Between August 2009 and June 2013, 54 patients with a total of 128 brain metastases underwent SRT using tomotherapy. A total dose of 28 or 28.8 Gy at 80% isodose was administered in 4 fractions for all tumors. The mean gross tumor volume (GTV) was 1.9 cc. Local control (LC) rates at 6, 12, and 18 months were 96%, 91%, and 88%, respectively. The 12-month LC rates for tumors with GTV ≤0.25, >0.25 and ≤1, and >1 cc were 98%, 82%, and 93%, respectively; the rates were 92% for tumors >3 cc and 100% for >10 cc. The 6-month rates for freedom from distant brain failure were 57%, 71%, and 55% for patients with 1, 2, and >3 brain metastases, respectively. No differences were significant. No major complications were observed. The 4-fraction SRT protocol provided excellent tumor control with minimal toxicity. Distant brain failure was not so frequent, even in patients with multiple tumors. The results of the current study warrant a prospective randomized study comparing single-fraction stereotactic radiosurgery (SRS) with SRT in this patient population. Full article
(This article belongs to the Special Issue Brain Metastasis 2014)
Show Figures

Graphical abstract

267 KiB  
Article
An Environmentally Benign Protocol for Aqueous Synthesis of Tetrahydrobenzo[b]Pyrans Catalyzed by Cost-Effective Ionic Liquid
by Huanan Hu, Fangli Qiu, Anguo Ying, Jianguo Yang and Haiping Meng
Int. J. Mol. Sci. 2014, 15(4), 6897-6909; https://doi.org/10.3390/ijms15046897 - 22 Apr 2014
Cited by 79 | Viewed by 8748
Abstract
A mild, efficient, and environmentally benign protocol for the synthesis of tetrahydrobenzo[b]pyran derivatives in the presence of readily accessible, biodegradable, and choline hydroxide based ionic liquid as catalyst has been established. The key features of the reported methodology include good to [...] Read more.
A mild, efficient, and environmentally benign protocol for the synthesis of tetrahydrobenzo[b]pyran derivatives in the presence of readily accessible, biodegradable, and choline hydroxide based ionic liquid as catalyst has been established. The key features of the reported methodology include good to excellent yields of desired products, simple work-up procedure and good recyclability of catalysts, which may be a practical alternative to the existing conventional processes for the preparation of 4-H pyrans to cater to the requirements of academia as well as industry. Full article
(This article belongs to the Special Issue Ionic Liquids 2014 & Selected Papers from ILMAT 2013)
Show Figures

Graphical abstract

1397 KiB  
Article
The lethal giant larvae Gene in Tribolium castaneum: Molecular Properties and Roles in Larval and Pupal Development as Revealed by RNA Interference
by Da Xiao, Xiao Liang, Xiwu Gao, Jianxiu Yao and Kun Yan Zhu
Int. J. Mol. Sci. 2014, 15(4), 6880-6896; https://doi.org/10.3390/ijms15046880 - 22 Apr 2014
Cited by 15 | Viewed by 6467
Abstract
We identified and characterized the TcLgl gene putatively encoding lethal giant larvae (Lgl) protein from the red flour beetle (Tribolium castaneum). Analyses of developmental stage and tissue-specific expression patterns revealed that TcLgl was constitutively expressed. To examine the role of TcLgl [...] Read more.
We identified and characterized the TcLgl gene putatively encoding lethal giant larvae (Lgl) protein from the red flour beetle (Tribolium castaneum). Analyses of developmental stage and tissue-specific expression patterns revealed that TcLgl was constitutively expressed. To examine the role of TcLgl in insect development, RNA interference was performed in early (1-day) larvae, late (20-day) larvae, and early (1-day) pupae. The early larvae injected with double-stranded RNA of TcLgl (dsTcLgl) at 100, 200, and 400 ng/larva failed to pupate, and 100% mortality was achieved within 20 days after the injection or before the pupation. The late larvae injected with dsTcLgl at these doses reduced the pupation rates to only 50.3%, 36.0%, and 18.2%, respectively. The un-pupated larvae gradually died after one week, and visually unaffected pupae failed to emerge into adults and died during the pupal stage. Similarly, when early pupae were injected with dsTcLgl at these doses, the normal eclosion rates were reduced to only 22.5%, 18.0%, and 11.2%, respectively, on day 7 after the injection, and all the adults with abnormal eclosion died in two days after the eclosion. These results indicate that TcLgl plays an essential role in insect development, especially during their metamorphosis. Full article
(This article belongs to the Section Biochemistry)
Show Figures

1212 KiB  
Article
Preparation and Characterization of Gelatin Nanofibers Containing Silver Nanoparticles
by Lim Jeong and Won Ho Park
Int. J. Mol. Sci. 2014, 15(4), 6857-6879; https://doi.org/10.3390/ijms15046857 - 22 Apr 2014
Cited by 78 | Viewed by 11888
Abstract
Ag nanoparticles (NPs) were synthesized in formic acid aqueous solutions through chemical reduction. Formic acid was used for a reducing agent of Ag precursor and solvent of gelatin. Silver acetate, silver tetrafluoroborate, silver nitrate, and silver phosphate were used as Ag precursors. Ag [...] Read more.
Ag nanoparticles (NPs) were synthesized in formic acid aqueous solutions through chemical reduction. Formic acid was used for a reducing agent of Ag precursor and solvent of gelatin. Silver acetate, silver tetrafluoroborate, silver nitrate, and silver phosphate were used as Ag precursors. Ag+ ions were reduced into Ag NPs by formic acid. The formation of Ag NPs was characterized by a UV-Vis spectrophotometer. Ag NPs were quickly generated within a few minutes in silver nitrate (AgNO3)/formic acid solution. As the water content of formic acid aqueous solution increased, more Ag NPs were generated, at a higher rate and with greater size. When gelatin was added to the AgNO3/formic acid solution, the Ag NPs were stabilized, resulting in smaller particles. Moreover, gelatin limits further aggregation of Ag NPs, which were effectively dispersed in solution. The amount of Ag NPs formed increased with increasing concentration of AgNO3 and aging time. Gelatin nanofibers containing Ag NPs were fabricated by electrospinning. The average diameters of gelatin nanofibers were 166.52 ± 32.72 nm, but these decreased with the addition of AgNO3. The average diameters of the Ag NPs in gelatin nanofibers ranged between 13 and 25 nm, which was confirmed by transmission electron microscopy (TEM). Full article
(This article belongs to the Special Issue Bioactive Nanoparticles 2014)
Show Figures

1583 KiB  
Article
Block of the Mevalonate Pathway Triggers Oxidative and Inflammatory Molecular Mechanisms Modulated by Exogenous Isoprenoid Compounds
by Paola Maura Tricarico, Giulio Kleiner, Erica Valencic, Giuseppina Campisciano, Martina Girardelli, Sergio Crovella, Alessandra Knowles and Annalisa Marcuzzi
Int. J. Mol. Sci. 2014, 15(4), 6843-6856; https://doi.org/10.3390/ijms15046843 - 22 Apr 2014
Cited by 36 | Viewed by 9014
Abstract
Deregulation of the mevalonate pathway is known to be involved in a number of diseases that exhibit a systemic inflammatory phenotype and often neurological involvements, as seen in patients suffering from a rare disease called mevalonate kinase deficiency (MKD). One of the molecular [...] Read more.
Deregulation of the mevalonate pathway is known to be involved in a number of diseases that exhibit a systemic inflammatory phenotype and often neurological involvements, as seen in patients suffering from a rare disease called mevalonate kinase deficiency (MKD). One of the molecular mechanisms underlying this pathology could depend on the shortage of isoprenoid compounds and the subsequent mitochondrial damage, leading to oxidative stress and pro-inflammatory cytokines’ release. Moreover, it has been demonstrated that cellular death results from the balance between apoptosis and pyroptosis, both driven by mitochondrial damage and the molecular platform inflammasome. In order to rescue the deregulated pathway and decrease inflammatory markers, exogenous isoprenoid compounds were administered to a biochemical model of MKD obtained treating a murine monocytic cell line with a compound able to block the mevalonate pathway, plus an inflammatory stimulus. Our results show that isoprenoids acted in different ways, mainly increasing the expression of the evaluated markers [apoptosis, mitochondrial dysfunction, nucleotide-binding oligomerization-domain protein-like receptors 3 (NALP3), cytokines and nitric oxide (NO)]. Our findings confirm the hypothesis that inflammation is triggered, at least partially, by the shortage of isoprenoids. Moreover, although further studies are necessary, the achieved results suggest a possible role for exogenous isoprenoids in the treatment of MKD. Full article
(This article belongs to the Special Issue Redox Signaling in Biology and Patho-Biology)
Show Figures

Graphical abstract

633 KiB  
Article
A New Type I Peritrophic Membrane Protein from Larval Holotrichia oblita (Coleoptera: Melolonthidae) Binds to Chitin
by Xiaomin Liu, Jie Li, Wei Guo, Ruijun Li, Dan Zhao and Xinna Li
Int. J. Mol. Sci. 2014, 15(4), 6831-6842; https://doi.org/10.3390/ijms15046831 - 22 Apr 2014
Cited by 7 | Viewed by 6299
Abstract
Peritrophic membranes (PMs) are composed of chitin and protein. Chitin and protein play important roles in the structural formation and function of the PM. A new type I PM protein, HoCBP76, was identified from the Holotrichia oblita. HoCBP76 was shown as a [...] Read more.
Peritrophic membranes (PMs) are composed of chitin and protein. Chitin and protein play important roles in the structural formation and function of the PM. A new type I PM protein, HoCBP76, was identified from the Holotrichia oblita. HoCBP76 was shown as a 62.3 kDa protein by SDS-PAGE analysis and appeard to be associated with the PM throughout its entire length. In H. oblita larvae, the midgut is the only tissue where HoCBP76 could be detected during the feeding period of the larvae. The predicted amino acid sequence indicates that it contains seven tandem chitin binding domains belonging to the peritrophin-A family. HoCBP76 has chitin binding activity and is strongly associated with the PM. The HoCBP76 was not a mucin-like glycoprotein, and the consensus of conserved cysteines appeared to be CX13–17CX5CX9CX12CX7C. Western blot analysis showed that the abundance of HoCBP76 in the anterior, middle and posterior regions of the midgut was similar, indicating that HoCBP76 was secreted by the whole midgut epithelium, and confirmed the H. oblita PM belonged to the Type I PM. Immunolocalization analysis showed that HoCBP76 was mainly localized in the PM. The HoCBP76 is the first PM protein found in the H. oblita; however, its biochemical and physiological functions require further investigation. Full article
(This article belongs to the Section Biochemistry)
Show Figures

2346 KiB  
Article
The Effect of Size on Ag Nanosphere Toxicity in Macrophage Cell Models and Lung Epithelial Cell Lines Is Dependent on Particle Dissolution
by Raymond F. Hamilton, Sarah Buckingham and Andrij Holian
Int. J. Mol. Sci. 2014, 15(4), 6815-6830; https://doi.org/10.3390/ijms15046815 - 22 Apr 2014
Cited by 71 | Viewed by 9804
Abstract
Silver (Ag) nanomaterials are increasingly used in a variety of commercial applications. This study examined the effect of size (20 and 110 nm) and surface stabilization (citrate and PVP coatings) on toxicity, particle uptake and NLRP3 inflammasome activation in a variety of macrophage [...] Read more.
Silver (Ag) nanomaterials are increasingly used in a variety of commercial applications. This study examined the effect of size (20 and 110 nm) and surface stabilization (citrate and PVP coatings) on toxicity, particle uptake and NLRP3 inflammasome activation in a variety of macrophage and epithelial cell lines. The results indicated that smaller Ag (20 nm), regardless of coating, were more toxic in both cell types and most active in the THP-1 macrophages. TEM imaging demonstrated that 20 nm Ag nanospheres dissolved more rapidly than 110 nm Ag nanospheres in acidic phagolysosomes consistent with Ag ion mediated toxicity. In addition, there were some significant differences in epithelial cell line in vitro exposure models. The order of the epithelial cell lines’ sensitivity to Ag was LA4 > MLE12 > C10. The macrophage sensitivity to Ag toxicity was C57BL/6 AM > MARCO null AM, which indicated that the MARCO receptor was involved in uptake of the negatively charged Ag particles. These results support the idea that Ag nanosphere toxicity and NLRP3 inflammasome activation are determined by the rate of surface dissolution, which is based on relative surface area. This study highlights the importance of utilizing multiple models for in vitro studies to evaluate nanomaterials. Full article
(This article belongs to the Special Issue Nanotoxicology and Lung Diseases)
Show Figures

1049 KiB  
Article
Modeling and Docking Studies on Novel Mutants (K71L and T204V) of the ATPase Domain of Human Heat Shock 70 kDa Protein 1
by Asita Elengoe, Mohammed Abu Naser and Salehhuddin Hamdan
Int. J. Mol. Sci. 2014, 15(4), 6797-6814; https://doi.org/10.3390/ijms15046797 - 22 Apr 2014
Cited by 37 | Viewed by 9752
Abstract
The purpose of exploring protein interactions between human adenovirus and heat shock protein 70 is to exploit a potentially synergistic interaction to enhance anti-tumoral efficacy and decrease toxicity in cancer treatment. However, the protein interaction of Hsp70 with E1A32 kDa of human adenovirus [...] Read more.
The purpose of exploring protein interactions between human adenovirus and heat shock protein 70 is to exploit a potentially synergistic interaction to enhance anti-tumoral efficacy and decrease toxicity in cancer treatment. However, the protein interaction of Hsp70 with E1A32 kDa of human adenovirus serotype 5 remains to be elucidated. In this study, two residues of ATPase domain of human heat shock 70 kDa protein 1 (PDB: 1 HJO) were mutated. 3D mutant models (K71L and T204V) using PyMol software were then constructed. The structures were evaluated by PROCHECK, ProQ, ERRAT, Verify 3D and ProSA modules. All evidence suggests that all protein models are acceptable and of good quality. The E1A32 kDa motif was retrieved from UniProt (P03255), as well as subjected to docking interaction with NBD, K71L and T204V, using the Autodock 4.2 program. The best lowest binding energy value of −9.09 kcal/mol was selected for novel T204V. Moreover, the protein-ligand complex structures were validated by RMSD, RMSF, hydrogen bonds and salt bridge analysis. This revealed that the T204V-E1A32 kDa motif complex was the most stable among all three complex structures. This study provides information about the interaction between Hsp70 and the E1A32 kDa motif, which emphasizes future perspectives to design rational drugs and vaccines in cancer therapy. Full article
(This article belongs to the Special Issue Proteins and Protein-Ligand Interactions)
Show Figures

4844 KiB  
Article
Effects of RNAi-Mediated Knockdown of Histone Methyltransferases on the Sex-Specific mRNA Expression of Imp in the Silkworm Bombyx mori
by Masataka G. Suzuki, Haruka Ito and Fugaku Aoki
Int. J. Mol. Sci. 2014, 15(4), 6772-6796; https://doi.org/10.3390/ijms15046772 - 22 Apr 2014
Cited by 7 | Viewed by 8311
Abstract
Sexual differentiation in Bombyx mori is controlled by sex-specific splicing of Bmdsx, which results in the omission of exons 3 and 4 in a male-specific manner. In B. mori, insulin-like growth factor II mRNA-binding protein (Imp) is a male-specific factor involved [...] Read more.
Sexual differentiation in Bombyx mori is controlled by sex-specific splicing of Bmdsx, which results in the omission of exons 3 and 4 in a male-specific manner. In B. mori, insulin-like growth factor II mRNA-binding protein (Imp) is a male-specific factor involved in male-specific splicing of Bmdsx. Male-specific Imp mRNA results from the male-specific inclusion of exon 8. To verify the link between histone methylation and alternative RNA processing in Imp, we examined the effects of RNAi-mediated knockdown of several histone methyltransferases on the sex-specific mRNA expression of Imp. As a result, male-specific expression of Imp mRNA was completely abolished when expression of the H3K79 methyltransferase DOT1L was repressed to <10% of that in control males. Chromatin immunoprecipitation-quantitative PCR analysis revealed a higher distribution of H3K79me2 in normal males than in normal females across Imp. RNA polymerase II (RNAP II) processivity assays indicated that RNAi knockdown of DOT1L in males caused a twofold decrease in RNAP II processivity compared to that in control males, with almost equivalent levels to those observed in normal females. Inhibition of RNAP II-mediated elongation in male cells repressed the male-specific splicing of Imp. Our data suggest the possibility that H3K79me2 accumulation along Imp is associated with the male-specific alternative processing of Imp mRNA that results from increased RNAP II processivity. Full article
(This article belongs to the Special Issue Pre-mRNA Splicing)
Show Figures

1049 KiB  
Article
Gentamicin Blocks the ACh-Induced BK Current in Guinea Pig Type II Vestibular Hair Cells by Competing with Ca2+ at the l-Type Calcium Channel
by Hong Yu, Chang-Kai Guo, Yi Wang, Tao Zhou and Wei-Jia Kong
Int. J. Mol. Sci. 2014, 15(4), 6757-6771; https://doi.org/10.3390/ijms15046757 - 22 Apr 2014
Cited by 9 | Viewed by 6608
Abstract
Type II vestibular hair cells (VHCs II) contain big-conductance Ca2+-dependent K+ channels (BK) and L-type calcium channels. Our previous studies in guinea pig VHCs II indicated that acetylcholine (ACh) evoked the BK current by triggering the influx of Ca2+ [...] Read more.
Type II vestibular hair cells (VHCs II) contain big-conductance Ca2+-dependent K+ channels (BK) and L-type calcium channels. Our previous studies in guinea pig VHCs II indicated that acetylcholine (ACh) evoked the BK current by triggering the influx of Ca2+ ions through l-type Ca2+ channels, which was mediated by M2 muscarinic ACh receptor (mAChRs). Aminoglycoside antibiotics, such as gentamicin (GM), are known to have vestibulotoxicity, including damaging effects on the efferent nerve endings on VHCs II. This study used the whole-cell patch clamp technique to determine whether GM affects the vestibular efferent system at postsynaptic M2-mAChRs or the membrane ion channels. We found that GM could block the ACh-induced BK current and that inhibition was reversible, voltage-independent, and dose-dependent with an IC50 value of 36.3 ± 7.8 µM. Increasing the ACh concentration had little influence on GM blocking effect, but increasing the extracellular Ca2+ concentration ([Ca2+]o) could antagonize it. Moreover, 50 µM GM potently blocked Ca2+ currents activated by (-)-Bay-K8644, but did not block BK currents induced by NS1619. These observations indicate that GM most likely blocks the M2 mAChR-mediated response by competing with Ca2+ at the l-type calcium channel. These results provide insights into the vestibulotoxicity of aminoglycoside antibiotics on mammalian VHCs II. Full article
(This article belongs to the Section Biochemistry)
Show Figures

483 KiB  
Article
Design, Synthesis and Bioactivity of N-Glycosyl-N'-(5-substituted phenyl-2-furoyl) Hydrazide Derivatives
by Zining Cui, Hang Su, Jiazhen Jiang, Xinling Yang and Yoshihiro Nishida
Int. J. Mol. Sci. 2014, 15(4), 6741-6756; https://doi.org/10.3390/ijms15046741 - 21 Apr 2014
Cited by 13 | Viewed by 6573
Abstract
Condensation products of 5-substituted phenyl-2-furoyl hydrazide with different monosaccharides d-glucose, d-galactose, d-mannose, d-fucose and d-arabinose were prepared. The anomerization and cyclic-acyclic isomers were investigated by 1H NMR spectroscopy. The results showed that, except for the d-glucose derivatives, which were in the presence [...] Read more.
Condensation products of 5-substituted phenyl-2-furoyl hydrazide with different monosaccharides d-glucose, d-galactose, d-mannose, d-fucose and d-arabinose were prepared. The anomerization and cyclic-acyclic isomers were investigated by 1H NMR spectroscopy. The results showed that, except for the d-glucose derivatives, which were in the presence of β-anomeric forms, all derivatives were in an acyclic Schiff base form. Their antifungal and antitumor activities were studied. The bioassay results indicated that some title compounds showed superior effects over the commercial positive controls. Full article
(This article belongs to the Section Biochemistry)
Show Figures

Graphical abstract

250 KiB  
Review
Supercritical Carbon Dioxide Extraction of Carotenoids from Pumpkin (Cucurbita spp.): A Review
by Miriana Durante, Marcello Salvatore Lenucci and Giovanni Mita
Int. J. Mol. Sci. 2014, 15(4), 6725-6740; https://doi.org/10.3390/ijms15046725 - 21 Apr 2014
Cited by 103 | Viewed by 19072
Abstract
Carotenoids are well known for their nutritional properties and health promoting effects representing attractive ingredients to develop innovative functional foods, nutraceutical and pharmaceutical preparations. Pumpkin (Cucurbita spp.) flesh has an intense yellow/orange color owing to the high level of carotenoids, mainly α-carotene, [...] Read more.
Carotenoids are well known for their nutritional properties and health promoting effects representing attractive ingredients to develop innovative functional foods, nutraceutical and pharmaceutical preparations. Pumpkin (Cucurbita spp.) flesh has an intense yellow/orange color owing to the high level of carotenoids, mainly α-carotene, β-carotene, β-cryptoxanthin, lutein and zeaxanthin. There is considerable interest in extracting carotenoids and other bioactives from pumpkin flesh. Extraction procedures able to preserve nutritional and pharmacological properties of carotenoids are essential. Conventional extraction methods, such as organic solvent extraction (CSE), have been used to extract carotenoids from plant material for a long time. In recent years, supercritical carbon dioxide (SC-CO2) extraction has received a great deal of attention because it is a green technology suitable for the extraction of lipophylic molecules and is able to give extracts of high quality and totally free from potentially toxic chemical solvents. Here, we review the results obtained so far on SC-CO2 extraction efficiency and quali-quantitative composition of carotenoids from pumpkin flesh. In particular, we consider the effects of (1) dehydration pre-treatments; (2) extraction parameters (temperature and pressure); the use of water, ethanol and olive oil singularly or in combination as entrainers or pumpkin seeds as co-matrix. Full article
(This article belongs to the Section Biochemistry)
302 KiB  
Review
Towards Personalized Medicine Mediated by in Vitro Virus-Based Interactome Approaches
by Hiroyuki Ohashi and Etsuko Miyamoto-Sato
Int. J. Mol. Sci. 2014, 15(4), 6717-6724; https://doi.org/10.3390/ijms15046717 - 21 Apr 2014
Cited by 8 | Viewed by 6570
Abstract
We have developed a simple in vitro virus (IVV) selection system based on cell-free co-translation, using a highly stable and efficient mRNA display method. The IVV system is applicable to the high-throughput and comprehensive analysis of proteins and protein–ligand interactions. Huge amounts of [...] Read more.
We have developed a simple in vitro virus (IVV) selection system based on cell-free co-translation, using a highly stable and efficient mRNA display method. The IVV system is applicable to the high-throughput and comprehensive analysis of proteins and protein–ligand interactions. Huge amounts of genomic sequence data have been generated over the last decade. The accumulated genetic alterations and the interactome networks identified within cells represent a universal feature of a disease, and knowledge of these aspects can help to determine the optimal therapy for the disease. The concept of the “integrome” has been developed as a means of integrating large amounts of data. We have developed an interactome analysis method aimed at providing individually-targeted health care. We also consider future prospects for this system. Full article
(This article belongs to the Special Issue Proteins and Protein-Ligand Interactions)
Show Figures

211 KiB  
Article
Polymorphisms in DNA Repair Genes and MDR1 and the Risk for Non-Hodgkin Lymphoma
by Hee Nam Kim, Nan Young Kim, Li Yu, Yeo-Kyeoung Kim, Il-Kwon Lee, Deok-Hwan Yang, Je-Jung Lee, Min-Ho Shin, Kyeong-Soo Park, Jin-Su Choi and Hyeoung-Joon Kim
Int. J. Mol. Sci. 2014, 15(4), 6703-6716; https://doi.org/10.3390/ijms15046703 - 21 Apr 2014
Cited by 19 | Viewed by 6584
Abstract
The damage caused by oxidative stress and exposure to cigarette smoke and alcohol necessitate DNA damage repair and transport by multidrug resistance-1 (MDR1). To explore the association between polymorphisms in these genes and non-Hodgkin lymphoma risk, we analyzed 15 polymorphisms of 12 genes [...] Read more.
The damage caused by oxidative stress and exposure to cigarette smoke and alcohol necessitate DNA damage repair and transport by multidrug resistance-1 (MDR1). To explore the association between polymorphisms in these genes and non-Hodgkin lymphoma risk, we analyzed 15 polymorphisms of 12 genes in a population-based study in Korea (694 cases and 1700 controls). Four genotypes of DNA repair pathway genes (XRCC1 399 GA, OGG1 326 GG, BRCA1 871 TT, and WRN 787 TT) were associated with a decreased risk for NHL [odds ratio (OR)XRCC1 GA = 0.80, p = 0.02; OROGG1 GG = 0.70, p = 0.008; ORBRCA1 TT = 0.71, p = 0.048; ORWRN TT = 0.68, p = 0.01]. Conversely, the MGMT 115 CT genotype was associated with an increased risk for NHL (OR = 1.25, p = 0.04). In the MDR1 gene, the 1236 CC genotype was associated with a decreased risk for NHL (OR = 0.74, p = 0.04), and the 3435 CT and TT genotypes were associated with an increased risk (OR3435CT = 1.50, p < 0.0001; OR3435TT = 1.43, p = 0.02). These results suggest that polymorphisms in the DNA repair genes XRCC1, OGG1, BRCA1, WRN1, and MGMT and in the MDR1 gene may affect the risk for NHL in Korean patients. Full article
(This article belongs to the Section Molecular Pathology, Diagnostics, and Therapeutics)
1471 KiB  
Article
Functional Identification of Proteus mirabilis eptC Gene Encoding a Core Lipopolysaccharide Phosphoethanolamine Transferase
by Eleonora Aquilini, Susana Merino, Yuriy A. Knirel, Miguel Regué and Juan M. Tomás
Int. J. Mol. Sci. 2014, 15(4), 6689-6702; https://doi.org/10.3390/ijms15046689 - 21 Apr 2014
Cited by 17 | Viewed by 7707
Abstract
By comparison of the Proteus mirabilis HI4320 genome with known lipopolysaccharide (LPS) phosphoethanolamine transferases, three putative candidates (PMI3040, PMI3576, and PMI3104) were identified. One of them, eptC (PMI3104) was able to modify the LPS of two defined non-polar core LPS mutants of Klebsiella [...] Read more.
By comparison of the Proteus mirabilis HI4320 genome with known lipopolysaccharide (LPS) phosphoethanolamine transferases, three putative candidates (PMI3040, PMI3576, and PMI3104) were identified. One of them, eptC (PMI3104) was able to modify the LPS of two defined non-polar core LPS mutants of Klebsiella pneumoniae that we use as surrogate substrates. Mass spectrometry and nuclear magnetic resonance showed that eptC directs the incorporation of phosphoethanolamine to the O-6 of l-glycero-d-mano-heptose II. The eptC gene is found in all the P. mirabilis strains analyzed in this study. Putative eptC homologues were found for only two additional genera of the Enterobacteriaceae family, Photobacterium and Providencia. The data obtained in this work supports the role of the eptC (PMI3104) product in the transfer of PEtN to the O-6 of l,d-HepII in P. mirabilis strains. Full article
(This article belongs to the Special Issue Advances in Proteomic Research)
Show Figures

Graphical abstract

1197 KiB  
Article
Proteomic Analysis of Etiolated Juvenile Tetraploid Robinia pseudoacacia Branches during Different Cutting Periods
by Nan Lu, Zhaohe Xu, Bingnan Meng, Yuhan Sun, Jiangtao Zhang, Shaoming Wang and Yun Li
Int. J. Mol. Sci. 2014, 15(4), 6674-6688; https://doi.org/10.3390/ijms15046674 - 21 Apr 2014
Cited by 5 | Viewed by 6442
Abstract
The propagation of hard-branch cuttings of tetraploid Robinia pseudoacacia (black locust) is restricted by the low rooting rate; however, etiolated juvenile tetraploid black locust branches result in a significantly higher rooting rate of cuttings compared with non-etiolated juvenile tetraploid branches. To identify proteins [...] Read more.
The propagation of hard-branch cuttings of tetraploid Robinia pseudoacacia (black locust) is restricted by the low rooting rate; however, etiolated juvenile tetraploid black locust branches result in a significantly higher rooting rate of cuttings compared with non-etiolated juvenile tetraploid branches. To identify proteins that influence the juvenile tetraploid branch rooting process, two-dimensional electrophoresis (2-DE) and matrix-assisted laser desorption/ionization time-of-flight/time-of-flight mass spectra (MALDI-TOF/TOF-MS) were used to analyze proteomic differences in the phloem of tetraploid R. pseudoacacia etiolated and non-etiolated juvenile branches during different cutting periods. A total of 58 protein spots differed in expression level, and 16 protein spots were only expressed in etiolated branches or non-etiolated ones. A total of 40 highly expressed protein spots were identified by mass spectrometry, 14 of which were accurately retrieved. They include nucleoglucoprotein metabolic proteins, signaling proteins, lignin synthesis proteins and phyllochlorin. These results help to reveal the mechanism of juvenile tetraploid R. pseudoacacia etiolated branch rooting and provide a valuable reference for the improvement of tetraploid R. pseudoacacia cutting techniques. Full article
(This article belongs to the Section Biochemistry)
Show Figures

2568 KiB  
Article
The Role of Survivin in Podocyte Injury Induced by Puromycin Aminonucleoside
by Xuejuan Li, Xiaoyan Zhang, Xiaoyan Li, Fangrui Ding and Jie Ding
Int. J. Mol. Sci. 2014, 15(4), 6657-6673; https://doi.org/10.3390/ijms15046657 - 17 Apr 2014
Cited by 11 | Viewed by 7737
Abstract
Objective: Survivin is a member of the inhibitor of apoptosis protein family, which uniquely promotes mitosis and regulates apoptosis in cancer cells. Recent studies have demonstrated that survivin also expresses in several normal adult cells. In the present study, we aimed to investigate [...] Read more.
Objective: Survivin is a member of the inhibitor of apoptosis protein family, which uniquely promotes mitosis and regulates apoptosis in cancer cells. Recent studies have demonstrated that survivin also expresses in several normal adult cells. In the present study, we aimed to investigate the function of survivin in the terminally differentiated epithelial cells, podocytes. Methods: Survivin expression and location were detected by Quantitative Real-Time PCR, western blot and fluorescence confocal microscopy methods in normal and injured mouse podocytes. Cyto-protection function of survivin was also studied in cultured podocyte injured by puromycin aminonucleoside (PAN), transfected with survivin siRNA to down-regulate survivin expression, or with survivin plasmid to transiently over-express survivin. Results: In podocytes, PAN stimulated expressions of survivin and the apoptosis related molecule caspase 3. Knockdown of survivin expression by siRNA increased the activation of caspase 3, induced podocyte apoptosis and remarkable rearrangement of actin cytoskeleton. Moreover, over-expression of survivin inhibited PAN-induced podocyte apoptosis and cytoskeleton rearrangement. Conclusion: Our data provides the evidence that survivin plays an important role in protecting podocytes from apoptosis induced by PAN. The mechanism of survivin related anti-apoptosis may, at least partially, be through the activation of caspase 3. Full article
(This article belongs to the Collection Programmed Cell Death and Apoptosis)
Show Figures

Graphical abstract

1066 KiB  
Article
Relaxation of Rat Aorta by Farrerol Correlates with Potency to Reduce Intracellular Calcium of VSMCs
by Xiaojiang Qin, Xiaomin Hou, Mingsheng Zhang, Taigang Liang, Jianmin Zhi, Lingge Han and Qingshan Li
Int. J. Mol. Sci. 2014, 15(4), 6641-6656; https://doi.org/10.3390/ijms15046641 - 17 Apr 2014
Cited by 31 | Viewed by 8825
Abstract
Farrerol, isolated from Rhododendron dauricum L., has been proven to be an important multifunctional physiologically active component, but its vasoactive mechanism is not clear. The present study was performed to observe the vasoactive effects of farrerol on rat aorta and to investigate the [...] Read more.
Farrerol, isolated from Rhododendron dauricum L., has been proven to be an important multifunctional physiologically active component, but its vasoactive mechanism is not clear. The present study was performed to observe the vasoactive effects of farrerol on rat aorta and to investigate the possible underlying mechanisms. Isolated aortic rings of rat were mounted in an organ bath system and the myogenic effects stimulated by farrerol were studied. Intracellular Ca2+ ([Ca2+]in) was measured by molecular probe fluo-4-AM and the activities of L-type voltage-gated Ca2+ channels (LVGC) were studied with whole-cell patch clamp in cultured vascular smooth muscle cells (VSMCs). The results showed that farrerol significantly induced dose-dependent relaxation on aortic rings, while this vasorelaxation was not affected by NG-nitro-l-arginine methylester ester or endothelium denudation. In endothelium-denuded aortas, farrerol also reduced Ca2+-induced contraction on the basis of the stable contraction induced by KCl or phenylephrine (PE) in Ca2+-free solution. Moreover, after incubation with verapamil, farrerol can induce relaxation in endothelium-denuded aortas precontracted by PE, and this effect can be enhanced by ruthenium red, but not by heparin. With laser scanning confocal microscopy method, the farrerol-induced decline of [Ca2+]in in cultured VSMCs was observed. Furthermore, we found that farrerol could suppress Ca2+ influx via LVGC by patch clamp technology. These findings suggested that farrerol can regulate the vascular tension and could be developed as a practicable vasorelaxation drug. Full article
(This article belongs to the Section Biochemistry)
Show Figures

1635 KiB  
Article
Melatonin Prevents Chemical-Induced Haemopoietic Cell Death
by Sara Salucci, Sabrina Burattini, Michela Battistelli, Valentina Baldassarri, Davide Curzi, Aurelio Valmori and Elisabetta Falcieri
Int. J. Mol. Sci. 2014, 15(4), 6625-6640; https://doi.org/10.3390/ijms15046625 - 17 Apr 2014
Cited by 21 | Viewed by 9417
Abstract
Melatonin (MEL), a methoxyindole synthesized by the pineal gland, is a powerful antioxidant in tissues as well as within cells, with a fundamental role in ameliorating homeostasis in a number of specific pathologies. It acts both as a direct radical scavenger and by [...] Read more.
Melatonin (MEL), a methoxyindole synthesized by the pineal gland, is a powerful antioxidant in tissues as well as within cells, with a fundamental role in ameliorating homeostasis in a number of specific pathologies. It acts both as a direct radical scavenger and by stimulating production/activity of intracellular antioxidant enzymes. In this work, some chemical triggers, with different mechanisms of action, have been chosen to induce cell death in U937 hematopoietic cell line. Cells were pre-treated with 100 µM MEL and then exposed to hydrogen peroxide or staurosporine. Morphological analyses, TUNEL reaction and Orange/PI double staining have been used to recognize ultrastructural apoptotic patterns and to evaluate DNA behavior. Chemical damage and potential MEL anti-apoptotic effects were quantified by means of Tali® Image-Based Cytometer, able to monitor cell viability and apoptotic events. After trigger exposure, chromatin condensation, micronuclei formation and DNA fragmentation have been observed, all suggesting apoptotic cell death. These events underwent a statistically significant decrease in samples pre-treated with MEL. After caspase inhibition and subsequent assessment of cell viability, we demonstrated that apoptosis occurs, at least in part, through the mitochondrial pathway and that MEL interacts at this level to rescue U937 cells from death. Full article
(This article belongs to the Collection Programmed Cell Death and Apoptosis)
Show Figures

927 KiB  
Article
Radiation-Induced Changes in Serum Lipidome of Head and Neck Cancer Patients
by Karol Jelonek, Monika Pietrowska, Malgorzata Ros, Adam Zagdanski, Agnieszka Suchwalko, Joanna Polanska, Michal Marczyk, Tomasz Rutkowski, Krzysztof Skladowski, Malcolm R. Clench and Piotr Widlak
Int. J. Mol. Sci. 2014, 15(4), 6609-6624; https://doi.org/10.3390/ijms15046609 - 17 Apr 2014
Cited by 32 | Viewed by 8028
Abstract
Cancer radiotherapy (RT) induces response of the whole patient’s body that could be detected at the blood level. We aimed to identify changes induced in serum lipidome during RT and characterize their association with doses and volumes of irradiated tissue. Sixty-six patients treated [...] Read more.
Cancer radiotherapy (RT) induces response of the whole patient’s body that could be detected at the blood level. We aimed to identify changes induced in serum lipidome during RT and characterize their association with doses and volumes of irradiated tissue. Sixty-six patients treated with conformal RT because of head and neck cancer were enrolled in the study. Blood samples were collected before, during and about one month after the end of RT. Lipid extracts were analyzed using MALDI-oa-ToF mass spectrometry in positive ionization mode. The major changes were observed when pre-treatment and within-treatment samples were compared. Levels of several identified phosphatidylcholines, including (PC34), (PC36) and (PC38) variants, and lysophosphatidylcholines, including (LPC16) and (LPC18) variants, were first significantly decreased and then increased in post-treatment samples. Intensities of changes were correlated with doses of radiation received by patients. Of note, such correlations were more frequent when low-to-medium doses of radiation delivered during conformal RT to large volumes of normal tissues were analyzed. Additionally, some radiation-induced changes in serum lipidome were associated with toxicity of the treatment. Obtained results indicated the involvement of choline-related signaling and potential biological importance of exposure to clinically low/medium doses of radiation in patient’s body response to radiation. Full article
(This article belongs to the Special Issue Mass Spectrometry Application in Biology)
Show Figures

474 KiB  
Article
A20 Overexpression Inhibits Lipopolysaccharide-Induced NF-κB Activation, TRAF6 and CD40 Expression in Rat Peritoneal Mesothelial Cells
by Xun-Liang Zou, De-An Pei, Ju-Zhen Yan, Gang Xu and Ping Wu
Int. J. Mol. Sci. 2014, 15(4), 6592-6608; https://doi.org/10.3390/ijms15046592 - 17 Apr 2014
Cited by 17 | Viewed by 7583
Abstract
Zinc finger protein A20 is a key negative regulator of inflammation. However, whether A20 may affect inflammation during peritoneal dialysis (PD)-associated peritonitis is still unclear. This study was aimed to investigate the effect of A20 overexpression on lipopolysaccharide (LPS)-induced inflammatory response in rat [...] Read more.
Zinc finger protein A20 is a key negative regulator of inflammation. However, whether A20 may affect inflammation during peritoneal dialysis (PD)-associated peritonitis is still unclear. This study was aimed to investigate the effect of A20 overexpression on lipopolysaccharide (LPS)-induced inflammatory response in rat peritoneal mesothelial cells (RPMCs). Isolated and cultured RPMCs in vitro. Plasmid pGEM-T easy-A20 was transfected into RPMCs by Lipofectamine™2000. The protein expression of A20, phospho-IκBα, IκBα, TNF receptor-associated factor (TRAF) 6 and CD40 were analyzed by Western blot. The mRNA expression of TRAF6, CD40, interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) were determined by real time-PCR. NF-κB p65 DNA binding activity, IL-6 and TNF-α levels in cells culture supernatant were determined by ELISA. Our results revealed that RPMCs overexpression of A20 lead to significant decrease of LPS-induced IκBα phosphorylation and NF-κB DNA binding activity (all p < 0.01). In addition, A20 also attenuated the expression of TRAF6, CD40, IL-6 and TNF-α as well as levels of IL-6 and TNF-α in cells culture supernatant (all p < 0.05). However, A20 only partly inhibited CD40 expression. Our study indicated that A20 overexpression may depress the inflammatory response induced by LPS in cultured RPMCs through negatively regulated the relevant function of adaptors in LPS signaling pathway. Full article
(This article belongs to the Section Biochemistry)
Show Figures

366 KiB  
Review
Vitamin D: Link between Osteoporosis, Obesity, and Diabetes?
by Flávia Galvão Cândido and Josefina Bressan
Int. J. Mol. Sci. 2014, 15(4), 6569-6591; https://doi.org/10.3390/ijms15046569 - 17 Apr 2014
Cited by 84 | Viewed by 15057
Abstract
Vitamin D (1,25(OH)2D3) is a steroid hormone that has a range of physiological functions in skeletal and nonskeletal tissues, and can contribute to prevent and/or treat osteoporosis, obesity, and Type 2 diabetes mellitus (T2DM). In bone metabolism, vitamin D [...] Read more.
Vitamin D (1,25(OH)2D3) is a steroid hormone that has a range of physiological functions in skeletal and nonskeletal tissues, and can contribute to prevent and/or treat osteoporosis, obesity, and Type 2 diabetes mellitus (T2DM). In bone metabolism, vitamin D increases the plasma levels of calcium and phosphorus, regulates osteoblast and osteoclast the activity, and combats PTH hypersecretion, promoting bone formation and preventing/treating osteoporosis. This evidence is supported by most clinical studies, especially those that have included calcium and assessed the effects of vitamin D doses (≥800 IU/day) on bone mineral density. However, annual megadoses should be avoided as they impair bone health. Recent findings suggest that low serum vitamin D is the consequence (not the cause) of obesity and the results from randomized double-blind clinical trials are still scarce and inconclusive to establish the relationship between vitamin D, obesity, and T2DM. Nevertheless, there is evidence that vitamin D inhibits fat accumulation, increases insulin synthesis and preserves pancreatic islet cells, decreases insulin resistance and reduces hunger, favoring obesity and T2DM control. To date, there is not enough scientific evidence to support the use of vitamin D as a pathway to prevent and/or treat obesity and T2DM. Full article
(This article belongs to the Section Biochemistry)
Show Figures

Previous Issue
Next Issue
Back to TopTop