Genetics Underlying Atypical Parkinsonism and Related Neurodegenerative Disorders
Abstract
:1. Introduction
2. Multiple System Atrophy
Typical Presentation | Gene | Chr. | Inheritance | Mutation Type | Mimic Syndrome(s) | Ref. |
---|---|---|---|---|---|---|
ALS-FTD | C9orf72 | 9p21.2 | AD | Repeat Expansion | MSA, PSP, CBS | [58,59] |
FA | FXN | 9q21.11 | AR | Repeat Expansion | MSA | [60] |
SCA 2 | ATXN2 | 12q24.1 | AD | Repeat Expansion | MSA | [62] |
SCA 3 | ATXN3 | 14q21 | AD | Repeat Expansion | MSA | [61] |
SCA 6 | CACNA1A | 19p13 | AD | Repeat Expansion | MSA | [60] |
SCA 7 | ATXN7 | 3p21.1-p12 | AD | Repeat Expansion | MSA | [106] |
SCA 8 | ATXN8 | 13q21 | AD | Repeat Expansion | MSA, CBS | [64] |
SCA 17 | TBP | 6q27 | AD | Repeat Expansion | MSA, PSP | [65] |
SCA 23 | PDYN | 20p13 | AD | Sequence Mutation | MSA | [66] |
FXTAS | FMR1 | Xq27.3 | XR | Repeat Expansion | MSA | [67] |
ALD | ABCD1 | Xq28 | XR | Sequence Mutation, Deletion | MSA | [102] |
PD | SNCA | 4q21 | AD | Sequence Mutation, Triplication/Duplication | MSA, DLB | [28,30,68,69] |
PD | LRRK2 | 12q12 | AD | Sequence Mutation | PSP, CBS | [73,74] |
Gaucher disease/PD | GBA | 1q21 | AR/AD | Sequence Mutation, Deletion, Insertion | PSP, CBS, LBD | [76,77] |
Perry syndrome | DCTN1 | 2p13 | AD | Sequence Mutation | MSA, CBS, PSP | [78,79] |
CTX | CYP27A1 | 2q35 | AR | Sequence Mutation, Deletion, Duplication | MSA, PSP, CBS | [80,81] |
Mitochondriopathy | POLG1 | 15q25 | AR/AD | Sequence Mutation | MSA | [82] |
AD | PSEN1 | 14q24.3 | AD | Sequence Mutation, Deletion | DLB, CBS | [83,84] |
AD | PSEN2 | 1q42.13 | AD | Sequence Mutation | DLB | [85] |
AD | APP | 21q21.3 | AD | Sequence Mutation, Duplication | DLB | [86] |
KRS | ATP13A2 | 1p36 | AR | Sequence Mutation | PSP | [87] |
FTD | GRN | 17q21.32 | AD | Sequence Mutation | PSP, CBS | [88,89,90] |
FTD | TARDBP | 1p36.22 | AD | Sequence Mutation | PSP, CBS | [91] |
FTD | FUS | 16p11.2 | AD | Sequence Mutation | PSP, CBS | [92] |
CADASIL | NOTCH3 | 19p13.2-p13.1 | AD | Sequence Mutation | PSP | [94] |
NPC | NPC1; NPC2 | 18q11.2; 14q24.3 | AR | Sequence Mutation | PSP | [95,96] |
FTD | MAPT | 17q21.1 | AD | Sequence Mutation | PSP, CBS | [97,98] |
Familial prion disease | PRNP | 20p13 | AD | Sequence Mutation | PSP, CBS | [99,100] |
HDLS | CSF1R | 5q32 | AD | Sequence Mutation | CBS | [101] |
3. Dementia with Lewy Bodies
4. Progressive Supranuclear Palsy
5. Corticobasal Degeneration
6. Conclusions and Future Directions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Wenning, G.K.; Geser, F.; Krismer, F.; Seppi, K.; Duerr, S.; Boesch, S.; Kollensperger, M.; Goebel, G.; Pfeiffer, K.P.; Barone, P.; et al. The natural history of multiple system atrophy: A prospective European cohort study. Lancet Neurol. 2013, 12, 264–274. [Google Scholar] [CrossRef]
- Low, P.A.; Reich, S.G.; Jankovic, J.; Shults, C.W.; Stern, M.B.; Novak, P.; Tanner, C.M.; Gilman, S.; Marshall, F.J.; Wooten, F.; et al. Natural history of multiple system atrophy in the USA: A prospective cohort study. Lancet Neurol. 2015, 14, 710–719. [Google Scholar] [CrossRef]
- Bower, J.H.; Maraganore, D.M.; McDonnell, S.K.; Rocca, W.A. Incidence of progressive supranuclear palsy and multiple system atrophy in Olmsted County, Minnesota, 1976 to 1990. Neurology 1997, 49, 1284–1288. [Google Scholar] [CrossRef] [PubMed]
- Schrag, A.; Wenning, G.K.; Quinn, N.; Ben-Shlomo, Y. Survival in multiple system atrophy. Mov. Disord. 2008, 23, 294–296. [Google Scholar] [CrossRef] [PubMed]
- Watanabe, H.; Saito, Y.; Terao, S.; Ando, T.; Kachi, T.; Mukai, E.; Aiba, I.; Abe, Y.; Tamakoshi, A.; Doyu, M.; et al. Progression and prognosis in multiple system atrophy: An analysis of 230 Japanese patients. Brain 2002, 125, 1070–1083. [Google Scholar] [CrossRef] [PubMed]
- Gilman, S.; May, S.J.; Shults, C.W.; Tanner, C.M.; Kukull, W.; Lee, V.M.; Masliah, E.; Low, P.; Sandroni, P.; Trojanowski, J.Q.; et al. The North American multiple system atrophy study group. J. Neural Transm. 2005, 112, 1687–1694. [Google Scholar] [CrossRef] [PubMed]
- Spillantini, M.G.; Crowther, R.A.; Jakes, R.; Cairns, N.J.; Lantos, P.L.; Goedert, M. Filamentous α-synuclein inclusions link multiple system atrophy with Parkinson’s disease and dementia with Lewy bodies. Neurosci. Lett. 1998, 251, 205–208. [Google Scholar] [CrossRef]
- Papp, M.I.; Kahn, J.E.; Lantos, P.L. Glial cytoplasmic inclusions in the CNS of patients with multiple system atrophy (striatonigral degeneration, olivopontocerebellar atrophy and Shy-drager syndrome). J. Neurol. Sci. 1989, 94, 79–100. [Google Scholar] [CrossRef]
- Jellinger, K.A. Neuropathological spectrum of synucleinopathies. Mov. Disord. 2003, 18, S2–S12. [Google Scholar] [CrossRef] [PubMed]
- Jellinger, K.A. Neuropathology of multiple system atrophy: New thoughts about pathogenesis. Mov. Disord. 2014, 29, 1720–1741. [Google Scholar] [CrossRef] [PubMed]
- Fanciulli, A.; Wenning, G.K. Multiple-system atrophy. N. Engl. J. Med. 2015, 372, 249–263. [Google Scholar] [PubMed]
- Song, Y.J.; Lundvig, D.M.; Huang, Y.; Gai, W.P.; Blumbergs, P.C.; Hojrup, P.; Otzen, D.; Halliday, G.M.; Jensen, P.H. P25α relocalizes in oligodendroglia from myelin to cytoplasmic inclusions in multiple system atrophy. Am. J. Pathol. 2007, 171, 1291–1303. [Google Scholar] [CrossRef] [PubMed]
- Lashuel, H.A.; Overk, C.R.; Oueslati, A.; Masliah, E. The many faces of α-synuclein: From structure and toxicity to therapeutic target. Nat. Rev. Neurosci. 2013, 14, 38–48. [Google Scholar] [CrossRef] [PubMed]
- Watts, J.C.; Giles, K.; Oehler, A.; Middleton, L.; Dexter, D.T.; Gentleman, S.M.; DeArmond, S.J.; Prusiner, S.B. Transmission of multiple system atrophy prions to transgenic mice. Proc. Natl. Acad. Sci. USA 2013, 110, 19555–19560. [Google Scholar] [CrossRef] [PubMed]
- Prusiner, S.B.; Woerman, A.L.; Mordes, D.A.; Watts, J.C.; Rampersaud, R.; Berry, D.B.; Patel, S.; Oehler, A.; Lowe, J.K.; Kravitz, S.N.; et al. Evidence for alpha-synuclein prions causing multiple system atrophy in humans with parkinsonism. Proc. Natl. Acad. Sci. USA 2015, 112, E5308–E5317. [Google Scholar] [CrossRef] [PubMed]
- Itoh, K.; Kasai, T.; Tsuji, Y.; Saito, K.; Mizuta, I.; Harada, Y.; Sudoh, S.; Mizuno, T.; Nakagawa, M.; Fushiki, S. Definite familial multiple system atrophy with unknown genetics. Neuropathology 2014, 34, 309–313. [Google Scholar] [CrossRef] [PubMed]
- Multiple-System Atrophy Research Collaboration. Mutations in COQ2 in familial and sporadic multiple-system atrophy. N. Engl. J. Med. 2013, 369, 233–244.
- Soma, H.; Yabe, I.; Takei, A.; Fujiki, N.; Yanagihara, T.; Sasaki, H. Heredity in multiple system atrophy. J. Neurol. Sci. 2006, 240, 107–110. [Google Scholar] [CrossRef] [PubMed]
- Wullner, U.; Schmitt, I.; Kammal, M.; Kretzschmar, H.A.; Neumann, M. Definite multiple system atrophy in a German family. J. Neurol. Neurosurg. Psychiatry 2009, 80, 449–450. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hara, K.; Momose, Y.; Tokiguchi, S.; Shimohata, M.; Terajima, K.; Onodera, O.; Kakita, A.; Yamada, M.; Takahashi, H.; Hirasawa, M.; et al. Multiplex families with multiple system atrophy. Arch. Neurol. 2007, 64, 545–551. [Google Scholar] [CrossRef] [PubMed]
- Vidal, J.S.; Vidailhet, M.; Derkinderen, P.; Tzourio, C.; Alperovitch, A. Familial aggregation in atypical Parkinson’s disease: A case control study in multiple system atrophy and progressive supranuclear palsy. J. Neurol. 2010, 257, 1388–1393. [Google Scholar] [CrossRef] [PubMed]
- Wenning, G.K.; Wagner, S.; Daniel, S.; Quinn, N.P. Multiple system atrophy: Sporadic or familial? Lancet 1993, 342, 681. [Google Scholar] [CrossRef]
- Jeon, B.S.; Farrer, M.J.; Bortnick, S.F. Korean Canadian Alliance on Parkinson’s Disease and Related Disorders (2014) Mutant COQ2 in multiple-system atrophy. N. Engl. J. Med. 2014, 371, 80. [Google Scholar] [CrossRef] [PubMed]
- Schottlaender, L.V.; Houlden, H. Multiple-System Atrophy (MSA) Brain Bank Collaboration (2014) Mutant COQ2 in multiple-system atrophy. N. Engl. J. Med. 2014, 371, 81. [Google Scholar] [CrossRef] [PubMed]
- Sharma, M.; Wenning, G.; Kruger, R.; European Multiple-System Atrophy Study Group (EMSA-SG). Mutant COQ2 in multiple-system atrophy. N. Engl. J. Med. 2014, 371, 80–81. [Google Scholar] [PubMed]
- Chen, Y.P.; Zhao, B.; Cao, B.; Song, W.; Guo, X.; Wei, Q.Q.; Yang, Y.; Yuan, L.X.; Shang, H.F. Mutation scanning of the COQ2 gene in ethnic Chinese patients with multiple-system atrophy. Neurobiol. Aging 2015, 36. [Google Scholar] [CrossRef] [PubMed]
- Quinzii, C.M.; Emmanuele, V.; Hirano, M. Clinical presentations of coenzyme q10 deficiency syndrome. Mol. Syndromol. 2014, 5, 141–146. [Google Scholar] [CrossRef] [PubMed]
- Fuchs, J.; Nilsson, C.; Kachergus, J.; Munz, M.; Larsson, E.M.; Schule, B.; Langston, J.W.; Middleton, F.A.; Ross, O.A.; Hulihan, M.; et al. Phenotypic variation in a large Swedish pedigree due to SNCA duplication and triplication. Neurology 2007, 68, 916–922. [Google Scholar] [CrossRef] [PubMed]
- Gwinn-Hardy, K.; Mehta, N.D.; Farrer, M.; Maraganore, D.; Muenter, M.; Yen, S.H.; Hardy, J.; Dickson, D.W. Distinctive neuropathology revealed by α-synuclein antibodies in hereditary parkinsonism and dementia linked to chromosome 4p. Acta Neuropathol. 2000, 99, 663–672. [Google Scholar] [CrossRef] [PubMed]
- Singleton, A.B.; Farrer, M.; Johnson, J.; Singleton, A.; Hague, S.; Kachergus, J.; Hulihan, M.; Peuralinna, T.; Dutra, A.; Nussbaum, R.; et al. α-Synuclein locus triplication causes Parkinson’s disease. Science 2003, 302, 841. [Google Scholar] [CrossRef] [PubMed]
- Chen, R.; Forno, L.; di Monte, D.; Chan, P. Mutation screening in the α-synuclein gene in MSA. Parkinsonism Relat. Disord. 1999, 5, S28. [Google Scholar]
- Lincoln, S.J.; Ross, O.A.; Milkovic, N.M.; Dickson, D.W.; Rajput, A.; Robinson, C.A.; Papapetropoulos, S.; Mash, D.C.; Farrer, M.J. Quantitative PCR-based screening of α-synuclein multiplication in multiple system atrophy. Parkinsonism Relat. Disord. 2007, 13, 340–342. [Google Scholar] [CrossRef] [PubMed]
- Langerveld, A.J.; Mihalko, D.; de Long, C.; Walburn, J.; Ide, C.F. Gene expression changes in postmortem tissue from the rostral pons of multiple system atrophy patients. Mov. Disord. 2007, 22, 766–777. [Google Scholar] [CrossRef] [PubMed]
- Ozawa, T.; Okuizumi, K.; Ikeuchi, T.; Wakabayashi, K.; Takahashi, H.; Tsuji, S. Analysis of the expression level of α-synuclein mRNA using postmortem brain samples from pathologically confirmed cases of multiple system atrophy. Acta Neuropathol. 2001, 102, 188–190. [Google Scholar] [PubMed]
- Vogt, I.R.; Lees, A.J.; Evert, B.O.; Klockgether, T.; Bonin, M.; Wullner, U. Transcriptional changes in multiple system atrophy and Parkinson’s disease putamen. Exp. Neurol. 2006, 199, 465–478. [Google Scholar] [CrossRef] [PubMed]
- Asi, Y.T.; Simpson, J.E.; Heath, P.R.; Wharton, S.B.; Lees, A.J.; Revesz, T.; Houlden, H.; Holton, J.L. α-Synuclein mRNA expression in oligodendrocytes in MSA. Glia 2014, 62, 964–970. [Google Scholar] [CrossRef] [PubMed]
- Scholz, S.W.; Houlden, H.; Schulte, C.; Sharma, M.; Li, A.; Berg, D.; Melchers, A.; Paudel, R.; Gibbs, J.R.; Simon-Sanchez, J.; et al. SNCA variants are associated with increased risk for multiple system atrophy. Ann. Neurol. 2009, 65, 610–614. [Google Scholar] [CrossRef] [PubMed]
- Simon-Sanchez, J.; Schulte, C.; Bras, J.M.; Sharma, M.; Gibbs, J.R.; Berg, D.; Paisan-Ruiz, C.; Lichtner, P.; Scholz, S.W.; Hernandez, D.G.; et al. Genome-wide association study reveals genetic risk underlying Parkinson’s disease. Nat. Genet. 2009, 41, 1308–1312. [Google Scholar] [CrossRef] [PubMed]
- Al-Chalabi, A.; Durr, A.; Wood, N.W.; Parkinson, M.H.; Camuzat, A.; Hulot, J.S.; Morrison, K.E.; Renton, A.; Sussmuth, S.D.; Landwehrmeyer, B.G.; et al. Genetic variants of the α-synuclein gene SNCA are associated with multiple system atrophy. PLoS ONE 2009, 4, e7114. [Google Scholar] [CrossRef] [PubMed]
- Ross, O.A.; Vilariño-Güell, C.; Wszolek, Z.K.; Farrer, M.J.; Dickson, D.W. Reply to: SNCA variants are associated with increased risk of multiple system atrophy. Ann. Neurol. 2010, 67, 414–415. [Google Scholar] [CrossRef] [PubMed]
- Guo, X.Y.; Chen, Y.P.; Song, W.; Zhao, B.; Cao, B.; Wei, Q.Q.; Ou, R.W.; Yang, Y.; Yuan, L.X.; Shang, H.F. SNCA variants rs2736990 and rs356220 as risk factors for Parkinson’s disease but not for amyotrophic lateral sclerosis and multiple system atrophy in a Chinese population. Neurobiol. Aging 2014, 35. [Google Scholar] [CrossRef] [PubMed]
- Sun, Z.; Xiang, X.; Tang, B.; Chen, Z.; Peng, H.; Xia, K.; Jiang, H. SNP rs11931074 of the SNCA gene may not be associated with multiple system atrophy in Chinese population. Int. J. Neurosci. 2015, 125, 612–615. [Google Scholar] [CrossRef] [PubMed]
- Yun, J.Y.; Lee, W.-W.; Lee, J.-Y.; Kim, H.J.; Park, S.S.; Jeon, B.S. SNCA variants and multiple system atrophy. Ann. Neurol. 2010, 67, 554–555. [Google Scholar] [CrossRef] [PubMed]
- Stemberger, S.; Scholz, S.W.; Singleton, A.B.; Wenning, G.K. Genetic players in multiple system atrophy: Unfolding the nature of the beast. Neurobiol. Aging 2011, 32, 1924.e5–1924.e14. [Google Scholar] [CrossRef] [PubMed]
- Cairns, N.J.; Atkinson, P.F.; Kovacs, T.; Lees, A.J.; Daniel, S.E.; Lantos, P.L. Apolipoprotein E ε4 allele frequency in patients with multiple system atrophy. Neurosci. Lett. 1997, 221, 161–164. [Google Scholar] [CrossRef]
- Combarros, O.; Infante, J.; Llorca, J.; Berciano, J. Interleukin-1A (−889) genetic polymorphism increases the risk of multiple system atrophy. Mov. Disord. 2003, 18, 1385–1386. [Google Scholar] [CrossRef]
- Furiya, Y.; Hirano, M.; Kurumatani, N.; Nakamuro, T.; Matsumura, R.; Futamura, N.; Ueno, S. α-1-Antichymotrypsin gene polymorphism and susceptibility to multiple system atrophy (MSA). Brain Res. Mol. Brain Res. 2005, 138, 178–181. [Google Scholar] [CrossRef] [PubMed]
- Heckman, M.G.; Schottlaender, L.; Soto-Ortolaza, A.I.; Diehl, N.N.; Rayaprolu, S.; Ogaki, K.; Fujioka, S.; Murray, M.E.; Cheshire, W.P.; Uitti, R.J.; et al. LRRK2 exonic variants and risk of multiple system atrophy. Neurology 2014, 83, 2256–2261. [Google Scholar] [CrossRef] [PubMed]
- Infante, J.; Llorca, J.; Berciano, J.; Combarros, O. Interleukin-8, intercellular adhesion molecule-1 and tumour necrosis factor-α gene polymorphisms and the risk for multiple system atrophy. J. Neurol. Sci. 2005, 228, 11–13. [Google Scholar] [CrossRef] [PubMed]
- Mitsui, J.; Matsukawa, T.; Sasaki, H.; Yabe, I.; Matsushima, M.; Durr, A.; Brice, A.; Takashima, H.; Kikuchi, A.; Aoki, M.; et al. Variants associated with gaucher disease in multiple system atrophy. Ann. Clin. Transl. Neurol. 2015, 2, 417–426. [Google Scholar] [CrossRef] [PubMed]
- Nirenberg, M.J.; Libien, J.; Vonsattel, J.P.; Fahn, S. Multiple system atrophy in a patient with the spinocerebellar ataxia 3 gene mutation. Mov. Disord. 2007, 22, 251–254. [Google Scholar] [CrossRef] [PubMed]
- Nishimura, M.; Kawakami, H.; Komure, O.; Maruyama, H.; Morino, H.; Izumi, Y.; Nakamura, S.; Kaji, R.; Kuno, S. Contribution of the interleukin-1β gene polymorphism in multiple system atrophy. Mov. Disord. 2002, 17, 808–811. [Google Scholar] [CrossRef] [PubMed]
- Nishimura, M.; Kuno, S.; Kaji, R.; Kawakami, H. Influence of a tumor necrosis factor gene polymorphism in Japanese patients with multiple system atrophy. Neurosci. Lett. 2005, 374, 218–221. [Google Scholar] [CrossRef] [PubMed]
- Sasaki, H.; Emi, M.; Iijima, H.; Ito, N.; Sato, H.; Yabe, I.; Kato, T.; Utsumi, J.; Matsubara, K. Copy number loss of (src homology 2 domain containing)-transforming protein 2 (SHC2) gene: Discordant loss in monozygotic twins and frequent loss in patients with multiple system atrophy. Mol. Brain 2011, 4, 24. [Google Scholar] [CrossRef] [PubMed]
- Schmitt, I.; Wullner, U.; Healy, D.G.; Wood, N.W.; Kolsch, H.; Heun, R. The ADH1C stop mutation in multiple system atrophy patients and healthy probands in the United Kingdom and Germany. Mov. Disord. 2006, 21, 2034. [Google Scholar] [CrossRef] [PubMed]
- Segarane, B.; Li, A.; Paudel, R.; Scholz, S.; Neumann, J.; Lees, A.; Revesz, T.; Hardy, J.; Mathias, C.J.; Wood, N.W.; et al. Glucocerebrosidase mutations in 108 neuropathologically confirmed cases of multiple system atrophy. Neurology 2009, 72, 1185–1186. [Google Scholar] [CrossRef] [PubMed]
- Soma, H.; Yabe, I.; Takei, A.; Fujiki, N.; Yanagihara, T.; Sasaki, H. Associations between multiple system atrophy and polymorphisms of SLC1A4, SQSTM1, and EIF4EBP1 genes. Mov. Disord. 2008, 23, 1161–1167. [Google Scholar] [CrossRef] [PubMed]
- Goldman, J.S.; Quinzii, C.; Dunning-Broadbent, J.; Waters, C.; Mitsumoto, H.; Brannagan, T.H., 3rd; Cosentino, S.; Huey, E.D.; Nagy, P.; Kuo, S.H. Multiple system atrophy and amyotrophic lateral sclerosis in a family with hexanucleotide repeat expansions in C9orf72. JAMA Neurol. 2014, 71, 771–774. [Google Scholar] [CrossRef] [PubMed]
- Schottlaender, L.V.; Polke, J.M.; Ling, H.; MacDoanld, N.D.; Tucci, A.; Nanji, T.; Pittman, A.; de Silva, R.; Holton, J.L.; Revesz, T.; et al. The analysis of C9orf72 repeat expansions in a large series of clinically and pathologically diagnosed cases with atypical parkinsonism. Neurobiol. Aging 2015, 36. [Google Scholar] [CrossRef] [PubMed]
- Schols, L.; Szymanski, S.; Peters, S.; Przuntek, H.; Epplen, J.T.; Hardt, C.; Riess, O. Genetic background of apparently idiopathic sporadic cerebellar ataxia. Hum. Genet. 2000, 107, 132–137. [Google Scholar] [CrossRef] [PubMed]
- Wullner, U.; Schmitz-Hubsch, T.; Abele, M.; Antony, G.; Bauer, P.; Eggert, K. Features of probable multiple system atrophy patients identified among 4770 patients with parkinsonism enrolled in the multicentre registry of the German Competence Network on Parkinson’s disease. J. Neural Transm. 2007, 114, 1161–1165. [Google Scholar] [CrossRef] [PubMed]
- Lee, W.Y.; Jin, D.K.; Oh, M.R.; Lee, J.E.; Song, S.M.; Lee, E.A.; Kim, G.M.; Chung, J.S.; Lee, K.H. Frequency analysis and clinical characterization of spinocerebellar ataxia types 1, 2, 3, 6, and 7 in Korean patients. Arch. Neurol. 2003, 60, 858–863. [Google Scholar] [CrossRef] [PubMed]
- Davidzon, G.; Greene, P.; Mancuso, M.; Klos, K.J.; Ahlskog, J.E.; Hirano, M.; DiMauro, S. Early-onset familial parkinsonism due to POLG mutations. Ann. Neurol. 2006, 59, 859–862. [Google Scholar] [CrossRef] [PubMed]
- Munhoz, R.P.; Teive, H.A.; Raskin, S.; Werneck, L.C. CTA/CTG expansions at the SCA 8 locus in multiple system atrophy. Clin. Neurol. Neurosurg. 2009, 111, 208–210. [Google Scholar] [CrossRef] [PubMed]
- Lin, I.S.; Wu, R.M.; Lee-Chen, G.J.; Shan, D.E.; Gwinn-Hardy, K. The SCA17 phenotype can include features of MSA-C, PSP and cognitive impairment. Parkinsonism Relat. Disord. 2007, 13, 246–249. [Google Scholar] [CrossRef] [PubMed]
- Fawcett, K.; Mehrabian, M.; Liu, Y.T.; Hamed, S.; Elahi, E.; Revesz, T.; Koutsis, G.; Herscheson, J.; Schottlaender, L.; Wardle, M.; et al. The frequency of spinocerebellar ataxia type 23 in a UK population. J. Neurol. 2013, 260, 856–859. [Google Scholar] [CrossRef] [PubMed]
- Biancalana, V.; Toft, M.; Le Ber, I.; Tison, F.; Scherrer, E.; Thibodeau, S.; Mandel, J.L.; Brice, A.; Farrer, M.J.; Durr, A. FMR1 premutations associated with fragile X-associated tremor/ataxia syndrome in multiple system atrophy. Arch. Neurol. 2005, 62, 962–966. [Google Scholar] [CrossRef] [PubMed]
- Polymeropoulos, M.H.; Lavedan, C.; Leroy, E.; Ide, S.E.; Dehejia, A.; Dutra, A.; Pike, B.; Root, H.; Rubenstein, J.; Boyer, R.; et al. Mutation in the α-synuclein gene identified in families with Parkinson’s disease. Science 1997, 276, 2045–2047. [Google Scholar] [CrossRef] [PubMed]
- Kruger, R.; Kuhn, W.; Muller, T.; Woitalla, D.; Graeber, M.; Kosel, S.; Przuntek, H.; Epplen, J.T.; Schols, L.; Riess, O. Ala30Pro mutation in the gene encoding α-synuclein in Parkinson’s disease. Nat. Genet. 1998, 18, 106–108. [Google Scholar] [CrossRef] [PubMed]
- Zarranz, J.J.; Alegre, J.; Gomez-Esteban, J.C.; Lezcano, E.; Ros, R.; Ampuero, I.; Vidal, L.; Hoenicka, J.; Rodriguez, O.; Atares, B.; et al. The new mutation, E46k, of α-synuclein causes Parkinson and Lewy body dementia. Ann. Neurol. 2004, 55, 164–173. [Google Scholar] [CrossRef] [PubMed]
- Proukakis, C.; Dudzik, C.G.; Brier, T.; MacKay, D.S.; Cooper, J.M.; Millhauser, G.L.; Houlden, H.; Schapira, A.H. A novel alpha-synuclein missense mutation in Parkinson disease. Neurology 2013, 80, 1062–1064. [Google Scholar] [CrossRef] [PubMed]
- Kiely, A.P.; Asi, Y.T.; Kara, E.; Limousin, P.; Ling, H.; Lewis, P.; Proukakis, C.; Quinn, N.; Lees, A.J.; Hardy, J.; et al. α-Synucleinopathy associated with G51D SNCA mutation: A link between Parkinson’s disease and multiple system atrophy? Acta Neuropathol. 2013, 125, 753–769. [Google Scholar] [CrossRef] [PubMed]
- Spanaki, C.; Latsoudis, H.; Plaitakis, A. LRRK2 mutations on Crete: R1441H associated with PD evolving to PSP. Neurology 2006, 67, 1518–1519. [Google Scholar] [CrossRef] [PubMed]
- Chen-Plotkin, A.S.; Yuan, W.; Anderson, C.; McCarty Wood, E.; Hurtig, H.I.; Clark, C.M.; Miller, B.L.; Lee, V.M.; Trojanowski, J.Q.; Grossman, M.; et al. Corticobasal syndrome and primary progressive aphasia as manifestations of LRRK2 gene mutations. Neurology 2008, 70, 521–527. [Google Scholar] [CrossRef]
- Tayebi, N.; Callahan, M.; Madike, V.; Stubblefield, B.K.; Orvisky, E.; Krasnewich, D.; Fillano, J.J.; Sidransky, E. Gaucher disease and parkinsonism: A phenotypic and genotypic characterization. Mol. Genet. Metab. 2001, 73, 313–321. [Google Scholar] [CrossRef] [PubMed]
- Tayebi, N.; Walker, J.; Stubblefield, B.; Orvisky, E.; LaMarca, M.E.; Wong, K.; Rosenbaum, H.; Schiffmann, R.; Bembi, B.; Sidransky, E. Gaucher disease with parkinsonian manifestations: Does glucocerebrosidase deficiency contribute to a vulnerability to parkinsonism? Mol. Genet. Metab. 2003, 79, 104–109. [Google Scholar] [CrossRef]
- Goker-Alpan, O.; Schiffmann, R.; LaMarca, M.E.; Nussbaum, R.L.; McInerney-Leo, A.; Sidransky, E. Parkinsonism among gaucher disease carriers. J. Med. Genet. 2004, 41, 937–940. [Google Scholar] [CrossRef] [PubMed]
- Caroppo, P.; Le Ber, I.; Clot, F.; Rivaud-Pechoux, S.; Camuzat, A.; de Septenville, A.; Boutoleau-Bretonniere, C.; Mourlon, V.; Sauvee, M.; Lebouvier, T.; et al. DCTN1 mutation analysis in families with progressive supranuclear palsy-like phenotypes. JAMA Neurol. 2014, 71, 208–215. [Google Scholar] [CrossRef] [PubMed]
- Newsway, V.; Fish, M.; Rohrer, J.D.; Majounie, E.; Williams, N.; Hack, M.; Warren, J.D.; Morris, H.R. Perry syndrome due to the DCTN1 G71R mutation: A distinctive levodopa responsive disorder with behavioral syndrome, vertical gaze palsy, and respiratory failure. Mov. Disord. 2010, 25, 767–770. [Google Scholar] [CrossRef] [PubMed]
- Rubio-Agusti, I.; Kojovic, M.; Edwards, M.J.; Murphy, E.; Chandrashekar, H.S.; Lachmann, R.H.; Bhatia, K.P. Atypical parkinsonism and cerebrotendinous xanthomatosis: Report of a family with corticobasal syndrome and a literature review. Mov. Disord. 2012, 27, 1769–1774. [Google Scholar] [CrossRef] [PubMed]
- Federico, A.; Dotti, M.T.; Gallus, G.N. Cerebrotendinous xanthomatosis. In Genereviews(r); Pagon, R.A., Adam, M.P., Ardinger, H.H., Wallace, S.E., Amemiya, A., Bean, L.J.H., Bird, T.D., Dolan, C.R., Fong, C.T., Smith, R.J.H., et al., Eds.; University of Washington: Seattle, WA, USA, 1993. [Google Scholar]
- Mehta, A.R.; Fox, S.H.; Tarnopolsky, M.; Yoon, G. Mitochondrial mimicry of multiple system atrophy of the cerebellar subtype. Mov. Disord. 2011, 26, 753–755. [Google Scholar] [CrossRef] [PubMed]
- Ishikawa, A.; Piao, Y.S.; Miyashita, A.; Kuwano, R.; Onodera, O.; Ohtake, H.; Suzuki, M.; Nishizawa, M.; Takahashi, H. A mutant PSEN1 causes dementia with Lewy bodies and variant Alzheimer’s disease. Ann. Neurol. 2005, 57, 429–434. [Google Scholar] [CrossRef] [PubMed]
- Larner, A.J.; Doran, M. Clinical phenotypic heterogeneity of Alzheimer’s disease associated with mutations of the presenilin-1 gene. J. Neurol. 2006, 253, 139–158. [Google Scholar] [CrossRef] [PubMed]
- Piscopo, P.; Marcon, G.; Piras, M.R.; Crestini, A.; Campeggi, L.M.; Deiana, E.; Cherchi, R.; Tanda, F.; Deplano, A.; Vanacore, N.; et al. A novel PSEN2 mutation associated with a peculiar phenotype. Neurology 2008, 70, 1549–1554. [Google Scholar] [CrossRef] [PubMed]
- Guyant-Marechal, I.; Berger, E.; Laquerriere, A.; Rovelet-Lecrux, A.; Viennet, G.; Frebourg, T.; Rumbach, L.; Campion, D.; Hannequin, D. Intrafamilial diversity of phenotype associated with APP duplication. Neurology 2008, 71, 1925–1926. [Google Scholar] [CrossRef] [PubMed]
- Williams, D.R.; Hadeed, A.; Al-Din, A.S.; Wreikat, A.L.; Lees, A.J. Kufor Rakeb Disease: Autosomal recessive, levodopa-responsive parkinsonism with pyramidal degeneration, supranuclear gaze palsy, and dementia. Mov. Disord. 2005, 20, 1264–1271. [Google Scholar] [CrossRef]
- Dopper, E.G.; Seelaar, H.; Chiu, W.Z.; de Koning, I.; van Minkelen, R.; Baker, M.C.; Rozemuller, A.J.; Rademakers, R.; van Swieten, J.C. Symmetrical corticobasal syndrome caused by a novel C.314dup progranulin mutation. J. Mol. Neurosci. 2011, 45, 354–358. [Google Scholar] [CrossRef] [PubMed]
- Tremolizzo, L.; Bertola, F.; Casati, G.; Piperno, A.; Ferrarese, C.; Appollonio, I. Progressive supranuclear palsy-like phenotype caused by progranulin p.Thr272fs mutation. Mov. Disord. 2011, 26, 1964–1966. [Google Scholar] [CrossRef] [PubMed]
- Benussi, L.; Ghidoni, R.; Pegoiani, E.; Moretti, D.V.; Zanetti, O.; Binetti, G. Progranulin Leu271LeufsX10 is one of the most common FTLD and CBS associated mutations worldwide. Neurobiol. Dis. 2009, 33, 379–385. [Google Scholar] [CrossRef] [PubMed]
- Cannas, A.; Borghero, G.; Floris, G.L.; Solla, P.; Chio, A.; Traynor, B.J.; Calvo, A.; Restagno, G.; Majounie, E.; Costantino, E.; et al. The p.A382T TARDBP gene mutation in sardinian patients affected by Parkinson’s disease and other degenerative parkinsonisms. Neurogenetics 2013, 14, 161–166. [Google Scholar] [CrossRef] [PubMed]
- Huey, E.D.; Ferrari, R.; Moreno, J.H.; Jensen, C.; Morris, C.M.; Potocnik, F.; Kalaria, R.N.; Tierney, M.; Wassermann, E.M.; Hardy, J.; et al. FUS and TDP43 genetic variability in FTD and CBS. Neurobiol. Aging 2012, 33. [Google Scholar] [CrossRef] [PubMed]
- Moreno, F.; Rabinovici, G.D.; Karydas, A.; Miller, Z.; Hsu, S.C.; Legati, A.; Fong, J.; Schonhaut, D.; Esselmann, H.; Watson, C.; et al. A novel mutation P112H in the TARDBP gene associated with frontotemporal lobar degeneration without motor neuron disease and abundant neuritic amyloid plaques. Acta Neuropathol. Commun. 2015, 3, 19. [Google Scholar] [CrossRef] [PubMed]
- Van Gerpen, J.A.; Ahlskog, J.E.; Petty, G.W. Progressive supranuclear palsy phenotype secondary to cadasil. Parkinsonism Relat. Disord. 2003, 9, 367–369. [Google Scholar] [CrossRef]
- Neville, B.G.; Lake, B.D.; Stephens, R.; Sanders, M.D. A neurovisceral storage disease with vertical supranuclear ophthalmoplegia, and its relationship to niemann-pick disease. A report of nine patients. Brain 1973, 96, 97–120. [Google Scholar] [CrossRef] [PubMed]
- Godeiro-Junior, C.; Inaoka, R.J.; Barbosa, M.R.; Silva, M.R.; Aguiar Pde, C.; Barsottini, O. Mutations in NPC1 in two Brazilian patients with Niemann-Pick disease type C and progressive supranuclear palsy-like presentation. Mov. Disord. 2006, 21, 2270–2272. [Google Scholar] [CrossRef] [PubMed]
- Morris, H.R.; Osaki, Y.; Holton, J.; Lees, A.J.; Wood, N.W.; Revesz, T.; Quinn, N. Tau exon 10 +16 mutation FTDP-17 presenting clinically as sporadic young onset PSP. Neurology 2003, 61, 102–104. [Google Scholar] [CrossRef] [PubMed]
- Tuite, P.J.; Clark, H.B.; Bergeron, C.; Bower, M.; St George-Hyslop, P.; Mateva, V.; Anderson, J.; Knopman, D.S. Clinical and pathologic evidence of corticobasal degeneration and progressive supranuclear palsy in familial tauopathy. Arch. Neurol. 2005, 62, 1453–1457. [Google Scholar] [CrossRef] [PubMed]
- Bertoni, J.M.; Label, L.S.; Sackelleres, J.C.; Hicks, S.P. Supranuclear gaze palsy in familial Creutzfeldt-Jakob disease. Arch. Neurol. 1983, 40, 618–622. [Google Scholar] [CrossRef] [PubMed]
- Lim, J.G.; Oh, E.; Park, S.; Kim, Y.S.; Lee, A. Familial Creutzfeldt-Jakob disease with M232R mutation presented with corticobasal syndrome. Neurol. Sci. 2014, 36, 1291–1293. [Google Scholar] [CrossRef] [PubMed]
- Guerreiro, R.; Kara, E.; Le Ber, I.; Bras, J.; Rohrer, J.D.; Taipa, R.; Lashley, T.; Dupuits, C.; Gurunlian, N.; Mochel, F.; et al. Genetic analysis of inherited leukodystrophies: Genotype-phenotype correlations in the CSF1R gene. JAMA Neurol. 2013, 70, 875–882. [Google Scholar] [CrossRef] [PubMed]
- Ogaki, K.; Koga, S.; Aoki, N.; Lin, W.; Suzuki, K.; Ross, O.A.; Dickson, D.W. Adult-onset cerebello-brainstem dominant form of X-linked adrenoleukodystrophy presenting as multiple system atrophy: Case report and literature review. Neuropathology 2015. [Google Scholar] [CrossRef] [PubMed]
- Hughes, A.J.; Daniel, S.E.; Ben-Shlomo, Y.; Lees, A.J. The accuracy of diagnosis of parkinsonian syndromes in a specialist movement disorder service. Brain 2002, 125, 861–870. [Google Scholar] [CrossRef] [PubMed]
- Litvan, I.; Goetz, C.G.; Jankovic, J.; Wenning, G.K.; Booth, V.; Bartko, J.J.; McKee, A.; Jellinger, K.; Lai, E.C.; Brandel, J.P.; et al. What is the accuracy of the clinical diagnosis of multiple system atrophy? A clinicopathologic study. Arch. Neurol. 1997, 54, 937–944. [Google Scholar] [CrossRef] [PubMed]
- Osaki, Y.; Wenning, G.K.; Daniel, S.E.; Hughes, A.; Lees, A.J.; Mathias, C.J.; Quinn, N. Do published criteria improve clinical diagnostic accuracy in multiple system atrophy? Neurology 2002, 59, 1486–1491. [Google Scholar] [CrossRef] [PubMed]
- David, G.; Durr, A.; Stevanin, G.; Cancel, G.; Abbas, N.; Benomar, A.; Belal, S.; Lebre, A.S.; Abada-Bendib, M.; Grid, D.; et al. Molecular and clinical correlations in autosomal dominant cerebellar ataxia with progressive macular dystrophy (SCA7). Hum. Mol. Genet. 1998, 7, 165–170. [Google Scholar] [CrossRef] [PubMed]
- Cassarino, D.S.; Quezado, M.M.; Ghatak, N.R.; Duray, P.H. Lyme-associated parkinsonism: A neuropathologic case study and review of the literature. Arch. Pathol. Lab. Med. 2003, 127, 1204–1206. [Google Scholar] [PubMed]
- Hirooka, Y.; Yuasa, K.; Hibi, K.; Ishikawa, A.; Sobue, G.; Naruse, T.; Mitsuma, T. Hyperparathyroidism associated with parkinsonism. Intern. Med. 1992, 31, 904–907. [Google Scholar] [CrossRef] [PubMed]
- Ihara, M.; Makino, F.; Sawada, H.; Mezaki, T.; Mizutani, K.; Nakase, H.; Matsui, M.; Tomimoto, H.; Shimohama, S. Gluten sensitivity in Japanese patients with adult-onset cerebellar ataxia. Intern. Med. 2006, 45, 135–140. [Google Scholar] [CrossRef] [PubMed]
- Molho, E.S. Gliomatosis cerebri may present as an atypical parkinsonian syndrome. Mov. Disord. 2004, 19, 341–344. [Google Scholar] [CrossRef] [PubMed]
- Quinn, N.; Barnard, R.O.; Kelly, R.E. Cerebellar syndrome in myxoedema revisited: A published case with carcinomatosis and multiple system atrophy at necropsy. J. Neurol. Neurosurg. Psychiatry 1992, 55, 616–618. [Google Scholar] [CrossRef] [PubMed]
- Selim, M.; Drachman, D.A. Ataxia associated with Hashimoto’s disease: Progressive non-familial adult onset cerebellar degeneration with autoimmune thyroiditis. J. Neurol. Neurosurg. Psychiatry 2001, 71, 81–87. [Google Scholar] [CrossRef] [PubMed]
- Shiraishi, W.; Iwanaga, Y.; Yamamoto, A. A case of an anti-Ma2 antibody-positive patient presenting with variable CNS symptoms mimicking multiple system atrophy with a partial response to immunotherapy. Rinsho Shinkeigaku 2015, 55, 96–100. [Google Scholar] [CrossRef] [PubMed]
- Lippa, C.F.; Duda, J.E.; Grossman, M.; Hurtig, H.I.; Aarsland, D.; Boeve, B.F.; Brooks, D.J.; Dickson, D.W.; Dubois, B.; Emre, M.; et al. DLB and PDD boundary issues: Diagnosis, treatment, molecular pathology, and biomarkers. Neurology 2007, 68, 812–819. [Google Scholar] [CrossRef] [PubMed]
- McKeith, I.; Mintzer, J.; Aarsland, D.; Burn, D.; Chiu, H.; Cohen-Mansfield, J.; Dickson, D.; Dubois, B.; Duda, J.E.; Feldman, H.; et al. Dementia with Lewy bodies. Lancet Neurol. 2004, 3, 19–28. [Google Scholar] [CrossRef]
- McKeith, I.G.; Dickson, D.W.; Lowe, J.; Emre, M.; O’Brien, J.T.; Feldman, H.; Cummings, J.; Duda, J.E.; Lippa, C.; Perry, E.K.; et al. Diagnosis and management of dementia with Lewy bodies: Third report of the DLB consortium. Neurology 2005, 65, 1863–1872. [Google Scholar] [CrossRef] [PubMed]
- McKeith, I.G.; Galasko, D.; Kosaka, K.; Perry, E.K.; Dickson, D.W.; Hansen, L.A.; Salmon, D.P.; Lowe, J.; Mirra, S.S.; Byrne, E.J.; et al. Consensus guidelines for the clinical and pathologic diagnosis of dementia with Lewy bodies (DLB): Report of the Consortium on DLB International Workshop. Neurology 1996, 47, 1113–1124. [Google Scholar] [CrossRef] [PubMed]
- Seidel, K.; Mahlke, J.; Siswanto, S.; Kruger, R.; Heinsen, H.; Auburger, G.; Bouzrou, M.; Grinberg, L.T.; Wicht, H.; Korf, H.W.; et al. The brainstem pathologies of Parkinson’s disease and dementia with Lewy bodies. Brain Pathol. 2015, 25, 121–135. [Google Scholar] [CrossRef] [PubMed]
- Tsuang, D.W.; Dalan, A.M.; Eugenio, C.J.; Poorkaj, P.; Limprasert, P.; La Spada, A.R.; Steinbart, E.J.; Bird, T.D.; Leverenz, J.B. Familial dementia with Lewy bodies: A clinical and neuropathological study of 2 families. Arch. Neurol. 2002, 59, 1622–1630. [Google Scholar] [CrossRef] [PubMed]
- Bonner, L.T.; Tsuang, D.W.; Cherrier, M.M.; Eugenio, C.J.; Du Jennifer, Q.; Steinbart, E.J.; Limprasert, P.; La Spada, A.R.; Seltzer, B.; Bird, T.D.; et al. Familial dementia with Lewy bodies with an atypical clinical presentation. J. Geriatr. Psychiatry Neurol. 2003, 16, 59–64. [Google Scholar] [CrossRef] [PubMed]
- Denson, M.A.; Wszolek, Z.K.; Pfeiffer, R.F.; Wszolek, E.K.; Paschall, T.M.; McComb, R.D. Familial parkinsonism, dementia, and Lewy body disease: Study of family G. Ann. Neurol. 1997, 42, 638–643. [Google Scholar] [CrossRef] [PubMed]
- Ishikawa, A.; Takahashi, H.; Tanaka, H.; Hayashi, T.; Tsuji, S. Clinical features of familial diffuse Lewy body disease. Eur. Neurol. 1997, 38 (Suppl. S1), S34–S38. [Google Scholar] [CrossRef]
- Ohara, K.; Takauchi, S.; Kokai, M.; Morimura, Y.; Nakajima, T.; Morita, Y. Familial dementia with Lewy bodies (DLB). Clin. Neuropathol. 1999, 18, 232–239. [Google Scholar]
- Polymeropoulos, M.H.; Higgins, J.J.; Golbe, L.I.; Johnson, W.G.; Ide, S.E.; Di Iorio, G.; Sanges, G.; Stenroos, E.S.; Pho, L.T.; Schaffer, A.A.; et al. Mapping of a gene for Parkinson’s disease to chromosome 4q21-q23. Science 1996, 274, 1197–1199. [Google Scholar] [CrossRef] [PubMed]
- Nalls, M.A.; Duran, R.; Lopez, G.; Kurzawa-Akanbi, M.; McKeith, I.G.; Chinnery, P.F.; Morris, C.M.; Theuns, J.; Crosiers, D.; Cras, P.; et al. A multicenter study of glucocerebrosidase mutations in dementia with Lewy bodies. JAMA Neurol. 2013, 70, 727–735. [Google Scholar] [CrossRef] [PubMed]
- Tsuang, D.; Leverenz, J.B.; Lopez, O.L.; Hamilton, R.L.; Bennett, D.A.; Schneider, J.A.; Buchman, A.S.; Larson, E.B.; Crane, P.K.; Kaye, J.A.; et al. APOE ε4 increases risk for dementia in pure synucleinopathies. JAMA Neurol. 2013, 70, 223–228. [Google Scholar] [CrossRef] [PubMed]
- Bras, J.; Guerreiro, R.; Darwent, L.; Parkkinen, L.; Ansorge, O.; Escott-Price, V.; Hernandez, D.G.; Nalls, M.A.; Clark, L.N.; Honig, L.S.; et al. Genetic analysis implicates APOE, SNCA and suggests lysosomal dysfunction in the etiology of dementia with Lewy bodies. Hum. Mol. Genet. 2014, 23, 6139–6146. [Google Scholar] [CrossRef] [PubMed]
- Nalls, M.A.; Pankratz, N.; Lill, C.M.; Do, C.B.; Hernandez, D.G.; Saad, M.; DeStefano, A.L.; Kara, E.; Bras, J.; Sharma, M.; et al. Large-scale meta-analysis of genome-wide association data identifies six new risk loci for Parkinson’s disease. Nat. Genet. 2014, 46, 989–993. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rosenberg, C.K.; Pericak-Vance, M.A.; Saunders, A.M.; Gilbert, J.R.; Gaskell, P.C.; Hulette, C.M. Lewy body and Alzheimer pathology in a family with the amyloid-β precursor protein APP717 gene mutation. Acta Neuropathol. 2000, 100, 145–152. [Google Scholar] [CrossRef] [PubMed]
- Leverenz, J.B.; Fishel, M.A.; Peskind, E.R.; Montine, T.J.; Nochlin, D.; Steinbart, E.; Raskind, M.A.; Schellenberg, G.D.; Bird, T.D.; Tsuang, D. Lewy body pathology in familial Alzheimer disease: Evidence for disease- and mutation-specific pathologic phenotype. Arch. Neurol. 2006, 63, 370–376. [Google Scholar] [CrossRef] [PubMed]
- Meeus, B.; Verstraeten, A.; Crosiers, D.; Engelborghs, S.; van den Broeck, M.; Mattheijssens, M.; Peeters, K.; Corsmit, E.; Elinck, E.; Pickut, B.; et al. DLB and PDD: A role for mutations in dementia and Parkinson disease genes? Neurobiol. Aging 2012, 33. [Google Scholar] [CrossRef] [PubMed]
- Meeus, B.; Theuns, J.; van Broeckhoven, C. The genetics of dementia with Lewy bodies: What are we missing? Arch. Neurol. 2012, 69, 1113–1118. [Google Scholar] [CrossRef] [PubMed]
- Williams, D.R.; Lees, A.J. Progressive supranuclear palsy: Clinicopathological concepts and diagnostic challenges. Lancet Neurol. 2009, 8, 270–279. [Google Scholar] [CrossRef]
- Respondek, G.; Stamelou, M.; Kurz, C.; Ferguson, L.W.; Rajput, A.; Chiu, W.Z.; van Swieten, J.C.; Troakes, C.; Al Sarraj, S.; Gelpi, E.; et al. The phenotypic spectrum of progressive supranuclear palsy: A retrospective multicenter study of 100 definite cases. Mov. Disord. 2014, 29, 1758–1766. [Google Scholar] [CrossRef] [PubMed]
- Schrag, A.; Ben-Shlomo, Y.; Quinn, N.P. Prevalence of progressive supranuclear palsy and multiple system atrophy: A cross-sectional study. Lancet 1999, 354, 1771–1775. [Google Scholar] [CrossRef]
- Litvan, I.; Mangone, C.A.; McKee, A.; Verny, M.; Parsa, A.; Jellinger, K.; D’Olhaberriague, L.; Chaudhuri, K.R.; Pearce, R.K. Natural history of progressive supranuclear palsy (steele-richardson-olszewski syndrome) and clinical predictors of survival: A clinicopathological study. J. Neurol. Neurosurg. Psychiatry 1996, 60, 615–620. [Google Scholar] [CrossRef] [PubMed]
- Pollock, N.J.; Mirra, S.S.; Binder, L.I.; Hansen, L.A.; Wood, J.G. Filamentous aggregates in Pick’s disease, progressive supranuclear palsy, and Alzheimer’s disease share antigenic determinants with microtubule-associated protein, tau. Lancet 1986, 2, 1211. [Google Scholar] [CrossRef]
- Lantos, P.L. The neuropathology of progressive supranuclear palsy. J. Neural Transm. Suppl. 1994, 42, 137–152. [Google Scholar] [PubMed]
- Dickson, D.W.; Rademakers, R.; Hutton, M.L. Progressive supranuclear palsy: Pathology and genetics. Brain Pathol. 2007, 17, 74–82. [Google Scholar] [CrossRef] [PubMed]
- Dickson, D.W.; Bergeron, C.; Chin, S.S.; Duyckaerts, C.; Horoupian, D.; Ikeda, K.; Jellinger, K.; Lantos, P.L.; Lippa, C.F.; Mirra, S.S.; et al. Office of rare diseases neuropathologic criteria for corticobasal degeneration. J. Neuropathol. Exp. Neurol. 2002, 61, 935–946. [Google Scholar] [PubMed]
- Murphy, K.E.; Karaconji, T.; Hardman, C.D.; Halliday, G.M. Excessive dopamine neuron loss in progressive supranuclear palsy. Mov. Disord. 2008, 23, 607–610. [Google Scholar] [CrossRef] [PubMed]
- Hirano, S.; Shinotoh, H.; Shimada, H.; Aotsuka, A.; Tanaka, N.; Ota, T.; Sato, K.; Ito, H.; Kuwabara, S.; Fukushi, K.; et al. Cholinergic imaging in corticobasal syndrome, progressive supranuclear palsy and frontotemporal dementia. Brain 2010, 133, 2058–2068. [Google Scholar] [CrossRef] [PubMed]
- Levy, R.; Ruberg, M.; Herrero, M.T.; Villares, J.; Javoy-Agid, F.; Agid, Y.; Hirsch, E.C. Alterations of GABAergic neurons in the basal ganglia of patients with progressive supranuclear palsy: An in situ hybridization study of GAD67 messenger RNA. Neurology 1995, 45, 127–134. [Google Scholar] [CrossRef] [PubMed]
- Stamelou, M.; Matusch, A.; Elmenhorst, D.; Hurlemann, R.; Eggert, K.M.; Zilles, K.; Oertel, W.H.; Hoglinger, G.U.; Bauer, A. Nigrostriatal upregulation of 5-HT2A receptors correlates with motor dysfunction in progressive supranuclear palsy. Mov. Disord. 2009, 24, 1170–1175. [Google Scholar] [CrossRef] [PubMed]
- Swerdlow, R.H.; Golbe, L.I.; Parks, J.K.; Cassarino, D.S.; Binder, D.R.; Grawey, A.E.; Litvan, I.; Bennett, J.P., Jr.; Wooten, G.F.; Parker, W.D. Mitochondrial dysfunction in cybrid lines expressing mitochondrial genes from patients with progressive supranuclear palsy. J. Neurochem. 2000, 75, 1681–1684. [Google Scholar] [CrossRef] [PubMed]
- Rohrer, J.D.; Paviour, D.; Vandrovcova, J.; Hodges, J.; de Silva, R.; Rossor, M.N. Novel L284R MAPT mutation in a family with an autosomal dominant progressive supranuclear palsy syndrome. Neurodegener. Dis. 2011, 8, 149–152. [Google Scholar] [CrossRef] [PubMed]
- Poorkaj, P.; Muma, N.A.; Zhukareva, V.; Cochran, E.J.; Shannon, K.M.; Hurtig, H.; Koller, W.C.; Bird, T.D.; Trojanowski, J.Q.; Lee, V.M.; et al. An R5L T mutation in a subject with a progressive supranuclear palsy phenotype. Ann. Neurol. 2002, 52, 511–516. [Google Scholar] [CrossRef] [PubMed]
- Stanford, P.M.; Halliday, G.M.; Brooks, W.S.; Kwok, J.B.; Storey, C.E.; Creasey, H.; Morris, J.G.; Fulham, M.J.; Schofield, P.R. Progressive supranuclear palsy pathology caused by a novel silent mutation in exon 10 of the tau gene: Expansion of the disease phenotype caused by tau gene mutations. Brain 2000, 123, 880–893. [Google Scholar] [CrossRef] [PubMed]
- Ros, R.; Gomez Garre, P.; Hirano, M.; Tai, Y.F.; Ampuero, I.; Vidal, L.; Rojo, A.; Fontan, A.; Vazquez, A.; Fanjul, S.; et al. Genetic linkage of autosomal dominant progressive supranuclear palsy to 1q31.1. Ann. Neurol. 2005, 57, 634–641. [Google Scholar] [CrossRef] [PubMed]
- Baker, M.; Litvan, I.; Houlden, H.; Adamson, J.; Dickson, D.; Perez-Tur, J.; Hardy, J.; Lynch, T.; Bigio, E.; Hutton, M. Association of an extended haplotype in the tau gene with progressive supranuclear palsy. Hum. Mol. Genet. 1999, 8, 711–715. [Google Scholar] [CrossRef] [PubMed]
- Conrad, C.; Andreadis, A.; Trojanowski, J.Q.; Dickson, D.W.; Kang, D.; Chen, X.; Wiederholt, W.; Hansen, L.; Masliah, E.; Thal, L.J.; et al. Genetic evidence for the involvement of tau in progressive supranuclear palsy. Ann. Neurol. 1997, 41, 277–281. [Google Scholar] [CrossRef] [PubMed]
- Hoglinger, G.U.; Melhem, N.M.; Dickson, D.W.; Sleiman, P.M.; Wang, L.S.; Klei, L.; Rademakers, R.; de Silva, R.; Litvan, I.; Riley, D.E.; et al. Identification of common variants influencing risk of the tauopathy progressive supranuclear palsy. Nat. Genet. 2011, 43, 699–705. [Google Scholar] [CrossRef] [PubMed]
- Litvan, I.; Baker, M.; Hutton, M. Tau genotype: No effect on onset, symptom severity, or survival in progressive supranuclear palsy. Neurology 2001, 57, 138–140. [Google Scholar] [CrossRef] [PubMed]
- Goedert, M. Tau protein and neurodegeneration. Semin. Cell Dev. Biol. 2004, 15, 45–49. [Google Scholar] [CrossRef] [PubMed]
- Panda, D.; Samuel, J.C.; Massie, M.; Feinstein, S.C.; Wilson, L. Differential regulation of microtubule dynamics by three- and four-repeat tau: Implications for the onset of neurodegenerative disease. Proc. Natl. Acad. Sci. USA 2003, 100, 9548–9553. [Google Scholar] [CrossRef] [PubMed]
- Myers, A.J.; Gibbs, J.R.; Webster, J.A.; Rohrer, K.; Zhao, A.; Marlowe, L.; Kaleem, M.; Leung, D.; Bryden, L.; Nath, P.; et al. A survey of genetic human cortical gene expression. Nat. Genet. 2007, 39, 1494–1499. [Google Scholar] [CrossRef] [PubMed]
- Ferrari, R.; Ryten, M.; Simone, R.; Trabzuni, D.; Nicolaou, N.; Hondhamuni, G.; Ramasamy, A.; Vandrovcova, J.; Consortium, U.K.B.E.; Weale, M.E.; et al. Assessment of common variability and expression quantitative trait loci for genome-wide associations for progressive supranuclear palsy. Neurobiol. Aging 2014, 35. [Google Scholar] [CrossRef] [PubMed]
- Wendler, F.; Tooze, S. Syntaxin 6: The promiscuous behaviour of a snare protein. Traffic 2001, 2, 606–611. [Google Scholar] [CrossRef] [PubMed]
- Borroni, B.; Del Bo, R.; Goldwurm, S.; Archetti, S.; Bonvicini, C.; Agosti, C.; Bigni, B.; Papetti, A.; Ghezzi, S.; Sacilotto, G.; et al. VEGF haplotypes are associated with increased risk to progressive supranuclear palsy and corticobasal syndrome. J. Alzheimers Dis. 2010, 21, 87–94. [Google Scholar] [PubMed]
- Potts, L.F.; Cambon, A.C.; Ross, O.A.; Rademakers, R.; Dickson, D.W.; Uitti, R.J.; Wszolek, Z.K.; Rai, S.N.; Farrer, M.J.; Hein, D.W.; et al. Polymorphic genes of detoxification and mitochondrial enzymes and risk for progressive supranuclear palsy: A case control study. BMC Med. Genet. 2012, 13, 16. [Google Scholar] [CrossRef] [PubMed]
- Ros, R.; Ampuero, I.; Garcia de Yebenes, J. Parkin polymorphisms in progressive supranuclear palsy. J. Neurol. Sci. 2008, 268, 176–178. [Google Scholar] [CrossRef] [PubMed]
- Melquist, S.; Craig, D.W.; Huentelman, M.J.; Crook, R.; Pearson, J.V.; Baker, M.; Zismann, V.L.; Gass, J.; Adamson, J.; Szelinger, S.; et al. Identification of a novel risk locus for progressive supranuclear palsy by a pooled genomewide scan of 500,288 single-nucleotide polymorphisms. Am. J. Hum. Genet. 2007, 80, 769–778. [Google Scholar] [CrossRef] [PubMed]
- Ross, O.A.; Whittle, A.J.; Cobb, S.A.; Hulihan, M.M.; Lincoln, S.J.; Toft, M.; Farrer, M.J.; Dickson, D.W. LRRK2 R1441 substitution and progressive supranuclear palsy. Neuropathol. Appl. Neurobiol. 2006, 32, 23–25. [Google Scholar] [CrossRef] [PubMed]
- Tan, E.K.; Skipper, L.; Chua, E.; Wong, M.C.; Pavanni, R.; Bonnard, C.; Kolatkar, P.; Liu, J.J. Analysis of 14 LRRK2 mutations in Parkinson’s plus syndromes and late-onset Parkinson’s disease. Mov. Disord. 2006, 21, 997–1001. [Google Scholar] [CrossRef] [PubMed]
- Asselta, R.; Rimoldi, V.; Siri, C.; Cilia, R.; Guella, I.; Tesei, S.; Solda, G.; Pezzoli, G.; Duga, S.; Goldwurm, S. Glucocerebrosidase mutations in primary parkinsonism. Parkinsonism Relat. Disord. 2014, 20, 1215–1220. [Google Scholar] [CrossRef] [PubMed]
- Halliday, G.M.; Song, Y.J.; Creasey, H.; Morris, J.G.; Brooks, W.S.; Kril, J.J. Neuropathology in the S305S tau gene mutation. Brain 2006, 129, E40. [Google Scholar] [CrossRef] [PubMed]
- Williams, D.R.; de Silva, R.; Paviour, D.C.; Pittman, A.; Watt, H.C.; Kilford, L.; Holton, J.L.; Revesz, T.; Lees, A.J. Characteristics of two distinct clinical phenotypes in pathologically proven progressive supranuclear palsy: Richardson’s syndrome and PSP-parkinsonism. Brain 2005, 128, 1247–1258. [Google Scholar] [CrossRef] [PubMed]
- Anouti, A.; Schmidt, K.; Lyons, K.E.; Hubble, J.P.; Schellenberg, G.; Golbe, L.I.; Lang, A.E.; Galvez-Jimenez, N.; Hershey, L.; Koller, W.C. Normal distribution of apolipoprotein E alleles in progressive supranuclear palsy. Neurology 1996, 46, 1156–1157. [Google Scholar] [CrossRef] [PubMed]
- Sawa, A.; Amano, N.; Yamada, N.; Kajio, H.; Yagishita, S.; Takahashi, T.; Oda, M.; Arai, N.; Ikeda, K.; Tadokoro, M.; et al. Apolipoprotein E in progressive supranuclear palsy in Japan. Mol. Psychiatry 1997, 2, 341–342. [Google Scholar] [CrossRef] [PubMed]
- Baba, Y.; Putzke, J.D.; Tsuboi, Y.; Josephs, K.A.; Thomas, N.; Wszolek, Z.K.; Dickson, D.W. Effect of MAPT and APOE on prognosis of progressive supranuclear palsy. Neurosci. Lett. 2006, 405, 116–119. [Google Scholar] [CrossRef] [PubMed]
- Morris, H.R.; Schrag, A.; Nath, U.; Burn, D.; Quinn, N.P.; Daniel, S.; Wood, N.W.; Lees, A.J. Effect of APOE and tau on age of onset of progressive supranuclear palsy and multiple system atrophy. Neurosci. Lett. 2001, 312, 118–120. [Google Scholar] [CrossRef]
- Murphy, M.A.; Friedman, J.H.; Tetrud, J.W.; Factor, S.A. Neurodegenerative disorders mimicking progressive supranuclear palsy: A report of three cases. J. Clin. Neurosci. 2005, 12, 941–945. [Google Scholar] [CrossRef] [PubMed]
- Josephs, K.A.; Dickson, D.W. Diagnostic accuracy of progressive supranuclear palsy in the society for progressive supranuclear palsy brain bank. Mov. Disord. 2003, 18, 1018–1026. [Google Scholar] [CrossRef] [PubMed]
- Winikates, J.; Jankovic, J. Vascular progressive supranuclear palsy. J. Neural Transm. Suppl. 1994, 42, 189–201. [Google Scholar] [PubMed]
- Murialdo, A.; Marchese, R.; Abbruzzese, G.; Tabaton, M.; Michelozzi, G.; Schiavoni, S. Neurosyphilis presenting as progressive supranuclear palsy. Mov. Disord. 2000, 15, 730–731. [Google Scholar] [CrossRef]
- Amarenco, P.; Roullet, E.; Hannoun, L.; Marteau, R. Progressive supranuclear palsy as the sole manifestation of systemic Whipple’s disease treated with pefloxacine. J. Neurol. Neurosurg. Psychiatry 1991, 54, 1121–1122. [Google Scholar] [CrossRef] [PubMed]
- Tan, J.H.; Goh, B.C.; Tambyah, P.A.; Wilder-Smith, E. Paraneoplastic progressive supranuclear palsy syndrome in a patient with B-cell lymphoma. Parkinsonism Relat. Disord. 2005, 11, 187–191. [Google Scholar] [CrossRef] [PubMed]
- Pramstaller, P.P.; Lees, A.J.; Luxon, L.M. Possible clinical overlap between postencephalitic parkinsonism and progressive supranuclear palsy. J. Neurol. Neurosurg. Psychiatry 1996, 60, 589–590. [Google Scholar] [CrossRef] [PubMed]
- Wenning, G.K.; Jellinger, K.; Litvan, I. Supranuclear gaze palsy and eyelid apraxia in postencephalitic parkinsonism. J. Neural Transm. 1997, 104, 845–865. [Google Scholar] [CrossRef] [PubMed]
- Boeve, B.F.; Maraganore, D.M.; Parisi, J.E.; Ahlskog, J.E.; Graff-Radford, N.; Caselli, R.J.; Dickson, D.W.; Kokmen, E.; Petersen, R.C. Pathologic heterogeneity in clinically diagnosed corticobasal degeneration. Neurology 1999, 53, 795–800. [Google Scholar] [CrossRef] [PubMed]
- Lleo, A.; Rey, M.J.; Castellvi, M.; Ferrer, I.; Blesa, R. Asymmetric myoclonic parietal syndrome in a patient with Alzheimer’s disease mimicking corticobasal degeneration. Neurologia 2002, 17, 223–226. [Google Scholar] [PubMed]
- Horoupian, D.S.; Wasserstein, P.H. Alzheimer’s disease pathology in motor cortex in dementia with Lewy bodies clinically mimicking corticobasal degeneration. Acta Neuropathol. 1999, 98, 317–322. [Google Scholar] [CrossRef] [PubMed]
- Tartaglia, M.C.; Sidhu, M.; Laluz, V.; Racine, C.; Rabinovici, G.D.; Creighton, K.; Karydas, A.; Rademakers, R.; Huang, E.J.; Miller, B.L.; et al. Sporadic corticobasal syndrome due to FTLD-TDP. Acta Neuropathol. 2010, 119, 365–374. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Minoshima, S.; Vesselle, H.; Lewis, D.H. A case of Creutzfeldt-Jakob disease mimicking corticobasal degeneration: FDG PET, SPECT, and MRI findings. Clin. Nucl. Med. 2012, 37, e173–e175. [Google Scholar] [CrossRef] [PubMed]
- Baba, Y.; Uitti, R.J.; Farrer, M.J.; Wszolek, Z.K. Sporadic SCA8 mutation resembling corticobasal degeneration. Parkinsonism Relat. Disord. 2005, 11, 147–150. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.D.; Kim, J.S.; Lee, E.S.; Yang, D.W.; Lee, K.S.; Kim, Y.I. Progressive “vascular” corticobasal syndrome due to bilateral ischemic hemispheric lesions. Intern. Med. 2009, 48, 1699–1702. [Google Scholar] [CrossRef] [PubMed]
- Miyaji, Y.; Koyama, K.; Kurokawa, T.; Mitomi, M.; Suzuki, Y.; Kuroiwa, Y. Vascular corticobasal syndrome caused by unilateral internal carotid artery occlusion. J. Stroke Cerebrovasc. Dis. 2013, 22, 1193–1195. [Google Scholar] [CrossRef] [PubMed]
- Benito-Leon, J.; Alvarez-Linera, J.; Louis, E.D. Neurosyphilis masquerading as corticobasal degeneration. Mov. Disord. 2004, 19, 1367–1370. [Google Scholar] [CrossRef] [PubMed]
- Warren, J.D.; Mummery, C.J.; Al-Din, A.S.; Brown, P.; Wood, N.W. Corticobasal degeneration syndrome with basal ganglia calcification: Fahr’s disease as a corticobasal look-alike? Mov. Disord. 2002, 17, 563–567. [Google Scholar] [CrossRef] [PubMed]
- Van Zanducke, M.; Dehaene, I. A “cortico-basal degeneration”-like syndrome as first sign of progressive multifocal leukoencephalopathy. Acta Neurol. Belg. 2000, 100, 242–245. [Google Scholar] [PubMed]
- Morris, H.R.; Lees, A.J. Primary antiphospholipid syndrome presenting as a corticobasal degeneration syndrome. Mov. Disord. 1999, 14, 530–532. [Google Scholar] [CrossRef]
- Lee, S.E.; Rabinovici, G.D.; Mayo, M.C.; Wilson, S.M.; Seeley, W.W.; DeArmond, S.J.; Huang, E.J.; Trojanowski, J.Q.; Growdon, M.E.; Jang, J.Y.; et al. Clinicopathological correlations in corticobasal degeneration. Ann. Neurol. 2011, 70, 327–340. [Google Scholar] [CrossRef] [PubMed]
- Litvan, I.; Agid, Y.; Goetz, C.; Jankovic, J.; Wenning, G.K.; Brandel, J.P.; Lai, E.C.; Verny, M.; Ray-Chaudhuri, K.; McKee, A.; et al. Accuracy of the clinical diagnosis of corticobasal degeneration: A clinicopathologic study. Neurology 1997, 48, 119–125. [Google Scholar] [CrossRef] [PubMed]
- Shelley, B.P.; Hodges, J.R.; Kipps, C.M.; Xuereb, J.H.; Bak, T.H. Is the pathology of corticobasal syndrome predictable in life? Mov. Disord. 2009, 24, 1593–1599. [Google Scholar] [CrossRef] [PubMed]
- Winter, Y.; Bezdolnyy, Y.; Katunina, E.; Avakjan, G.; Reese, J.P.; Klotsche, J.; Oertel, W.H.; Dodel, R.; Gusev, E. Incidence of Parkinson’s disease and atypical parkinsonism: Russian population-based study. Mov. Disord. 2010, 25, 349–356. [Google Scholar] [CrossRef] [PubMed]
- Grijalvo-Perez, A.M.; Litvan, I. Corticobasal degeneration. Semin. Neurol. 2014, 34, 160–173. [Google Scholar] [CrossRef] [PubMed]
- Osaki, Y.; Morita, Y.; Kuwahara, T.; Miyano, I.; Doi, Y. Prevalence of Parkinson’s disease and atypical parkinsonian syndromes in a rural Japanese district. Acta Neurol. Scand. 2011, 124, 182–187. [Google Scholar] [CrossRef] [PubMed]
- Armstrong, M.J.; Litvan, I.; Lang, A.E.; Bak, T.H.; Bhatia, K.P.; Borroni, B.; Boxer, A.L.; Dickson, D.W.; Grossman, M.; Hallett, M.; et al. Criteria for the diagnosis of corticobasal degeneration. Neurology 2013, 80, 496–503. [Google Scholar] [CrossRef] [PubMed]
- Houlden, H.; Baker, M.; Morris, H.R.; MacDonald, N.; Pickering-Brown, S.; Adamson, J.; Lees, A.J.; Rossor, M.N.; Quinn, N.P.; Kertesz, A.; et al. Corticobasal degeneration and progressive supranuclear palsy share a common tau haplotype. Neurology 2001, 56, 1702–1706. [Google Scholar] [CrossRef] [PubMed]
- Arai, T.; Ikeda, K.; Akiyama, H.; Nonaka, T.; Hasegawa, M.; Ishiguro, K.; Iritani, S.; Tsuchiya, K.; Iseki, E.; Yagishita, S.; et al. Identification of amino-terminally cleaved tau fragments that distinguish progressive supranuclear palsy from corticobasal degeneration. Ann. Neurol. 2004, 55, 72–79. [Google Scholar] [CrossRef] [PubMed]
- Fujioka, S.; Boeve, B.F.; Parisi, J.E.; Tacik, P.; Aoki, N.; Strongosky, A.J.; Baker, M.; Sanchez-Contreras, M.; Ross, O.A.; Rademakers, R.; et al. A familial form of parkinsonism, dementia, and motor neuron disease: A longitudinal study. Parkinsonism Relat. Disord. 2014, 20, 1129–1134. [Google Scholar] [CrossRef] [PubMed]
- Fekete, R.; Bainbridge, M.; Baizabal-Carvallo, J.F.; Rivera, A.; Miller, B.; Du, P.; Kholodovych, V.; Powell, S.; Ondo, W. Exome sequencing in familial corticobasal degeneration. Parkinsonism Relat. Disord. 2013, 19, 1049–1052. [Google Scholar] [CrossRef] [PubMed]
- Brown, J.; Lantos, P.L.; Roques, P.; Fidani, L.; Rossor, M.N. Familial dementia with swollen achromatic neurons and corticobasal inclusion bodies: A clinical and pathological study. J. Neurol. Sci. 1996, 135, 21–30. [Google Scholar] [CrossRef]
- Spillantini, M.G.; Yoshida, H.; Rizzini, C.; Lantos, P.L.; Khan, N.; Rossor, M.N.; Goedert, M.; Brown, J. A novel tau mutation (N296N) in familial dementia with swollen achromatic neurons and corticobasal inclusion bodies. Ann. Neurol. 2000, 48, 939–943. [Google Scholar] [CrossRef]
- Bugiani, O.; Murrell, J.R.; Giaccone, G.; Hasegawa, M.; Ghigo, G.; Tabaton, M.; Morbin, M.; Primavera, A.; Carella, F.; Solaro, C.; et al. Frontotemporal dementia and corticobasal degeneration in a family with a P301S mutation in tau. J. Neuropathol. Exp. Neurol. 1999, 58, 667–677. [Google Scholar] [CrossRef] [PubMed]
- Kouri, N.; Carlomagno, Y.; Baker, M.; Liesinger, A.M.; Caselli, R.J.; Wszolek, Z.K.; Petrucelli, L.; Boeve, B.F.; Parisi, J.E.; Josephs, K.A.; et al. Novel mutation in MAPT exon 13 (p.N410H) causes corticobasal degeneration. Acta Neuropathol. 2014, 127, 271–282. [Google Scholar] [CrossRef] [PubMed]
- Casseron, W.; Azulay, J.P.; Guedj, E.; Gastaut, J.L.; Pouget, J. Familial autosomal dominant cortico-basal degeneration with the P301S mutation in the tau gene: An example of phenotype variability. J. Neurol. 2005, 252, 1546–1548. [Google Scholar] [CrossRef] [PubMed]
- Kouri, N.; Ross, O.A.; Dombroski, B.; Younkin, C.S.; Serie, D.J.; Soto-Ortolaza, A.; Baker, M.; Finch, N.C.; Yoon, H.; Kim, J.; et al. Genome-wide association study of corticobasal degeneration identifies risk variants shared with progressive supranuclear palsy. Nat. Commun. 2015, 6, 7247. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kanai, Y.; Wang, D.; Hirokawa, N. KIF13B enhances the endocytosis of LRP1 by recruiting LRP1 to caveolae. J. Cell Biol. 2014, 204, 395–408. [Google Scholar] [CrossRef] [PubMed]
- Horiguchi, K.; Hanada, T.; Fukui, Y.; Chishti, A.H. Transport of PIP3 by GAKIN, a kinesin-3 family protein, regulates neuronal cell polarity. J. Cell Biol. 2006, 174, 425–436. [Google Scholar] [CrossRef] [PubMed]
- Hanada, T.; Lin, L.; Tibaldi, E.V.; Reinherz, E.L.; Chishti, A.H. GAKIN, a novel kinesin-like protein associates with the human homologue of the Drosophila discs large tumor suppressor in T lymphocytes. J. Biol. Chem. 2000, 275, 28774–28784. [Google Scholar] [CrossRef] [PubMed]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Scholz, S.W.; Bras, J. Genetics Underlying Atypical Parkinsonism and Related Neurodegenerative Disorders. Int. J. Mol. Sci. 2015, 16, 24629-24655. https://doi.org/10.3390/ijms161024629
Scholz SW, Bras J. Genetics Underlying Atypical Parkinsonism and Related Neurodegenerative Disorders. International Journal of Molecular Sciences. 2015; 16(10):24629-24655. https://doi.org/10.3390/ijms161024629
Chicago/Turabian StyleScholz, Sonja W., and Jose Bras. 2015. "Genetics Underlying Atypical Parkinsonism and Related Neurodegenerative Disorders" International Journal of Molecular Sciences 16, no. 10: 24629-24655. https://doi.org/10.3390/ijms161024629
APA StyleScholz, S. W., & Bras, J. (2015). Genetics Underlying Atypical Parkinsonism and Related Neurodegenerative Disorders. International Journal of Molecular Sciences, 16(10), 24629-24655. https://doi.org/10.3390/ijms161024629