Single Nucleotide Polymorphisms in Growth Hormone Gene and Their Association with Growth Traits in Siniperca chuatsi (Basilewsky)
Abstract
:1. Introduction
2. Results and Discussion
2.1. Polymorphism Identification and Genotyping
2.2. Association Analysis with Growth Traits
2.3. Discussion
3. Experimental Section
3.1. Samples Collection and Preparation
3.2. Primer Design and Polymerase Chain Reaction (PCR) Amplification
3.3. Single Nucleotide Polymorphism Identification and Genotyping
3.4. Statistical Analysis
4. Conclusions
Acknowledgments
Conflicts of Interest
- Author ContributionsConceived and designed the experiments: X.L. and Y.Y. Performed the experiments: C.T., L.L., Y.S., C.Z. Analyzed the data: C.T., M.Y., W.G. Contributed reagents/materials/analysis tools: L.L., M.Y., Y.S., C.Z. Wrote the paper: C.T., Y.Y.
References
- He, S.; Liang, X.F.; Sun, J.; Li, L.; Yu, Y.; Huang, W.; Tao, Y.X. Insights into food preference in hybrid F1 of Siniperca chuatsi (♀) × Siniperca scherzeri (♂) mandarin fish through transcriptome analysis. BMC Genomics 2013, 14, 601. [Google Scholar]
- Liang, X.F. Study on mandarin fish and its culture home and abroad. Fish. Sci. Technol. Inf 1996, 23, 13–17. [Google Scholar]
- Liang, X.F.; Oku, H.; Ogata, H.Y.; Liu, J.; He, X. Weaning Chinese perch Siniperca chuatsi (Basilewsky) onto artificial diets based upon its specific sensory modality in feeding. Aquac. Res 2001, 32, 76–82. [Google Scholar]
- Lynch, M.; Walsh, B. Genetics and Analysis of Quantitative Traits; Sinauer Assoc Inc.: Sunderland, MA, USA, 1997; p. 980. [Google Scholar]
- Gu, Z.; Zhu, D.; Li, N.; Li, H.; Deng, X.; Wu, C. The single nucleotide polymorphisms of the chicken myostatin gene are associated with skeletal muscle and adipose growth. Sci. China C 2004, 47, 25–30. [Google Scholar]
- Gjedrem, T.; Baranski, M. Selective Breeding in Aquaculture: An Introduction; Springer: New York, NY, USA, 2009. [Google Scholar]
- Quik, E.H.; van Dam, P.S.; Kenemans, J.L. Growth hormone and selective attention: A review. Neurosci. Biobehav. Rev 2010, 34, 1137–1143. [Google Scholar]
- Clayton, P.E.; Banerjee, I.; Murray, P.G.; Renehan, A.G. Growth hormone, the insulin-like growth factor axis, insulin and cancer risk. Nat. Rev. Endocrinol 2010, 7, 11–24. [Google Scholar]
- Ni, J.; You, F.; Xu, J.; Xu, D.; Wen, A.; Wu, Z.; Zhang, P. Single nucleotide polymorphisms in intron 1 and intron 2 of Larimichthys crocea growth hormone gene are correlated with growth traits. Chin. J. Oceanol. Limnol 2012, 30, 279–285. [Google Scholar]
- Gross, R.; Nilsson, J. Application of heteroduplex analysis for detecting variation within the growth hormone 2 gene in Salmo trutta L.(brown trout). Heredity 1995, 74, 286–295. [Google Scholar]
- Park, L.K.; Moran, P.; Dightman, D.A. A polymorphism in intron D of the chinook salmon growth hormone 2 gene. Anim. Genet 1995, 26, 285. [Google Scholar]
- Schlee, P.; Fuchs, H.; Blusch, J.; Werner, T.; Rottmann, O.; Stein, H. Genetic polymorphism in the intron of the growth hormone gene of the bleak. J. Fish Biol 1996, 48, 1275–1277. [Google Scholar]
- Gross, R.; Nilsson, J. Restriction fragment length polymorphism at the growth hormone 1 gene in Atlantic salmon (Salmo salar.) and its association with weight among the offspring of a hatchery stock. Aquaculture 1999, 173, 73–80. [Google Scholar]
- Gross, R.; Stein, H.; Rottmann, O. Detection of allelic variation within the growth hormone gene in common bream using heteroduplex analysis. J. Fish Biol 1996, 48, 1283–1287. [Google Scholar]
- Liu, F.; Lu, S.Q.; Liu, Z.; Xie, X.M.; Tang, J.Z.; Kuang, G.Q. The GH gene diversity among three Siniperca fish species. Oceanol. Limnol. Sin 2009, 40, 470–478. (In Chinese) [Google Scholar]
- Tian, C.X.; Yang, M.; Liang, X.F.; Cao, L.; Zheng, H.; Zhao, C.; Yuan, Y. Population genetic structure of Siniperca chuatsi in the middle reach of the Yangtze River inferred from mitochondrial DNA and microsatellite loci. Mitochondrial DNA 2013, 2013. [Google Scholar] [CrossRef]
- Kerber, A.R.; Hepp, D.; Passos, D.T.; de Azevedo Weimer, T. Polymorphisms of two indels at the PRNP gene in three beef cattle herds. Biochem. Genet 2008, 46, 1–7. [Google Scholar]
- Rye, M.; Gjerde, B.; Gjedrem, T. Genetic improvement programs for aquaculture species in developed countries. Proceedings of the 9th World Congress on Genetics Applied to Livestock Production, Leipzig, Germany, 1–7 August 2010.
- Xu, Q.; Feng, C.Y.; Hori, T.S.; Plouffe, D.A.; Buchanan, J.T.; Rise, M.L. Family-specific differences in growth rate and hepatic gene expression in juvenile triploid growth hormone (GH) transgenic Atlantic salmon (Salmo salar). Comp. Biochem. Physiol. D 2013, 8, 317–333. [Google Scholar]
- Sun, Y.; Yu, X.; Tong, J. Polymorphisms in myostatin gene and associations with growth traits in the common carp (Cyprinus carpio L.). Int. J. Mol. Sci 2012, 13, 14956–14961. [Google Scholar]
- Olivier, M. A haplotype map of the human genome. Physiol. Genomics 2003, 13, 3–9. [Google Scholar]
- Liu, N.J.; Zhang, K.; Zhao, H.Y. Haplotype-Association Analysis, Genetic Dissection of Complex Traits, 2nd ed; Elsevier Academic Press Inc: San Diego, CA, USA, 2008; pp. 335–405. [Google Scholar]
- Thompson, J.D.; Gibson, T.J.; Plewniak, F.; Jeanmougin, F.; Higgins, D.G. The ClustalX Windows interface: Flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 1997, 25, 4876–4882. [Google Scholar]
- POPGENE Version 1.31. Available online: http://www.ualberta.ca/~fyeh/popgene.pdf (accessed on 22 April 2014).
- Nei, M.; Roychoudhury, A.K. Sampling variances of heterozygosity and genetic distance. Genetics 1974, 76, 379–390. [Google Scholar]
- Barrett, J.C.; Fry, B.; Maller, J.; Daly, M.J. Haploview: Analysis and visualization of LD and haplotype maps. Bioinformatics 2005, 21, 263–265. [Google Scholar]
- Saville, D.J. Multiple comparison procedures: The practical solution. Am. Stat 1990, 44, 174–180. [Google Scholar]
Locus | Ne | He | Ho | PIC | p-value (HWE) |
---|---|---|---|---|---|
g.4940A>C | 1.74 | 0.4261 | 0.3865 | 0.3349 | 0.525 |
g. 4948A>T | 1.68 | 0.4247 | 0.3475 | 0.3341 | 0.017* |
g. 5045T>C | 1.74 | 0.4056 | 0.3723 | 0.3229 | 0.212 |
g.5234T>G | 1.74 | 0.4274 | 0.4255 | 0.3356 | 0.008* |
Mean | 1.72 | 0.4209 | 0.3830 | 0.3319 | 0.191 |
Locus | Genotype | Genotypic frequencies | Body weight (g) | Total length (cm) | Body length (cm) | Body height (cm) |
---|---|---|---|---|---|---|
g.4940A>C | AC (109) | 0.39 | 477.70 ± 39.95a | 31.40 ± 0.83a | 27.17 ± 0.68a | 9.69 ± 0.30a |
AA (142) | 0.50 | 482.52 ± 20.02a | 31.65 ± 0.54a | 27.64 ± 0.44a | 9.89 ± 0.20a | |
CC (32) | 0.11 | 584.89 ± 41.02b | 35.25 ± 0.85b | 30.80 ± 0.70b | 10.95 ± 0.31b | |
g. 4948A>T | AA (147) | 0.52 | 480.66 ± 20.86 | 31.56 ± 0.57a | 27.60 ± 0.47 | 9.85 ± 0.20a |
AT (98) | 0.35 | 494.84 ± 37.90 | 32.03 ± 0.81a,b | 27.70 ± 0.66 | 9.86 ± 0.28a | |
TT (37) | 0.13 | 531.64 ± 39.76 | 33.34 ± 0.84b | 28.95 ± 0.69 | 10.48 ± 0.30b | |
g. 5045T>C | TC (105) | 0.37 | 484.27 ± 43.20 | 31.61 ± 0.91 | 27.34 ± 0.75a | 9.77 ± 0.32 |
TT (150) | 0.53 | 495.64 ± 26.29 | 32.01 ± 0.55 | 27.94 ± 0.45b | 9.99 ± 0.19 | |
CC (27) | 0.10 | 504.07 ± 44.59 | 33.06 ± 0.94 | 29.00 ± 0.78b | 10.30 ± 0.34 | |
g.5234T>G | TT (135) | 0.48 | 487.32 ± 25.92 | 31.74 ± 0.92 | 27.68 ± 0.45 | 9.90 ± 0.19 |
TG (120) | 0.43 | 492.96 ± 43.55 | 31.97 ± 0.55 | 27.76 ± 0.76 | 9.90 ± 0.33 | |
GG (27) | 0.10 | 514.01 ± 44.01 | 33.07 ± 0.71 | 28.74 ± 0.77 | 10.23 ± 0.34 |
Primer name | The size of the fragment (bp) | Primer sequence (5′–3′) | Location along the gene | Amplified gene frament | Annealing temperature (°C) |
---|---|---|---|---|---|
G1 | 465 | F: GCAACCCGATGAGAAATA | 163–627 | Part of intron 2, exon 2, part of intron 3 | 55 |
R: CTCTGCGAGCTGCTGTAA | |||||
G2 | 919 | F: GGAAAGGCAGAATGGATG | 3111–4029 | Part of intron 3, exon 3, part of intron 4 | 55 |
R: GAGGCTCAGATGATTGTTGGTC | |||||
G3 | 516 | F: GAGTTTCCCAGTCGTTCT | 4827–5342 | Part of exon 4, intron 4, exon 5, intron 6, exon 6, part of 3′-UTR | 54 |
R: GCGTGGCTTCACAGTAG |
© 2014 by the authors; licensee MDPI, Basel, Switzerland This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Tian, C.; Yang, M.; Lv, L.; Yuan, Y.; Liang, X.; Guo, W.; Song, Y.; Zhao, C. Single Nucleotide Polymorphisms in Growth Hormone Gene and Their Association with Growth Traits in Siniperca chuatsi (Basilewsky). Int. J. Mol. Sci. 2014, 15, 7029-7036. https://doi.org/10.3390/ijms15047029
Tian C, Yang M, Lv L, Yuan Y, Liang X, Guo W, Song Y, Zhao C. Single Nucleotide Polymorphisms in Growth Hormone Gene and Their Association with Growth Traits in Siniperca chuatsi (Basilewsky). International Journal of Molecular Sciences. 2014; 15(4):7029-7036. https://doi.org/10.3390/ijms15047029
Chicago/Turabian StyleTian, Changxu, Min Yang, Liyuan Lv, Yongchao Yuan, Xufang Liang, Wenjie Guo, Yi Song, and Cheng Zhao. 2014. "Single Nucleotide Polymorphisms in Growth Hormone Gene and Their Association with Growth Traits in Siniperca chuatsi (Basilewsky)" International Journal of Molecular Sciences 15, no. 4: 7029-7036. https://doi.org/10.3390/ijms15047029
APA StyleTian, C., Yang, M., Lv, L., Yuan, Y., Liang, X., Guo, W., Song, Y., & Zhao, C. (2014). Single Nucleotide Polymorphisms in Growth Hormone Gene and Their Association with Growth Traits in Siniperca chuatsi (Basilewsky). International Journal of Molecular Sciences, 15(4), 7029-7036. https://doi.org/10.3390/ijms15047029