Microscopic Pillars and Tubes Fabricated by Using Fish Dentine as a Molding Template
Abstract
:1. Introduction
2. Results and Discussion
2.1. Tubular Microstructures in Dentine of Black Carp Fish
2.2. Fabricated Micro-Pillars and Tubes
2.3. Adhesion Properties of Single Micro-Pillar and Tube
3. Experimental Section
3.1. Fabrication of Templates
3.2. SEM Characterization and EDX Analysis
3.3. Fabrication of Micro-Pillars and Tubes Using Mold Casting
3.4. Adhesion Measurement
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Boesel, L.F.; Cremer, C.; Arzt, E.; Campo, A.D. Gecko-inspired surfaces: A path to strong and reversible dry adhesives. Adv. Mater. 2010, 22, 2125–2137. [Google Scholar] [CrossRef]
- Autumn, K.; Liang, Y.A.; Hsieh, S.T.; Zesch, W.; Chan, W.P.; Kenny, T.W.; Fearing, R.; Full, R.J. Adhesive force of a single gecko foot-hair. Nature 2000, 405, 681–685. [Google Scholar] [CrossRef]
- Wainwright, D.K.; Kleinteich, T.; Kleinteich, A.; Gorb, S.N.; Summers, A.P. Stick tight: Suction adhesion on irregular surfaces in the northern clingfish. Biol. Lett. 2013, 9. [Google Scholar] [CrossRef]
- Kamperman, M.; Kroner, E.; del Campo, A.; McMeeking, R.M.; Arzt, E. Functional adhesive surfaces with “gecko” effect: The concept of contact splitting. Adv. Eng. Mater. 2010, 12, 335–348. [Google Scholar] [CrossRef]
- Arzt, E.; Gorb, S.; Spolenak, R. From micro to nano contacts in biological attachment devices. Proc. Natl. Acad. Sci. USA 2003, 100, 10603–10606. [Google Scholar] [CrossRef]
- Del Campo, A.; Greiner, C.; Arzt, E. Contact shape controls adhesion of bioinspired fibrillar surfaces. Langmuir 2007, 23, 10235–10243. [Google Scholar] [CrossRef]
- Micciché, M.; Arzt, E.; Kroner, E. Single macroscopic pillars as model system for bioinspired adhesives: Influence of tip dimension, aspect ratio, and tilt angle. ACS Appl. Mater. Interfaces 2014, 6, 7076–7083. [Google Scholar] [CrossRef]
- Zhao, B.; Pesika, N.; Zeng, H.; Wei, Z.; Chen, Y.; Autumn, K.; Turner, K.; Israelachvili, J. Role of tilted adhesion fibrils (setae) in the adhesion and locomotion of gecko-like systems. J. Phys. Chem. B 2009, 113, 3615–3621. [Google Scholar]
- Kim, T.I.; Jeong, H.E.; Suh, K.Y.; Lee, H.H. Stooped nanohairs: Geometry-controllable, unidirectional, reversible, and robust gecko-like dry adhesive. Adv. Mater. 2009, 21, 2276–2281. [Google Scholar] [CrossRef]
- Heepe, L.; Gorb, S.N. Biologically inspired mushroom-shaped adhesive microstructures. In Annual Review of Materials Research; Annual Reviews Inc.: Palo Alto, CA, USA, 2014; Volume 44, pp. 173–203. [Google Scholar]
- Heepe, L.; Carbone, G.; Pierro, E.; Kovalev, A.E.; Gorb, S.N. Adhesion tilt-tolerance in bio-inspired mushroom-shaped adhesive microstructure. Appl. Phys. Lett. 2014, 104. [Google Scholar] [CrossRef]
- Kroner, E.; Arzt, E. Single macropillars as model systems for tilt angle dependent adhesion measurements. Int. J. Adhes. Adhes. 2012, 36, 32–38. [Google Scholar] [CrossRef]
- Spolenak, R.; Gorb, S.; Gao, H.; Arzt, E. Effects of contact shape on the scaling of biological attachments. Proc. R. Soc. A: Math. Phys. Eng. Sci. 2005, 461, 305–319. [Google Scholar] [CrossRef]
- Gao, H.; Yao, H. Shape insensitive optimal adhesion of nanoscale fibrillar structures. Proc. Natl. Acad. Sci. USA 2004, 101, 7851–7856. [Google Scholar] [CrossRef]
- Puthoff, J.B.; Prowse, M.S.; Wilkinson, M.; Autumn, K. Changes in materials properties explain the effects of humidity on gecko adhesion. J. Exp. Biol. 2010, 213, 3699–3704. [Google Scholar] [CrossRef]
- Greiner, C.; Arzt, E.; del Campo, A. Hierarchical gecko-like adhesives. Adv. Mater. 2009, 21, 479–482. [Google Scholar] [CrossRef]
- Yao, H.; Gao, H. Mechanics of robust and releasable adhesion in biology: Bottom-up designed hierarchical structures of gecko. J. Mech. Phys. Solids 2006, 54, 1120–1146. [Google Scholar] [CrossRef]
- Spolenak, R.; Gorb, S.; Arzt, E. Adhesion design maps for bio-inspired attachment systems. Acta Biomater. 2005, 1, 5–13. [Google Scholar] [CrossRef]
- Del Campo, A.; Greiner, C. Su-8: A photoresist for high-aspect-ratio and 3d submicron lithography. J. Micromech. Microeng. 2007, 17, R81–R95. [Google Scholar] [CrossRef]
- Jeong, H.E.; Lee, S.H.; Kim, P.; Suh, K.Y. Stretched polymer nanohairs by nanodrawing. Nano Lett. 2006, 6, 1508–1513. [Google Scholar] [CrossRef]
- Zhao, Y.; Tong, T.; Delzeit, L.; Kashani, A.; Meyyappan, M.; Majumdar, A. Interfacial energy and strength of multiwalled-carbon-nanotube-based dry adhesive. J. Vac. Sci. Technol. B: Microelectron. Nanometer Struct. 2006, 24, 331–335. [Google Scholar] [CrossRef]
- Kim, D.S.; Lee, H.S.; Lee, J.; Kim, S.; Lee, K.H.; Moon, W.; Kwon, T.H. Replication of high-aspect-ratio nanopillar array for biomimetic gecko foot-hair prototype by uv nano embossing with anodic aluminum oxide mold. Microsyst. Technol. 2007, 13, 601–606. [Google Scholar] [CrossRef]
- Masuda, H.; Fukuda, K. Ordered metal nanohole arrays made by a two-step replication of honeycomb structures of anodic alumina. Science 1995, 268, 1466–1468. [Google Scholar]
- Haberkorn, N.; Gutmann, J.S.; Theato, P. Template-assisted fabrication of free-standing nanorod arrays of a hole-conducting cross-linked triphenylamine derivative: Toward ordered bulk-heterojunction solar cells. ACS Nano 2009, 3, 1415–1422. [Google Scholar] [CrossRef]
- Studart, A.R. Towards high-performance bioinspired composites. Adv. Mater. 2012, 24, 5024–5044. [Google Scholar] [CrossRef]
- Huang, J.; Wang, X.; Wang, Z.L. Controlled replication of butterfly wings for achieving tunable photonic properties. Nano Lett. 2006, 6, 2325–2331. [Google Scholar] [CrossRef]
- Huang, J.; Wang, X.; Wang, Z.L. Bio-inspired fabrication of antireflection nanostructures by replicating fly eyes. Nanotechnology 2008, 19. [Google Scholar] [CrossRef]
- Gao, J.; Liu, Y.; Xu, H.; Wang, Z.; Zhang, X. Mimicking biological structured surfaces by phase-separation micromolding. Langmuir 2009, 25, 4365–4369. [Google Scholar] [CrossRef]
- He, C.; Zhou, W.; Wang, H.; Shi, S.Q.; Yao, H. Mechanics of pharyngeal teeth of black carp (mylopharyngodon piceus) crushing mollusk shells. Adv. Eng. Mater. 2013, 15, 684–690. [Google Scholar] [CrossRef]
- Lucas, P.W. Dental Functional Morphology: How Teeth Work; Cambridge University Press: Cambridge, UK, 2004. [Google Scholar]
- Kustandi, T.S.; Samper, V.D.; Ng, W.S.; Chong, A.S.; Gao, H. Fabrication of a gecko-like hierarchical fibril array using a bonded porous alumina template. J. Micromech. Microeng. 2007, 17, N75–N81. [Google Scholar] [CrossRef]
- Kroner, E.; Paretkar, D.R.; McMeeking, R.M.; Arzt, E. Adhesion of flat and structured pdms samples to spherical and flat probes: A comparative study. J. Adhes. 2011, 87, 447–465. [Google Scholar] [CrossRef]
- Johnson, K.L.; Kendall, K.; Roberts, A.D. Surface energy and contact of elastic solids. Proc. R. Soc. Lond. Ser. A 1971, 324, 301–313. [Google Scholar] [CrossRef]
- Forster, A.M.; Zhang, W.; Crosby, A.J.; Stafford, C.M. A multilens measurement platform for high-throughput adhesion measurements. Meas. Sci. Technol. 2005, 16, 81–89. [Google Scholar] [CrossRef]
- Chaudhury, M.K.; Weaver, T.; Hui, C.Y.; Kramer, E.J. Adhesive contact of cylindrical lens and a flat sheet. J. Appl. Phys. 1996, 80, 30–37. [Google Scholar] [CrossRef]
- Lötters, J.C.; Olthuis, W.; Veltink, P.H.; Bergveld, P. The mechanical properties of the rubber elastic polymer polydimethylsiloxane for sensor applications. J. Micromech. Microeng. 1997, 7, 145–147. [Google Scholar] [CrossRef]
- Hutter, J.L.; Bechhoefer, J. Calibration of atomic-force microscope tips. Rev. Sci. Instrum. 1993, 64, 1868–1873. [Google Scholar] [CrossRef]
© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Li, W.; Liu, X.; Lu, Y.; Yao, H. Microscopic Pillars and Tubes Fabricated by Using Fish Dentine as a Molding Template. Int. J. Mol. Sci. 2014, 15, 14909-14920. https://doi.org/10.3390/ijms150914909
Li W, Liu X, Lu Y, Yao H. Microscopic Pillars and Tubes Fabricated by Using Fish Dentine as a Molding Template. International Journal of Molecular Sciences. 2014; 15(9):14909-14920. https://doi.org/10.3390/ijms150914909
Chicago/Turabian StyleLi, Weiqun, Xiaowei Liu, Yang Lu, and Haimin Yao. 2014. "Microscopic Pillars and Tubes Fabricated by Using Fish Dentine as a Molding Template" International Journal of Molecular Sciences 15, no. 9: 14909-14920. https://doi.org/10.3390/ijms150914909
APA StyleLi, W., Liu, X., Lu, Y., & Yao, H. (2014). Microscopic Pillars and Tubes Fabricated by Using Fish Dentine as a Molding Template. International Journal of Molecular Sciences, 15(9), 14909-14920. https://doi.org/10.3390/ijms150914909