Polymorphisms in DNA Repair Genes and MDR1 and the Risk for Non-Hodgkin Lymphoma
Abstract
:1. Introduction
2. Results
3. Discussion
4. Experimental Section
4.1. Study Population
4.2. Genotyping
4.3. Statistical Analysis
5. Conclusions
Acknowledgments
- Author ContributionsH.N.K. interpreted the results and wrote the paper. N.Y.K., I.-K.L. and L.Y. designed methods and performed all experiments. K.-S.P., J.-S.C. and M.-H.S. supported control samples and statistical analysis. Y.-K.K., D.-H.Y. and J.-J.L. participated in the data collect and their interpretation. H.-J.K. discussed analyses, interpretation and supervised the project.
Conflicts of Interest
References
- Chiu, B.C.; Weisenburger, D.D.; Zahm, S.H.; Cantor, K.P.; Gapstur, S.M.; Holmes, F.; Burmeister, L.F.; Blair, A. Agricultural pesticide use, familial cancer, and risk of non-Hodgkin lymphoma. Cancer Epidemiol. Biomark. Prev 2004, 13, 525–531. [Google Scholar]
- Grulich, A.E.; Vajdic, C.M.; Cozen, W. Altered immunity as a risk factor for non-Hodgkin lymphoma. Cancer Epidemiol. Biomark. Prev 2007, 16, 405–408. [Google Scholar]
- Morton, L.M.; Hartge, P.; Holford, T.R.; Holly, E.A.; Chiu, B.C.; Vineis, P.; Stagnaro, E.; Willett, E.V.; Franceschi, S.; la Vecchia, C.; et al. Cigarette smoking and risk of non-Hodgkin lymphoma: A pooled analysis from the International Lymphoma Epidemiology Consortium (interlymph). Cancer Epidemiol. Biomark. Prev 2005, 14, 925–933. [Google Scholar]
- Morton, L.M.; Zheng, T.; Holford, T.R.; Holly, E.A.; Chiu, B.C.; Costantini, A.S.; Stagnaro, E.; Willett, E.V.; dal Maso, L.; Serraino, D.; et al. Alcohol consumption and risk of non-Hodgkin lymphoma: A pooled analysis. Lancet Oncol 2005, 6, 469–476. [Google Scholar]
- Nieters, A.; Deeg, E.; Becker, N. Tobacco and alcohol consumption and risk of lymphoma: Results of a population-based case-control study in Germany. Int. J. Cancer 2006, 118, 422–430. [Google Scholar]
- De Roos, A.J.; Gold, L.S.; Wang, S.; Hartge, P.; Cerhan, J.R.; Cozen, W.; Yeager, M.; Chanock, S.; Rothman, N.; Severson, R.K. Metabolic gene variants and risk of non-Hodgkin’s lymphoma. Cancer Epidemiol. Biomark. Prev 2006, 15, 1647–1653. [Google Scholar]
- Dogru-Abbasoglu, S.; Aykac-Toker, G.; Hanagasi, H.A.; Gurvit, H.; Emre, M.; Uysal, M. The Arg194Trp polymorphism in DNA repair gene XRCC1 and the risk for sporadic late-onset Alzheimer’s disease. Neurol. Sci 2007, 28, 31–34. [Google Scholar]
- Kim, H.N.; Lee, I.K.; Kim, Y.K.; Tran, H.T.; Yang, D.H.; Lee, J.J.; Shin, M.H.; Park, K.S.; Shin, M.G.; Choi, J.S.; et al. Association between folate-metabolizing pathway polymorphism and non-Hodgkin lymphoma. Br. J. Haematol 2008, 140, 287–294. [Google Scholar]
- Purdue, M.P.; Lan, Q.; Kricker, A.; Grulich, A.E.; Vajdic, C.M.; Turner, J.; Whitby, D.; Chanock, S.; Rothman, N.; Armstrong, B.K. Polymorphisms in immune function genes and risk of non-Hodgkin lymphoma: Findings from the New South Wales non-Hodgkin Lymphoma Study. Carcinogenesis 2007, 28, 704–712. [Google Scholar]
- Shen, M.; Zheng, T.; Lan, Q.; Zhang, Y.; Zahm, S.H.; Wang, S.S.; Holford, T.R.; Leaderer, B.; Yeager, M.; Welch, R.; et al. Polymorphisms in DNA repair genes and risk of non-Hodgkin lymphoma among women in Connecticut. Hum. Genet 2006, 119, 659–668. [Google Scholar]
- Mohrenweiser, H.W.; Jones, I.M. Variation in DNA repair is a factor in cancer susceptibility: A paradigm for the promises and perils of individual and population risk estimation? Mutat. Res 1998, 400, 15–24. [Google Scholar]
- Duell, E.J.; Wiencke, J.K.; Cheng, T.J.; Varkonyi, A.; Zuo, Z.F.; Ashok, T.D.; Mark, E.J.; Wain, J.C.; Christiani, D.C.; Kelsey, K.T. Polymorphisms in the DNA repair genes XRCC1 and ERCC2 and biomarkers of DNA damage in human blood mononuclear cells. Carcinogenesis 2000, 21, 965–971. [Google Scholar]
- Jamroziak, K.; Balcerczak, E.; Cebula, B.; Janus, A.; Mirowski, M.; Robak, T. No influence of 3435C>T ABCB1 (MDR1) gene polymorphism on risk of adult acute myeloid leukemia and P-glycoprotein expression in blast cells. Ther. Drug Monit 2006, 28, 707–711. [Google Scholar]
- Janssen, K.; Schlink, K.; Gotte, W.; Hippler, B.; Kaina, B.; Oesch, F. DNA repair activity of 8-oxoguanine DNA glycosylase 1 (OGG1) in human lymphocytes is not dependent on genetic polymorphism Ser326/Cys326. Mutat. Res 2001, 486, 207–216. [Google Scholar]
- Krupa, R.; Blasiak, J. An association of polymorphism of DNA repair genes XRCC1 and XRCC3 with colorectal cancer. J. Exp. Clin. Cancer Res 2004, 23, 285–294. [Google Scholar]
- Borst, P.; Evers, R.; Kool, M.; Wijnholds, J. A family of drug transporters: The multidrug resistance-associated proteins. J. Natl. Cancer Inst 2000, 92, 1295–1302. [Google Scholar]
- Ueda, K.; Cornwell, M.M.; Gottesman, M.M.; Pastan, I.; Roninson, I.B.; Ling, V.; Riordan, J.R. The MDR1 gene, responsible for multidrug-resistance, codes for P-glycoprotein. Biochem. Biophys. Res. Commun 1986, 141, 956–962. [Google Scholar]
- Ambudkar, S.V.; Dey, S.; Hrycyna, C.A.; Ramachandra, M.; Pastan, I.; Gottesman, M.M. Biochemical, cellular, and pharmacological aspects of the multidrug transporter. Annu. Rev. Pharmacol. Toxicol 1999, 39, 361–398. [Google Scholar]
- Sarkadi, B.; Muller, M.; Homolya, L.; Hollo, Z.; Seprodi, J.; Germann, U.A.; Gottesman, M.M.; Price, E.M.; Boucher, R.C. Interaction of bioactive hydrophobic peptides with the human multidrug transporter. FASEB J 1994, 8, 766–770. [Google Scholar]
- Sharom, F.J.; Yu, X.; DiDiodato, G.; Chu, J.W. Synthetic hydrophobic peptides are substrates for P-glycoprotein and stimulate drug transport. Biochem. J 1996, 320, 421–428. [Google Scholar]
- Wang, D.; Sadee, W. Searching for polymorphisms that affect gene expression and mRNA processing: Example ABCB1 (MDR1). AAPS J 2006, 8, E515–E520. [Google Scholar]
- Nakamura, T.; Sakaeda, T.; Horinouchi, M.; Tamura, T.; Aoyama, N.; Shirakawa, T.; Matsuo, M.; Kasuga, M.; Okumura, K. Effect of the mutation (C3435T) at exon 26 of the MDR1 gene on expression level of MDR1 messenger ribonucleic acid in duodenal enterocytes of healthy Japanese subjects. Clin. Pharmacol. Ther 2002, 71, 297–303. [Google Scholar]
- Siegmund, W.; Ludwig, K.; Giessmann, T.; Dazert, P.; Schroeder, E.; Sperker, B.; Warzok, R.; Kroemer, H.K.; Cascorbi, I. The effects of the human MDR1 genotype on the expression of duodenal P-glycoprotein and disposition of the probe drug talinolol. Clin. Pharmacol. Ther 2002, 72, 572–583. [Google Scholar]
- Kim, R.B.; Leake, B.F.; Choo, E.F.; Dresser, G.K.; Kubba, S.V.; Schwarz, U.I.; Taylor, A.; Xie, H.G.; McKinsey, J.; Zhou, S.; et al. Identification of functionally variant MDR1 alleles among European Americans and African Americans. Clin. Pharmacol. Ther 2001, 70, 189–199. [Google Scholar]
- Hill, D.A.; Wang, S.S.; Cerhan, J.R.; Davis, S.; Cozen, W.; Severson, R.K.; Hartge, P.; Wacholder, S.; Yeager, M.; Chanock, S.J.; et al. Risk of non-Hodgkin lymphoma (NHL) in relation to germline variation in DNA repair and related genes. Blood 2006, 108, 3161–3167. [Google Scholar]
- Smedby, K.E.; Lindgren, C.M.; Hjalgrim, H.; Humphreys, K.; Schollkopf, C.; Chang, E.T.; Roos, G.; Ryder, L.P.; Falk, K.I.; Palmgren, J.; et al. Variation in DNA repair genes ERCC2, XRCC1, and XRCC3 and risk of follicular lymphoma. Cancer Epidemiol. Biomark. Prev 2006, 15, 258–265. [Google Scholar]
- Wang, S.S.; Davis, S.; Cerhan, J.R.; Hartge, P.; Severson, R.K.; Cozen, W.; Lan, Q.; Welch, R.; Chanock, S.J.; Rothman, N. Polymorphisms in oxidative stress genes and risk for non-Hodgkin lymphoma. Carcinogenesis 2006, 27, 1828–1834. [Google Scholar]
- Shen, M.; Purdue, M.P.; Kricker, A.; Lan, Q.; Grulich, A.E.; Vajdic, C.M.; Turner, J.; Whitby, D.; Chanock, S.; Rothman, N.; et al. Polymorphisms in DNA repair genes and risk of non-Hodgkin’s lymphoma in New South Wales, Australia. Haematologica 2007, 92, 1180–1185. [Google Scholar]
- Shen, M.; Menashe, I.; Morton, L.M.; Zhang, Y.; Armstrong, B.; Wang, S.S.; Lan, Q.; Hartge, P.; Purdue, M.P.; Cerhan, J.R.; et al. Polymorphisms in DNA repair genes and risk of non-Hodgkin lymphoma in a pooled analysis of three studies. Br. J. Haematol 2010, 151, 239–244. [Google Scholar]
- Kim, I.S.; Kim, D.C.; Kim, H.G.; Eom, H.S.; Kong, S.Y.; Shin, H.J.; Hwang, S.H.; Lee, E.Y.; Kim, S.; Lee, G.W. DNA repair gene XRCC1 polymorphisms and haplotypes in diffuse large B-cell lymphoma in a Korean population. Cancer Genet. Cytogenet 2010, 196, 31–37. [Google Scholar]
- Hu, J.J.; Smith, T.R.; Miller, M.S.; Mohrenweiser, H.W.; Golden, A.; Case, L.D. Amino acid substitution variants of APE1 and XRCC1 genes associated with ionizing radiation sensitivity. Carcinogenesis 2001, 22, 917–922. [Google Scholar]
- Huo, X.; Lu, C.; Huang, X.; Hu, Z.; Jin, G.; Ma, H.; Wang, X.; Qin, J.; Shen, H.; Tang, J. Polymorphisms in BRCA1, BRCA1-interacting genes and susceptibility of breast cancer in Chinese women. J. Cancer Res. Clin. Oncol 2009, 135, 1569–1575. [Google Scholar]
- Tang, K.; Ngoi, S.M.; Gwee, P.C.; Chua, J.M.; Lee, E.J.; Chong, S.S.; Lee, C.G. Distinct haplotype profiles and strong linkage disequilibrium at the MDR1 multidrug transporter gene locus in three ethnic Asian populations. Pharmacogenetics 2002, 12, 437–450. [Google Scholar]
- Ameyaw, M.M.; Regateiro, F.; Li, T.; Liu, X.; Tariq, M.; Mobarek, A.; Thornton, N.; Folayan, G.O.; Githang’a, J.; Indalo, A.; et al. MDR1 pharmacogenetics: Frequency of the C3435T mutation in exon 26 is significantly influenced by ethnicity. Pharmacogenetics 2001, 11, 217–221. [Google Scholar]
- Masson, M.; Niedergang, C.; Schreiber, V.; Muller, S.; Menissier-de Murcia, J.; de Murcia, G. XRCC1 is specifically associated with poly(ADP-ribose) polymerase and negatively regulates its activity following DNA damage. Mol. Cell. Biol 1998, 18, 3563–3571. [Google Scholar]
- Boiteux, S.; Radicella, J.P. The human OGG1 gene: Structure, functions, and its implication in the process of carcinogenesis. Arch. Biochem. Biophys 2000, 377, 1–8. [Google Scholar]
- Sunaga, N.; Kohno, T.; Shinmura, K.; Saitoh, T.; Matsuda, T.; Saito, R.; Yokota, J. OGG1 protein suppresses G:C→T:A mutation in a shuttle vector containing 8-hydroxyguanine in human cells. Carcinogenesis 2001, 22, 1355–1362. [Google Scholar]
- Chen, A.; Kleiman, F.E.; Manley, J.L.; Ouchi, T.; Pan, Z.Q. Auto-ubiquitination of the BRCA1/BARD1 RING ubiquitin ligase. J. Biol. Chem 2002, 277, 22085–22092. [Google Scholar]
- Dherin, C.; Radicella, J.P.; Dizdaroglu, M.; Boiteux, S. Excision of oxidatively damaged DNA bases by the human α-hOgg1 protein and the polymorphic α-hOgg1(Ser326Cys) protein which is frequently found in human populations. Nucleic Acids Res 1999, 27, 4001–4007. [Google Scholar]
- Kohno, T.; Shinmura, K.; Tosaka, M.; Tani, M.; Kim, S.R.; Sugimura, H.; Nohmi, T.; Kasai, H.; Yokota, J. Genetic polymorphisms and alternative splicing of the hOGG1 gene, that is involved in the repair of 8-hydroxyguanine in damaged DNA. Oncogene 1998, 16, 3219–3225. [Google Scholar]
- Blessing, H.; Kraus, S.; Heindl, P.; Bal, W.; Hartwig, A. Interaction of selenium compounds with zinc finger proteins involved in DNA repair. Eur. J. Biochem 2004, 271, 3190–3199. [Google Scholar]
- Kaina, B.; Christmann, M.; Naumann, S.; Roos, W.P. MGMT: Key node in the battle against genotoxicity, carcinogenicity and apoptosis induced by alkylating agents. DNA Repair 2007, 6, 1079–1099. [Google Scholar]
- Pegg, A.E.; Fang, Q.; Loktionova, N.A. Human variants of O6-alkylguanine-DNA alkyltransferase. DNA Repair 2007, 6, 1071–1078. [Google Scholar]
- Inoue, R.; Abe, M.; Nakabeppu, Y.; Sekiguchi, M.; Mori, T.; Suzuki, T. Characterization of human polymorphic DNA repair methyltransferase. Pharmacogenetics 2000, 10, 59–66. [Google Scholar]
- Cohet, C.; Borel, S.; Nyberg, F.; Mukeria, A.; Bruske-Hohlfeld, I.; Constantinescu, V.; Benhamou, S.; Brennan, P.; Hall, J.; Boffetta, P. Exon 5 polymorphisms in the O6-alkylguanine DNA alkyltransferase gene and lung cancer risk in non-smokers exposed to second-hand smoke. Cancer Epidemiol. Biomark. Prev 2004, 13, 320–323. [Google Scholar]
- Heighway, J.; Margison, G.P.; Santibanez-Koref, M.F. The alleles of the DNA repair gene O6-alkylguanine-DNA alkyltransferase are expressed at different levels in normal human lung tissue. Carcinogenesis 2003, 24, 1691–1694. [Google Scholar]
- Krzesniak, M.; Butkiewicz, D.; Samojedny, A.; Chorazy, M.; Rusin, M. Polymorphisms in TDG and MGMT genes—Epidemiological and functional study in lung cancer patients from Poland. Ann. Hum. Genet 2004, 68 Pt 4, 300–312. [Google Scholar]
- Ambudkar, S.V.; Kimchi-Sarfaty, C.; Sauna, Z.E.; Gottesman, M.M. P-glycoprotein: From genomics to mechanism. Oncogene 2003, 22, 7468–7485. [Google Scholar]
- Drescher, S.; Schaeffeler, E.; Hitzl, M.; Hofmann, U.; Schwab, M.; Brinkmann, U.; Eichelbaum, M.; Fromm, M.F. MDR1 gene polymorphisms and disposition of the P-glycoprotein substrate fexofenadine. Br. J. Clin. Pharmacol 2002, 53, 526–534. [Google Scholar]
- Goto, M.; Masuda, S.; Saito, H.; Uemoto, S.; Kiuchi, T.; Tanaka, K.; Inui, K. C3435T polymorphism in the MDR1 gene affects the enterocyte expression level of CYP3A4 rather than P-gp in recipients of living-donor liver transplantation. Pharmacogenetics 2002, 12, 451–457. [Google Scholar]
- Hoffmeyer, S.; Burk, O.; von Richter, O.; Arnold, H.P.; Brockmoller, J.; Johne, A.; Cascorbi, I.; Gerloff, T.; Roots, I.; Eichelbaum, M.; et al. Functional polymorphisms of the human multidrug-resistance gene: Multiple sequence variations and correlation of one allele with P-glycoprotein expression and activity in vivo. Proc. Natl. Acad. Sci. USA 2000, 97, 3473–3478. [Google Scholar]
- Salama, N.N.; Yang, Z.; Bui, T.; Ho, R.J. MDR1 haplotypes significantly minimize intracellular uptake and transcellular P-gp substrate transport in recombinant LLC-PK1 cells. J. Pharm. Sci 2006, 95, 2293–2308. [Google Scholar]
- Shen, L.X.; Basilion, J.P.; Stanton, V.P., Jr. Single-nucleotide polymorphisms can cause different structural folds of mRNA. Proc. Natl. Acad. Sci. USA 1999, 96, 7871–7876. [Google Scholar]
- Frittitta, L.; Ercolino, T.; Bozzali, M.; Argiolas, A.; Graci, S.; Santagati, M.G.; Spampinato, D.; di Paola, R.; Cisternino, C.; Tassi, V.; et al. A cluster of three single nucleotide polymorphisms in the 3′-untranslated region of human glycoprotein PC-1 gene stabilizes PC-1 mRNA and is associated with increased PC-1 protein content and insulin resistance-related abnormalities. Diabetes 2001, 50, 1952–1955. [Google Scholar]
- Perloff, M.D.; von Moltke, L.L.; Stormer, E.; Shader, R.I.; Greenblatt, D.J. Saint John’s wort: An in vitro analysis of P-glycoprotein induction due to extended exposure. Br. J. Pharmacol 2001, 134, 1601–1608. [Google Scholar]
- Stephens, M.; Smith, N.J.; Donnelly, P. A new statistical method for haplotype reconstruction from population data. Am. J. Hum. Genet 2001, 68, 978–989. [Google Scholar]
Gene and rs No. | Genotype | Primers and probe | Method | Reference |
---|---|---|---|---|
DNA repair pathway | ||||
ERCC1 rs3212961 | A/C, IVS5 +33 | F: TTGTCCAGGTGGATGTGGTA R: CCTCGCTGAGGTTTTAGCTG | HRM | |
ERCC2/XPD rs13181 | G/T, Lys751Gln | F: TCAAACATCCTGTCCCTACT R: CTGCGATTAAAGGCTGTGGA | RFLP: PstI | |
XPC rs2228001 | A/C, Lys939Gln | F: CCTCAAAACCGAGAAGATGAAG R: CAGGTGTGGGGCCTGTAGT | HRM | |
XRCC3 rs861539 | C/T, Thr241Met | F: CCATTCCGCTGTGAATTTG R: GAAGGCACTGCTCAGCTCAC | HRM | |
RAD51 rs1801321 | G/T, 172 in 5′-UTR | F: GTAGAGAAGTGGAGCGTAAGCC R: Biotin-CTGCGCCTCACACACTCA S: GGGGGCCGTGCGGGT | PSQ | |
XRCC4 rs1056503 | G/T, Ser307Ser | F: AGGCCTGATTCTTCACTACCTG R: GGCTGCTGTTTCTCAGAGTTTC | HRM | |
XRCC1 rs1799782 | C/T, Arg194Trp | F: ATAATACTGACCTTGCGGGACC R: Biotin-ACCCACGAGTCTAGGTCTCAA S: CTGAGGCCGGGGGCT | PSQ | |
XRCC1 rs25487 | G/A, Arg399Gln | F: TCTCCCTTGGTCTCCAACCT R: AGTAGTCTGCTGGCTCTGG | RFLP: HpaII | [31] |
OGG1 rs1052133 | C/G, Ser326Cys | F: CCCTCCTACAGGTGCTGTTC R: TGGGGAATTTCTTTGTCCAG | HRM | |
MGMT rs12917 | C/T, Leu115Phe | F: Biotin-CCCCTGTTCTCACTTTTGCA R: ACTGTGATGTCAGCGATCGTTAAT S: AAACGGGATGGTGAA | PSQ | |
BRCA1 rs799917 | C/T, Pro871Leu | F: CCACAGTCGGGAAACAAGCATAGA R: CTTCTGCATTTCCTGGATTTGAAACC | RFLP: HpaII | [32] |
WRN rs1800392 | G/T, Leu787Leu | F: TGGGAATTTGAAGGTCCAAC R: GCATGGTATGTTCCACAGGA | HRM | |
Multidrug resistance | ||||
ABCB1 rs1128503 | 1236, T/C, Gly412Gly | F: TCTTTGTCAC TTTATCCAGC R: TCTCACCATC CCCTCTGT | RFLP: EcoO191I | [33] |
ABCB1 rs2032582 | 2677, G/T/A, Ser893Thr/Ala | F: TGCAGGCTATAGGTTCCAGG R: TTTAGTTTGACTCACCTTCCCG | RFLP: Ban1, Rsa1 | [34] |
ABCB1 rs1045682 | 3435, C/T, Ile1145 Ile | F: GAGCCCATCCTGTTTGACTG R: AGAGAGGCTGCCACATGCT | RFLP: Mbo1 | [34] |
SNP § | Genotype/ Haplotype | Control n (%) | NHL | DLBCL | T-cell lymphoma | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
n (%) | OR * (95% CI) | p | n (%) | OR * (95% CI) | p | n (%) | OR * (95% CI) | p | |||
ERCC1 | AA | 440 (26) | 153 (23) | 1 | 79 (22) | 1 | 34 (25) | 1 | |||
IVS5 +33C>A | AC | 863 (51) | 356 (54) | 1.20 (0.96–1.50) | 0.12 | 193 (53) | 1.26 (0.95–1.69) | 0.11 | 72 (54) | 1.08 (0.71–1.66) | 0.71 |
rs3212961 | CC | 395 (23) | 156 (23) | 1.14 (0.88–1.48) | 0.33 | 89 (25) | 1.28 (0.91–1.79) | 0.16 | 28 (21) | 0.91 (0.54–1.54) | 0.73 |
AC/CC | 1258 (74) | 512 (77) | 1.18 (0.95–1.46) | 0.13 | 282 (78) | 1.27 (0.96–1.67) | 0.09 | 100 (75) | 1.03 (0.69–1.54 | 0.89 | |
ERCC2/XPD | GG | 1516 (89) | 622 (90) | 1 | 342 (91) | 1 | 127 (90) | 1 | |||
Lys751Gln | GT | 179 (11) | 65 (9) | 0.91 (0.68–1.24) | 0.56 | 31 (8) | 0.81 (0.54–1.21) | 0.31 | 12 (8) | 0.79 (0.43–1.45) | 0.44 |
rs13181 | TT | 5 (0) | 6 (1) | 3.22 (0.98–10.62) | 0.06 | 4 (1) | 3.67 (0.96–14.03) | 0.06 | 1 (1) | 2.30 (0.26–20.29) | 0.45 |
GT/TT | 184 (11) | 71 (10) | 0.97 (0.73–1.31) | 0.86 | 35 (9) | 0.89 (0.61–1.31) | 0.56 | 13 (9) | 0.83 (0.46–1.50) | 0.53 | |
XPC | AA | 650 (38) | 271 (39) | 1 | 143 (38) | 1 | 61 (44) | 1 | |||
Lys939Gln | AC | 812 (48) | 341 (49) | 1.02 (0.84–1.23) | 0.87 | 186 (49) | 1.05 (0.82–1.34) | 0.70 | 61 (44) | 0.80 (0.55–1.16) | 0.24 |
rs2228001 | CC | 238 (14) | 81 (12) | 0.83 (0.62–1.11) | 0.20 | 48 (13) | 0.96 (0.67–1.39) | 0.84 | 18 (12) | 0.79 (0.46–1.37) | 0.40 |
AC/CC | 1050 (62) | 422 (62) | 0.97 (0.81–1.17) | 0.77 | 234 (62) | 1.03 (0.82–1.30) | 0.80 | 79 (56) | 0.97 (0.81–1.17) | 0.77 | |
XRCC3 | CC | 1573 (93) | 635 (92) | 1 | 343 (92) | 1 | 129 (93) | 1 | |||
Thr241Met | CT | 122 (7) | 53 (8) | 1.14 (0.81–1.60) | 0.46 | 31 (8) | 1.27 (0.84–1.94) | 0.26 | 10 (1) | 1.04 (0.53–2.03) | 0.91 |
rs861539 | TT | 2 (0) | 1 (0.1) | 1.23 (0.11–13.69) | 0.87 | 0 (0) | 0.00 (0.00–0.00) | 0.99 | 0 (0) | 0.00 (0.00–0.00) | 0.99 |
CT/TT | 124 (7) | 54 (8) | 1.14 (0.81–1.59) | 0.45 | 31 (8) | 1.25 (0.82–1.90) | 0.30 | 10 (1) | 1.02 (0.52–2.00) | 0.95 | |
RAD51 | GG | 1569 (92) | 651 (94) | 1 | 351 (93) | 1 | 132 (94) | 1 | |||
172 in 5′-UTR | GT | 129 (8) | 43 (6) | 0.82 (0.57–1.17) | 0.27 | 27 (7) | 0.97 (0.63–1.51) | 0.90 | 8 (6) | 0.44 (0.36–1.56) | 0.44 |
rs1801321 | TT | 2 (0) | 0 (0) | NA | 0 (0) | NA | 0 (0) | NA | |||
GT/TT | 131 (8) | 43 (6) | 0.81 (0.56–1.16) | 0.24 | 27 (7) | 0.96 (0.62–1.49) | 0.86 | 8 (6) | 0.74 (0.35–1.54) | 0.42 | |
XRCC4 | GG | 916 (54) | 391 (56) | 1 | 214 (57) | 1 | 77 (55) | 1 | |||
Ser307Ser | GT | 658 (39) | 242 (35) | 0.87 (0.72–1.05) | 0.15 | 129 (34) | 0.85 (0.67–1.08) | 0.19 | 51 (36) | 0.93 (0.64–1.35) | 0.71 |
rs1056503 | TT | 124 (7) | 61 (9) | 1.11 (0.80–1.55) | 0.53 | 35 (9) | 1.17 (0.78–1.77) | 0.45 | 12 (9) | 1.09 (0.57–2.06) | 0.80 |
GT/TT | 782 (46) | 303 (44) | 0.91 (0.76–1.09) | 0.30 | 164 (43) | 0.90 (0.72–1.13) | 0.37 | 63 (45) | 0.96 (0.68–1.36) | 0.81 | |
XRCC1 | CC | 776 (46) | 294 (43) | 1 | 156 (42) | 1 | 63 (45) | 1 | |||
Arg194Trp | CT | 741 (44) | 318 (46) | 1.13 (0.93–1.36) | 0.21 | 176 (47) | 1.17 (0.92–1.50) | 0.19 | 63 (45) | 1.05 (0.73–1.51) | 0.81 |
rs1799782 | TT | 164 (10) | 77 (11) | 1.22 (0.90–1.66) | 0.20 | 43 (11) | 1.28 (0.87–1.87) | 0.21 | 14 (10) | 1.05 (0.57–1.92) | 0.87 |
CT/TT | 905 (54) | 395 (57) | 1.15 (0.96–1.38) | 0.13 | 219 (58) | 1.19 (0.95–1.50) | 0.13 | 77 (55) | 1.05 (0.74–1.48) | 0.80 | |
XRCC1 | GG | 914 (54) | 410 (59) | 1 | 223 (59) | 1 | 80 (57) | 1 | |||
Arg399Gln | GA | 693 (41) | 247 (36) | 0.80 (0.66–0.96) | 0.02 | 136 (36) | 0. 82 (0.65–1.04) | 0.10 | 51 (37) | 0. 83 (0.57–1.20) | 0.31 |
rs25487 | AA | 91 (5) | 36 (5) | 0.92 (0.61–1.38) | 0.67 | 18 (5) | 0.83 (0.49–1.42) | 0.50 | 9 (6) | 1.15 (0.56–2.38) | 0.70 |
GA/AA | 784 (46) | 383 (41) | 0.81 (0.68–0.97) | 0.02 | 154 (41) | 0.82 (0.65–1.03) | 0.09 | 60 (43) | 0.87 (0.61–1.23) | 0.42 | |
OGG1 | CC | 472 (28) | 226 (33) | 1 | 126 (33) | 1 | 49 (35) | 1 | |||
Ser326CyS | CG | 863 (51) | 339 (49) | 0.81 (0.66–1.00) | 0.048 | 184 (49) | 0.79 (0.61–1.02) | 0.07 | 68 (49) | 0.76 (0.52–1.12) | 0.16 |
rs1052133 | GG | 365 (21) | 123 (18) | 0.70 (0.54–0.91) | 0.008 | 67 (18) | 0.68 (0.49–0.95) | 0.02 | 22 (16) | 0.59 (0.35–0.99) | 0.04 |
CG/GG | 1228 (72) | 462 (67) | 0.78 (0.64–0.95) | 0.01 | 251 (67) | 0.75 (0.59–0.96) | 0.02 | 90 (65) | 0.71 (0.49–1.02) | 0.06 | |
MGMT | CC | 1327 (78) | 517 (75) | 1 | 276 (73) | 1 | 103 (74) | 1 | |||
Leu115Phe | CT | 350 (21) | 167 (24) | 1.25 (1.01–1.54) | 0.04 | 98 (26) | 1.37 (1.05–1.79) | 0.02 | 32 (23) | 1.22 (0.80–1.85) | 0.35 |
rs12917 | TT | 23 (1) | 9 (1) | 1.02 (0.46–2.24) | 0.97 | 4 (1) | 0.87 (0.29–2.58) | 0.80 | 4 (3) | 2.53 (0.85–7.51) | 0.10 |
CT/TT | 373 (22) | 176 (25) | 1.23 (1.00–1.52) | 0.05 | 176 (25) | 1.34 (1.04–1.74) | 0.03 | 36 (26) | 1.29 (0.87–1.93) | 0.21 | |
BRCA1 | CC | 828 (49) | 364 (53) | 1 | 207 (55) | 1 | 75 (54) | 1 | |||
Pro871Leu | CT | 715 (42) | 273 (40) | 0.87 (0.72–1.05) | 0.13 | 145 (38) | 0.81 (0.64–1.03) | 0.08 | 57 (41) | 0.90 (0.63–1.29) | 0.56 |
rs799917 | TT | 157 (9) | 50 (7) | 0.71 (0.50–0.997) | 0.048 | 25 (7) | 0.62 (0.39–0.97) | 0.04 | 6 (4) | 0.42 (0.18–0.97) | 0.04 |
CT/TT | 872 (51) | 323 (47) | 0.84 (0.70–1.00) | 0.05 | 170 (45) | 0.77 (0.62–0.97) | 0.03 | 63 (45) | 0.81 (0.57–1.15) | 0.24 | |
WRN | GG | 558 (33) | 245 (36) | 1 | 133 (35) | 1 | 48 (34) | 1 | |||
Leu787Leu | GT | 846 (50) | 359 (52) | 0.98 (0.80–1.19) | 0.81 | 196 (52) | 1.00 (0.78–1.29) | 0.99 | 76 (55) | 1.03 (0.71–1.51) | 0.86 |
rs1800392 | TT | 296 (17) | 85 (12) | 0.68 (0.51–0.91) | 0.01 | 48 (13) | 0.73 (0.50–1.05) | 0.09 | 15 (11) | 0.60 (0.33–1.09) | 0.09 |
GT/TT | 1142 (67) | 444 (64) | 0.90 (0.75–1.09) | 0.28 | 244 (65) | 0.93 (0.73–1.18) | 0.56 | 91 (66) | 0.80 (0.56–1.13) | 0.21 |
SNP | Genotype/Haplotype | Control n (%) | NHL | DLBCL | T-cell lymphoma | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
n (%) | OR * (95% CI) | p | n (%) | OR * (95% CI) | p | n (%) | OR * (95% CI) | p | |||
ABCB1 1236 | TT | 580 (34) | 234 (34) | 1 | 139 (37) | 1 | 44 (32) | 1 | |||
Gly412Gly | TC | 825 (49) | 367 (53) | 1.11 (0.91–1.36) | 0.29 | 193 (51) | 1.00 (0.78–1.28) | 0.98 | 74 (53) | 1.18 (0.80–1.74) | 0.41 |
rs1128503 | CC | 295 (17) | 87 (13) | 0.74 (0.56–0.98) | 0.04 | 44 (12) | 0.64 (0.44–0.93) | 0.02 | 21 (15) | 0.93 (0.54–1.60) | 0.80 |
TT/CC | 1120 (66) | 454 (66) | 1.01 (0.84–1.22) | 0.89 | 237 (63) | 0.90 (0.71–1.14) | 0.39 | 95 (68) | 1.11 (0.77–1.62) | 0.57 | |
ABCB1 2677 | GG | 323 (19) | 131 (19) | 1 | 64 (17) | 1 | 29 (21) | 1 | |||
Ser893 Thr/Ala | GW † | 886 (52) | 340 (50) | 0.96 (0.75–1.22) | 0.74 | 189 (51) | 1.10 (0.81–1.51) | 0.54 | 69 (50) | 0.86 (0.55–1.35) | 0.51 |
rs2032582 | WW | 488 (29) | 210 (31) | 1.07 (0.82–1.39) | 0.61 | 115 (31) | 1.21 (0.86–1.71) | 0.27 | 41 (29) | 0.92 (0.56–1.51) | 0.74 |
GW/WW | 1374 (81) | 550 (81) | 1.00 (0.80–1.26) | 0.99 | 304 (82) | 1.14 (0.85–1.54) | 0.39 | 110 (79) | 0.88 (0.57–1.35) | 0.56 | |
ABCB1 3435 | CC | 708 (42) | 234 (34) | 1 | 128 (34) | 1 | 46 (33) | 1 | |||
Ile1145 Ile | CT | 800 (47) | 377 (54) | 1.50 (1.23–1.82) | <0.0001 | 210 (56) | 1.52 (1.19–1.94) | 0.01 | 76 (54) | 1.51 (1.04–2.22) | 0.03 |
rs1045642 | TT | 192 (11) | 83 (12) | 1.43 (1.06–1.93) | 0.02 | 40 (10) | 1.25 (0.84–1.86) | 0.27 | 18 (13) | 1.54 (0.87–2.72) | 0.14 |
CT/TT | 992 (58) | 460 (66) | 1.48 (1.23–1.79) | <0.0001 | 250 (66) | 1.47 (1.16–1.86) | 0.02 | 94 (67) | 1.52 (1.05–2.19) | 0.03 | |
ABCB1 | TTT | 1037 (31) | 444 (34) | 1 | 242 (34) | 1 | 88 (34) | 1 | |||
HAP | CGC | 734 (22) | 261 (20) | 0.83 (0.69–0.995) | 0.04 | 132 (19) | 0.77 (0.61–0.98) | 0.03 | 53 (20) | 0.85 (0.60–1.21) | 0.38 |
TGC | 713 (21) | 270 (21) | 0.88 (0.73–1.05) | 0.15 | 152 (22) | 0.90 (0.71–1.13) | 0.35 | 54 (21) | 0.91 (0.64–1.29) | 0.59 | |
CAC | 583 (18) | 211 (16) | 0.84 (0.69–1.02) | 0.08 | 117 (17) | 0.87 (0.68–1.11) | 0.25 | 44 (17) | 0.89 (0.61–1.29) | 0.53 | |
TTC | 186 (6) | 70 (6) | 0.90 (0.67–1.21) | 0.48 | 45 (6) | 1.07 (0.75–1.53) | 0.72 | 11 (4) | 0.73 (0.38–1.39) | 0.34 | |
CGT | 62 (2) | 41 (3) | 1.67 (1.10–2.54) | 0.02 | 16 (2) | 1.22 (0.68–2.18) | 0.51 | 12 (4) | 2.48 (1.28–4.79) | 0.007 |
© 2014 by the authors; licensee MDPI, Basel, Switzerland This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Kim, H.N.; Kim, N.Y.; Yu, L.; Kim, Y.-K.; Lee, I.-K.; Yang, D.-H.; Lee, J.-J.; Shin, M.-H.; Park, K.-S.; Choi, J.-S.; et al. Polymorphisms in DNA Repair Genes and MDR1 and the Risk for Non-Hodgkin Lymphoma. Int. J. Mol. Sci. 2014, 15, 6703-6716. https://doi.org/10.3390/ijms15046703
Kim HN, Kim NY, Yu L, Kim Y-K, Lee I-K, Yang D-H, Lee J-J, Shin M-H, Park K-S, Choi J-S, et al. Polymorphisms in DNA Repair Genes and MDR1 and the Risk for Non-Hodgkin Lymphoma. International Journal of Molecular Sciences. 2014; 15(4):6703-6716. https://doi.org/10.3390/ijms15046703
Chicago/Turabian StyleKim, Hee Nam, Nan Young Kim, Li Yu, Yeo-Kyeoung Kim, Il-Kwon Lee, Deok-Hwan Yang, Je-Jung Lee, Min-Ho Shin, Kyeong-Soo Park, Jin-Su Choi, and et al. 2014. "Polymorphisms in DNA Repair Genes and MDR1 and the Risk for Non-Hodgkin Lymphoma" International Journal of Molecular Sciences 15, no. 4: 6703-6716. https://doi.org/10.3390/ijms15046703
APA StyleKim, H. N., Kim, N. Y., Yu, L., Kim, Y. -K., Lee, I. -K., Yang, D. -H., Lee, J. -J., Shin, M. -H., Park, K. -S., Choi, J. -S., & Kim, H. -J. (2014). Polymorphisms in DNA Repair Genes and MDR1 and the Risk for Non-Hodgkin Lymphoma. International Journal of Molecular Sciences, 15(4), 6703-6716. https://doi.org/10.3390/ijms15046703