Neuron Membrane Trafficking and Protein Kinases Involved in Autism and ADHD
Abstract
:1. Introduction
2. Relationship between Autisms and Neurobeachin
3. Relationship between Autisms and Cell Adhesion Molecule 1 (CADM1)
4. Relationship between Attention Deficit/Hyperactivity Disorder (ADHD) and Dopamine Transporter (DAT)
5. Neuronal Membrane Trafficking Involved in Autisms and ADHD Regulated by Several Protein Kinases
6. Interplay of the Kinases Involved in Autisms and ADHD
7. Diets May Contribute to the Improved Membrane Trafficking in Autisms and ADHD via the Modulation of AKT and PKA Signaling
8. Perspective
Acknowledgments
Author Contributions
Abbreviation
ADHD | Attention deficit/hyperactivity disorder |
AMPH | Amphetamine |
AKAPs | A-kinase anchor proteins |
AKT | Protein kinase B |
BDNF | Brain-derived neurotrophic factor |
bFGF | Basic fibroblast growth factor |
BEACH | BEige and Chediak-Higashi |
BMSO | Bitter melon seed oil |
CADM1 | Cell adhesion molecule 1 |
CFTR | Functional cystic fibrosis transmembrane conductance regulator |
cAMP | Cyclic adenosine monophosphate |
COMT | Catechol-O-methyl transferase |
CREB | cAMP response element-binding protein |
DAT | Dopamine transporter |
DHA | Docosahexaenonic acids |
EPA | Eicosapentaenoic acid |
GSK-3 | Glycogen synthase kinase 3 |
Ig | Immunoglobulin |
mTOR | Mammalian target of rapamycin |
mTORC1 | mTOR complex 1 |
mTORC2 | mTOR complex 2 |
NBEA | Neurobeachin |
PDK1 | Phosphoinositide-dependent kinase 1 |
PDK2 | Phosphoinositide-dependent kinase 2 |
PDZ | PSD-95/Dlg/ZO-1 |
PH | plekstrin homology |
PIP3 | Phosphatidylinositol 3,4,5-triphosphate |
PI3K | Phosphatidylinositol-3 kinase |
PKA | Protein kinase A |
PPARγ | Peroxisome proliferator-activated receptor |
PTEN | Phosphatase and tensin homologue deleted on chromosome 10 |
PUFAs | Polyunsaturated fatty acids |
SHR | Spontaneously hypertensive rat |
SNP | Single nucleotide polymorphism |
WD40 | tryptophan-aspartic acid repeat |
Conflicts of Interest
References
- Huang, C.; Rajfur, Z.; Yousefi, N.; Chen, Z.; Jacobson, K.; Ginsberg, M.H. Talin phosphorylation by Cdk5 regulates Smurf1-mediated talin head ubiquitylation and cell migration. Nat. Cell Biol. 2009, 11, 624–630. [Google Scholar] [PubMed]
- Bishop, N.E. Dynamics of endosomal sorting. Int. Rev. Cytol. 2003, 232, 1–57. [Google Scholar] [PubMed]
- Mizutani, R.; Yamauchi, J.; Kusakawa, S.; Nakamura, K.; Sanbe, A.; Torii, T.; Miyamoto, Y.; Tanoue, A. Sorting nexin 3, a protein up-regulated by lithium, contains a novel phosphatidylinositol-binding sequence and mediates neurite outgrowth in N1E-115 cells. Cell Signal. 2009, 21, 1586–1594. [Google Scholar] [CrossRef] [PubMed]
- Koutelou, E.; Sato, S.; Tomomori-Sato, C.; Florens, L.; Swanson, S.K.; Washburn, M.P.; Kokkinaki, M.; Conaway, R.C.; Conaway, J.W.; Moschonas, N.K. Neuralized-like 1 (Neurl1) targeted to the plasma membrane by N-myristoylation regulates the Notch ligand Jagged1. J. Biol. Chem. 2008, 283, 3846–3853. [Google Scholar] [CrossRef] [PubMed]
- Kanamarlapudi, V. Centaurin-α1 and KIF13B kinesin motor protein interaction in ARF6 signalling. Biochem. Soc. Trans. 2005, 33, 1279–1281. [Google Scholar] [CrossRef] [PubMed]
- Venkateswarlu, K.; Gunn-Moore, F.; Tavaré, J.M.; Cullen, P.J. EGF-and NGF-stimulated translocation of cytohesin-1 to the plasma membrane of PC12 cells requires PI 3-kinase activation and a functional cytohesin-1 PH domain. J. Cell Sci. 1999, 112, 1957–1965. [Google Scholar] [PubMed]
- Woo, J.; Chae, Y.K.; Jang, S.J.; Kim, M.S.; Baek, J.H.; Park, J.C.; Trink, B.; Ratovitski, E.; Lee, T.; Park, B.; et al. Membrane trafficking of AQP5 and cAMP dependent phosphorylation in bronchial epithelium. Biochem. Biophys. Res. Commun. 2008, 366, 321–327. [Google Scholar] [CrossRef] [PubMed]
- Wojtal, K.A.; Hoekstra, D.; van Ijzendoorn, S.C. cAMP-dependent protein kinase A and the dynamics of epithelial cell surface domains: Moving membranes to keep in shape. Bioessays 2008, 30, 146–155. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Foletti, D.L.; Prekeris, R.; Scheller, R.H. Generation and maintenance of neuronal polarity: Mechanisms of transport and targeting. Neuron 1999, 23, 641–644. [Google Scholar] [CrossRef] [PubMed]
- Horton, A.C.; Ehlers, M.D. Neuronal polarity and trafficking. Neuron 2003, 40, 277–295. [Google Scholar] [CrossRef] [PubMed]
- Tang, D.; Wang, Y. Cell cycle regulation of Golgi membrane dynamics. Trends Cell Biol. 2013, 23, 296–304. [Google Scholar] [CrossRef] [PubMed]
- Lecuit, T. Regulation of membrane dynamics in developing epithelia. Curr. Opin. Genet. Dev. 2003, 13, 351–357. [Google Scholar] [CrossRef] [PubMed]
- Bowton, E.; Saunders, C.; Reddy, I.A.; Campbell, N.G.; Hamilton, P.J.; Henry, L.K.; Coon, H.; Sakrikar, D.; Veenstra-VanderWeele, J.M.; Blakely, R.D.; et al. SLC6A3 coding variant Ala559Val found in two autism probands alters dopamine transporter function and trafficking. Transl. Psychiatry 2014, 4, e464. [Google Scholar] [CrossRef] [PubMed]
- Sakrikar, D.; Mazei-Robison, M.S.; Mergy, M.A.; Richtand, N.W.; Han, Q.; Hamilton, P.J.; Bowton, E.; Galli, A.; Veenstra-Vanderweele, J.; Gill, M.; et al. Attention deficit/hyperactivity disorder-derived coding variation in the dopamine transporter disrupts microdomain targeting and trafficking regulation. J. Neurosci. 2012, 32, 5385–5397. [Google Scholar] [CrossRef] [PubMed]
- Leitner, Y. The co-occurrence of autism and attention deficit hyperactivity disorder in children—What do we know? Front. Hum. Neurosci. 2014, 8, 268. [Google Scholar]
- Kondapalli, K.C.; Prasad, H.; Rao, R. An inside job: How endosomal Na+/H+ exchangers link to autism and neurological disease. Front. Cell Neurosci. 2014, 8, 172. [Google Scholar] [CrossRef] [PubMed]
- Wegiel, J.; Kuchna, I.; Nowicki, K.; Imaki, H.; Wegiel, J.; Marchi, E.; Ma, S.Y.; Chauhan, A.; Chauhan, V.; Bobrowicz, T.W.; et al. The neuropathology of autism: Defects of neurogenesis and neuronal migration, and dysplastic changes. Acta Neuropathol. 2010, 119, 755–770. [Google Scholar] [CrossRef] [PubMed]
- Zuko, A.; Kleijer, K.T.; Oguro-Ando, A.; Kas, M.J.; van Daalen, E.; van der Zwaag, B.; Burbach, J.P. Contactins in the neurobiology of autism. Eur. J. Pharmacol. 2013, 719, 63–74. [Google Scholar] [CrossRef] [PubMed]
- Gu, W.; Lupski, J.R. CNV and nervous system diseases—What’s new? Cytogenet. Genome Res. 2008, 123, 54–64. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Volders, K.; Nuytens, K.; Creemers, J.W. The autism candidate gene Neurobeachin encodes a scaffolding protein implicated in membrane trafficking and signaling. Curr. Mol. Med. 2011, 11, 204–217. [Google Scholar] [CrossRef] [PubMed]
- Olszewski, P.K.; Rozman, J.; Jacobsson, J.A.; Rathkolb, B.; Strömberg, S.; Hans, W.; Klockars, A.; Alsiö, J.; Risérus, U.; Becker, L.; et al. Neurobeachin, a regulator of synaptic protein targeting, is associated with body fat mass and feeding behavior in mice and body-mass index in humans. PLoS Genet. 2012, 8, e1002568. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, X.; Herberg, F.W.; Laue, M.M.; Wullner, C.; Hu, B.; Petrasch-Parwez, E.; Kilimann, M.W. Neurobeachin: A protein kinase A-anchoring, beige/Chediak-higashi protein homolog implicated in neuronal membrane traffic. J. Neurosci. 2000, 20, 8551–8565. [Google Scholar] [PubMed]
- Savelyeva, L.; Sagulenko, E.; Schmitt, J.G.; Schwab, M. The neurobeachin gene spans the common fragile site FRA13A. Hum. Genet. 2006, 118, 551–558. [Google Scholar] [CrossRef] [PubMed]
- De Lozanne, A. The role of BEACH proteins in Dictyostelium. Traffic 2003, 4, 6–12. [Google Scholar] [CrossRef] [PubMed]
- Vaccari, T.; Bilder, D. The Drosophila tumor suppressor vps25 prevents nonautonomous overproliferation by regulating notch trafficking. Dev. Cell 2005, 9, 687–698. [Google Scholar] [CrossRef] [PubMed]
- Nuytens, K.; Tuand, K.; di Michele, M.; Boonen, K.; Waelkens, E.; Freson, K.; Creemers, J.W. Platelets of mice heterozygous for neurobeachin, a candidate gene for autism spectrum disorder, display protein changes related to aberrant protein kinase A activity. Mol. Autism 2013, 4, 43. [Google Scholar] [CrossRef] [PubMed]
- Shamloula, H.K.; Mbogho, M.P.; Pimentel, A.C.; Chrzanowska-Lightowlers, Z.M.; Hyatt, V.; Okano, H.; Venkatesh, T.R. rugose (rg), a Drosophila A kinase anchor protein, is required for retinal pattern formation and interacts genetically with multiple signaling pathways. Genetics 2002, 161, 693–710. [Google Scholar] [PubMed]
- Wang, K.; Hackett, J.T.; Cox, M.E.; van Hoek, M.; Lindstrom, J.M.; Parsons, S.J. Regulation of the neuronal nicotinic acetylcholine receptor by SRC family tyrosine kinases. J. Biol. Chem. 2004, 279, 8779–8786. [Google Scholar] [CrossRef] [PubMed]
- Miller, A.C.; Voelker, L.H.; Shah, A.N.; Moens, C.B. Neurobeachin is required postsynaptically for electrical and chemical synapse formation. Curr. Biol. 2015, 25, 16–28. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.K.; Bregere, C.; Paluch, J.; Lu, J.F.; Dickman, D.K.; Chang, K.T. Activity-dependent facilitation of Synaptojanin and synaptic vesicle recycling by the Minibrain kinase. Nat. Commun. 2014, 5, 4246. [Google Scholar] [PubMed]
- Ebert, D.H.; Greenberg, M.E. Activity-dependent neuronal signalling and autism spectrum disorder. Nature 2013, 493, 327–337. [Google Scholar] [CrossRef] [PubMed]
- Ribic, A.; Liu, X.; Crair, M.C.; Biederer, T. Structural organization and function of mouse photoreceptor ribbon synapses involve the immunoglobulin protein synaptic cell adhesion molecule 1. J. Comp. Neurol. 2014, 522, 900–920. [Google Scholar] [CrossRef] [PubMed]
- Masuda, M.; Yageta, M.; Fukuhara, H.; Kuramochi, M.; Maruyama, T.; Nomoto, A.; Murakami, Y. The tumor suppressor protein TSLC1 is involved in cell-cell adhesion. J. Biol. Chem. 2002, 277, 31014–31019. [Google Scholar] [CrossRef] [PubMed]
- Fujita, E.; Tanabe, Y.; Imhof, B.A.; Momoi, M.Y.; Momoi, T. A complex of synaptic adhesion molecule CADM1, a molecule related to autism spectrum disorder, with MUPP1 in the cerebellum. J. Neurochem. 2012, 123, 886–894. [Google Scholar] [CrossRef] [PubMed]
- Fujita, E.; Dai, H.; Tanabe, Y.; Zhiling, Y.; Yamagata, T.; Miyakawa, T.; Tanokura, M.; Momoi, M.Y.; Momoi, T. Autism spectrum disorder is related to endoplasmic reticulum stress induced by mutations in the synaptic cell adhesion molecule, CADM1. Cell Death Dis. 2010, 1, e47. [Google Scholar] [CrossRef] [PubMed]
- Patiño-Lopez, G.; Hevezi, P.; Lee, J.; Willhite, D.; Verge, G.M.; Lechner, S.M.; Ortiz-Navarrete, V.; Zlotnik, A. Human class-I restricted T cell associated molecule is highly expressed in the cerebellum and is a marker for activated NKT and CD8+ T lymphocytes. J. Neuroimmunol. 2006, 171, 145–155. [Google Scholar] [CrossRef] [PubMed]
- Tanabe, Y.; Fujita, E.; Hayashi, Y.K.; Zhu, X.; Lubbert, H.; Mezaki, Y.; Senoo, H.; Momoi, T. Synaptic adhesion molecules in Cadm family at the neuromuscular junction. Cell Biol. Int. 2013, 37, 731–736. [Google Scholar] [CrossRef] [PubMed]
- Murphy, C.M.; Christakou, A.; Daly, E.M.; Ecker, C.; Giampietro, V.; Brammer, M.; Smith, A.B.; Johnston, P.; Robertson, D.M.; MRC AIMS Consortium; et al. Abnormal functional activation and maturation of fronto-striato-temporal and cerebellar regions during sustained attention in autism spectrum disorder. Am. J. Psychiatry 2014, 171, 1107–1116. [Google Scholar] [CrossRef] [PubMed]
- Zhiling, Y.; Fujita, E.; Tanabe, Y.; Yamagata, T.; Momoi, T.; Momoi, M.Y. Mutations in the gene encoding CADM1 are associated with autism spectrum disorder. Biochem. Biophys. Res. Commun. 2008, 377, 926–929. [Google Scholar] [CrossRef] [PubMed]
- Momoi, T.; Fujita, E.; Senoo, H.; Momoi, M. Genetic factors and epigenetic factors for autism: Endoplasmic reticulum stress and impaired synaptic function. Cell Biol. Int. 2009, 34, 13–19. [Google Scholar] [PubMed]
- Williams, Y.N.; Masuda, M.; Sakurai-Yageta, M.; Maruyama, T.; Shibuya, M.; Murakami, Y. Cell adhesion and prostate tumor-suppressor activity of TSLL2/IGSF4C, an immunoglobulin superfamily molecule homologous to TSLC1/IGSF4. Oncogene 2006, 25, 1446–1453. [Google Scholar] [CrossRef] [PubMed]
- Tordjman, S.; Somogyi, E.; Coulon, N.; Kermarrec, S.; Cohen, D.; Bronsard, G.; Bonnot, O.; Weismann-Arcache, C.; Botbol, M.; Lauth, B.; et al. Gene × Environment interactions in autism spectrum disorders: Role of epigenetic mechanisms. Front. Psychiatry 2014, 5, 53. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hauser, T.U.; Iannaccone, R.; Ball, J.; Mathys, C.; Brandeis, D.; Walitza, S.; Brem, S. Role of the medial prefrontal cortex in impaired decision making in juvenile attention-deficit/hyperactivity disorder. JAMA Psychiatry 2014, 71, 1165–1173. [Google Scholar] [CrossRef] [PubMed]
- Pearlman, D.M.; Vora, H.S.; Marquis, B.G.; Najjar, S.; Dudley, L.A. Anti-basal ganglia antibodies in primary obsessive-compulsive disorder: Systematic review and meta-analysis. Br. J. Psychiatry 2014, 205, 8–16. [Google Scholar] [CrossRef] [PubMed]
- Kirley, A.; Hawi, Z.; Daly, G.; McCarron, M.; Mullins, C.; Millar, N.; Waldman, I.; Fitzgerald, M.; Gill, M. Dopaminergic system genes in ADHD: Toward a biological hypothesis. Neuropsychopharmacology 2002, 27, 607–619. [Google Scholar] [PubMed]
- Grant, P.; Kuepper, Y.; Wielpuetz, C.; Hennig, J. Differential associations of dopamine-related polymorphisms with discrete components of reaction time variability: Relevance for attention deficit/hyperactivity disorder. Neuropsychobiology 2014, 69, 220–226. [Google Scholar] [CrossRef] [PubMed]
- Somkuwar, S.S.; Darna, M.; Kantak, K.M.; Dwoskin, L.P. Adolescence methylphenidate treatment in a rodent model of attention deficit/hyperactivity disorder: Dopamine transporter function and cellular distribution in adulthood. Biochem. Pharmacol. 2013, 86, 309–316. [Google Scholar] [CrossRef] [PubMed]
- Patel, J.; Mooslehner, K.A.; Chan, P.M.; Emson, P.C.; Stamford, J.A. Presynaptic control of striatal dopamine neurotransmission in adult vesicular monoamine transporter 2 (VMAT2) mutant mice. J. Neurochem. 2003, 85, 898–910. [Google Scholar] [CrossRef] [PubMed]
- Kim, P.; Choi, C.S.; Park, J.H.; Joo, S.H.; Kim, S.Y.; Ko, H.M.; Kim, K.C.; Jeon, S.J.; Park, S.H.; Han, S.H.; et al. Chronic exposure to ethanol of male mice before mating produces attention deficit hyperactivity disorder-like phenotype along with epigenetic dysregulation of dopamine transporter expression in mouse offspring. J. Neurosci. Res. 2014, 92, 658–670. [Google Scholar] [CrossRef] [PubMed]
- Hall, F.S.; Itokawa, K.; Schmitt, A.; Moessner, R.; Sora, I.; Lesch, K.P.; Uhl, G.R. Decreased vesicular monoamine transporter 2 (VMAT2) and dopamine transporter (DAT) function in knockout mice affects aging of dopaminergic systems. Neuropharmacology 2014, 76, 146–155. [Google Scholar] [CrossRef] [PubMed]
- Greenwood, T.A.; Joo, E.J.; Shekhtman, T.; Sadovnick, A.D.; Remick, R.A.; Keck, P.E.; McElroy, S.L.; Kelsoe, J.R. Association of dopamine transporter gene variants with childhood ADHD features in bipolar disorder. Am. J. Med. Genet. B 2013, 162B, 137–145. [Google Scholar] [CrossRef]
- Fosi, T.; Lax-Pericall, M.T.; Scott, R.C.; Neville, B.G.; Aylett, S.E. Methylphenidate treatment of attention deficit hyperactivity disorder in young people with learning disability and difficult-to-treat epilepsy: Evidence of clinical benefit. Epilepsia 2013, 54, 2071–2081. [Google Scholar] [CrossRef] [PubMed]
- Meneses, A.; Perez-Garcia, G.; Ponce-Lopez, T.; Tellez, R.; Gallegos-Cari, A.; Castillo, C. Spontaneously hypertensive rat (SHR) as an animal model for ADHD: A short overview. Rev. Neurosci. 2011, 22, 365–371. [Google Scholar] [CrossRef] [PubMed]
- Barth, V.; Need, A.B.; Tzavara, E.T.; Giros, B.; Overshiner, C.; Gleason, S.D.; Wade, M.; Johansson, A.M.; Perry, K.; Nomikos, G.G.; et al. In vivo occupancy of dopamine D3 receptors by antagonists produces neurochemical and behavioral effects of potential relevance to attention-deficit-hyperactivity disorder. J. Pharmacol. Exp. Ther. 2013, 344, 501–510. [Google Scholar] [CrossRef] [PubMed]
- Volkow, N.D.; Wang, G.J.; Fowler, J.S.; Logan, J.; Franceschi, D.; Maynard, L.; Ding, Y.S.; Gatley, S.J.; Gifford, A.; Zhu, W.; et al. Relationship between blockade of dopamine transporters by oral methylphenidate and the increases in extracellular dopamine: Therapeutic implications. Synapse 2002, 43, 181–187. [Google Scholar] [CrossRef] [PubMed]
- Torres, G.E. The dopamine transporter proteome. J. Neurochem. 2006, 97, 3–10. [Google Scholar] [CrossRef] [PubMed]
- Robbins, T.W. Dopamine and cognition. Curr. Opin. Neurol. 2003, 16, S1–S2. [Google Scholar] [CrossRef] [PubMed]
- Nuytens, K.; Gantois, I.; Stijnen, P.; Iscru, E.; Laeremans, A.; Serneels, L.; van Eylen, L.; Liebhaber, S.A.; Devriendt, K.; Balschun, D.; et al. Haploinsufficiency of the autism candidate gene Neurobeachin induces autism-like behaviors and affects cellular and molecular processes of synaptic plasticity in mice. Neurobiol. Dis. 2013, 51, 144–151. [Google Scholar] [CrossRef] [PubMed]
- Su, Y.; Balice-Gordon, R.J.; Hess, D.M.; Landsman, D.S.; Minarcik, J.; Golden, J.; Hurwitz, I.; Liebhaber, S.A.; Cooke, N.E. Neurobeachin is essential for neuromuscular synaptic transmission. J. Neurosci. 2004, 24, 3627–3636. [Google Scholar] [CrossRef] [PubMed]
- Ohashi, M.; Huttner, W.B. An elevation of cytosolic protein phosphorylation modulates trimeric G-protein regulation of secretory vesicle formation from the trans-Golgi network. J. Biol. Chem. 1994, 269, 24897–24905. [Google Scholar] [PubMed]
- Colledge, M.; Scott, J.D. AKAPs: From structure to function. Trends Cell Biol. 1999, 9, 216–221. [Google Scholar] [CrossRef] [PubMed]
- Dell'Acqua, M.L.; Smith, K.E.; Gorski, J.A.; Horne, E.A.; Gibson, E.S.; Gomez, L.L. Regulation of neuronal PKA signaling through AKAP targeting dynamics. Eur. J. Cell Biol. 2006, 85, 627–633. [Google Scholar] [CrossRef] [PubMed]
- Röder, I.V.; Choi, K.R.; Reischl, M.; Petersen, Y.; Diefenbacher, M.E.; Zaccolo, M.; Pozzan, T.; Rudolf, R. Myosin Va cooperates with PKA RIα to mediate maintenance of the endplate in vivo. Proc. Natl. Acad. Sci. USA 2010, 107, 2031–2036. [Google Scholar] [CrossRef] [PubMed]
- Niesmann, K.; Breuer, D.; Brockhaus, J.; Born, G.; Wolff, I.; Reissner, C.; Kilimann, M.W.; Rohlmann, A.; Missler, M. Dendritic spine formation and synaptic function require neurobeachin. Nat. Commun. 2011, 2, 557. [Google Scholar] [CrossRef] [PubMed]
- Murakami, S.; Sakurai-Yageta, M.; Maruyama, T.; Murakami, Y. Trans-homophilic interaction of CADM1 activates PI3K by forming a complex with MAGuK-family proteins MPP3 and Dlg. PLoS One 2014, 9, e82894. [Google Scholar] [CrossRef] [PubMed]
- Masuda, M.; Maruyama, T.; Ohta, T.; Ito, A.; Hayashi, T.; Tsukasaki, K.; Kamihira, S.; Yamaoka, S.; Hoshino, H.; Yoshida, T.; et al. CADM1 interacts with Tiam1 and promotes invasive phenotype of human T-cell leukemia virus type I-transformed cells and adult T-cell leukemia cells. J. Biol. Chem. 2010, 285, 15511–15522. [Google Scholar] [CrossRef] [PubMed]
- Montgomery, J.M.; Zamorano, P.L.; Garner, C.C. AGUKs in synapse assembly and function: An emerging view. Cell Mol. Life Sci. 2004, 61, 911–929. [Google Scholar] [CrossRef] [PubMed]
- Liegl, R.; Wertheimer, C.; Kernt, M.; Docheva, D.; Kampik, A.; Eibl-Lindner, K.H. Attenuation of human lens epithelial cell spreading, migration and contraction via downregulation of the PI3K/Akt pathway. Graefes. Arch. Clin. Exp. Ophthalmol. 2014, 252, 285–292. [Google Scholar] [CrossRef] [PubMed]
- Garcia, B.G.; Wei, Y.; Moron, J.A.; Lin, R.Z.; Javitch, J.A.; Galli, A. Akt is essential for insulin modulation of amphetamine-induced human dopamine transporter cell-surface redistribution. Mol. Pharmacol. 2005, 68, 102–109. [Google Scholar] [PubMed]
- Wei, Y.; Williams, J.M.; Dipace, C.; Sung, U.; Javitch, J.A.; Galli, A.; Saunders, C. Dopamine transporter activity mediates amphetamine-induced inhibition of Akt through a Ca2+/calmodulin-dependent kinase II-dependent mechanism. Mol. Pharmacol. 2007, 71, 835–842. [Google Scholar] [CrossRef] [PubMed]
- Bourque, M.; Liu, B.; Dluzen, D.E.; di Paolo, T. Sex differences in methamphetamine toxicity in mice: Effect on brain dopamine signaling pathways. Psychoneuroendocrinology 2011, 36, 955–969. [Google Scholar] [CrossRef] [PubMed]
- Ugrumov, M.V. Non-dopaminergic neurons partly expressing dopaminergic phenotype: Distribution in the brain, development and functional significance. J. Chem. Neuroanat. 2009, 38, 241–256. [Google Scholar] [CrossRef] [PubMed]
- Lute, B.J.; Khoshbouei, H.; Saunders, C.; Sen, N.; Lin, R.Z.; Javitch, J.A.; Galli, A. PI3K signaling supports amphetamine-induced dopamine efflux. Biochem. Biophys. Res. Commun. 2008, 372, 656–661. [Google Scholar] [CrossRef] [PubMed]
- Carvelli, L.; Morón, J.A.; Kahlig, K.M.; Ferrer, J.V.; Sen, N.; Lechleiter, J.D.; Leeb-Lundberg, L.M.; Merrill, G.; Lafer, E.M.; Ballou, L.M.; et al. PI 3-kinase regulation of dopamine uptake. J. Neurochem. 2002, 81, 859–869. [Google Scholar] [CrossRef] [PubMed]
- Woodgett, J.R. Recent advances in the protein kinase B signaling pathway. Curr. Opin. Cell Biol. 2005, 17, 150–157. [Google Scholar] [CrossRef] [PubMed]
- Sarbassov, D.D.; Ali, S.M.; Sabatini, D.M. Growing roles for the mTOR pathway. Curr. Opin. Cell Biol. 2005, 17, 596–603. [Google Scholar] [CrossRef] [PubMed]
- Khattak, M.N.; Buchfelder, M.; Kleindienst, A.; Schöfl, C.; Kremenevskaja, N. CRH and SRIF have opposite effects on the Wnt/β-catenin signalling pathway through PKA/GSK-3β in corticotroph pituitary cells. Cancer Investig. 2010, 28, 797–805. [Google Scholar] [CrossRef]
- Grimes, C.A.; Jope, R.S. The multifaceted roles of glycogen synthase kinase 3β in cellular signaling. Prog. Neurobiol. 2001, 65, 391–426. [Google Scholar] [CrossRef] [PubMed]
- Liang, M.H.; Chuang, D.M. Regulation and function of glycogen synthase kinase-3 isoforms in neuronal survival. J. Biol. Chem. 2007, 282, 3904–3917. [Google Scholar] [CrossRef] [PubMed]
- Tian, N.; Kanno, T.; Jin, Y.; Nishizaki, T. Lithium potentiates GSK-3β activity by inhibiting phosphoinositide 3-kinase-mediated Akt phosphorylation. Biochem. Biophys. Res. Commun. 2014, 450, 746–749. [Google Scholar] [CrossRef] [PubMed]
- Liang, M.H.; Wendland, J.R.; Chuang, D.M. Lithium inhibits Smad3/4 transactivation via increased CREB activity induced by enhanced PKA and AKT signaling. Mol. Cell Neurosci. 2008, 37, 440–453. [Google Scholar] [CrossRef] [PubMed]
- Kirshenboim, N.; Plotkin, B.; Shlomo, S.B.; Kaidanovich-Beilin, O.; Eldar-Finkelman, H. Lithium-mediated phosphorylation of glycogen synthase kinase-3β involves PI3 kinase-dependent activation of protein kinase C-α. J. Mol. Neurosci. 2004, 24, 237–245. [Google Scholar] [CrossRef] [PubMed]
- O’Driscoll, C.; Wallace, D.; Cotter, T.G. bFGF promotes photoreceptor cell survival in vitro by PKA-mediated inactivation of glycogen synthase kinase 3β and CREB-dependent Bcl-2 up-regulation. J. Neurochem. 2007, 103, 860–870. [Google Scholar] [CrossRef] [PubMed]
- Ku, B.M.; Lee, Y.K.; Jeong, J.Y.; Ryu, J.; Choi, J.; Kim, J.S.; Cho, Y.W.; Roh, G.S.; Kim, H.J.; Cho, G.J.; et al. Caffeine inhibits cell proliferation and regulates PKA/GSK3β pathways in U87MG human glioma cells. Mol. Cells 2011, 31, 275–279. [Google Scholar] [CrossRef] [PubMed]
- Nijholt, I.M.; Dolga, A.M.; Ostroveanu, A.; Luiten, P.G.; Schmidt, M.; Eisel, U.L. Neuronal AKAP150 coordinates PKA and Epac-mediated PKB/Akt phosphorylation. Cell Signal. 2008, 20, 1715–1724. [Google Scholar] [CrossRef] [PubMed]
- De Joussineau, C.; Sahut-Barnola, I.; Tissier, F.; Dumontet, T.; Drelon, C.; Batisse-Lignier, M.; Tauveron, I.; Pointud, J.C.; Lefrançois-Martinez, A.M.; Stratakis, C.A.; et al. mTOR pathway is activated by PKA in adrenocortical cells and participates in vivo to apoptosis resistance in primary pigmented nodular adrenocortical disease (PPNAD). Hum. Mol. Genet. 2014, 23, 5418–5428. [Google Scholar] [CrossRef] [PubMed]
- Jülich, K.; Sahin, M. Mechanism-based treatment in tuberous sclerosis complex. Pediatr. Neurol. 2014, 50, 290–296. [Google Scholar] [CrossRef] [PubMed]
- Carson, R.P.; Fu, C.; Winzenburger, P.; Ess, K.C. Deletion of Rictor in neural progenitor cells reveals contributions of mTORC2 signaling to tuberous sclerosis complex. Hum. Mol. Genet. 2013, 22, 140–152. [Google Scholar] [CrossRef] [PubMed]
- Pringle, D.R.; Vasko, V.V.; Yu, L.; Manchanda, P.K.; Lee, A.A.; Zhang, X.; Kirschner, J.M.; Parlow, A.F.; Saji, M.; Jarjoura, D.; et al. Follicular thyroid cancers demonstrate dual activation of PKA and mTOR as modeled by thyroid-specific deletion of Prkar1a and Pten in mice. J. Clin. Endocrinol. Metab. 2014, 99, E804–E812. [Google Scholar] [CrossRef] [PubMed]
- McDougle, C.J.; Naylor, S.T.; Cohen, D.J.; Aghajanian, G.K.; Heninger, G.R.; Price, L.H. Effects of tryptophan depletion in drug-free adults with autistic disorder. Arch. Gen. Psychiatry 1996, 53, 993–1000. [Google Scholar] [CrossRef] [PubMed]
- Penedo, L.A.; Oliveira-Silva, P.; Gonzalez, E.M.; Maciel, R.; Jurgilas, P.B.; Melibeu Ada, C.; Campello-Costa, P.; Serfaty, C.A. Nutritional tryptophan restriction impairs plasticity of retinotectal axons during the critical period. Exp. Neurol. 2009, 217, 108–115. [Google Scholar] [CrossRef] [PubMed]
- Schmid, C.L.; Streicher, J.M.; Meltzer, H.Y.; Bohn, L.M. Clozapine acts as an agonist at serotonin 2A receptors to counter MK-801-induced behaviors through a β-arrestin2-independent activation of Akt. Neuropsychopharmacology 2014, 39, 1902–1913. [Google Scholar] [CrossRef] [PubMed]
- Spivak, B.; Golubchik, P.; Mozes, T.; Vered, Y.; Nechmad, A.; Weizman, A.; Strous, R.D. Low platelet-poor plasma levels of serotonin in adult autistic patients. Neuropsychobiology 2004, 50, 157–160. [Google Scholar] [CrossRef] [PubMed]
- Cross, S.; Kim, S.J.; Weiss, L.A.; Delahanty, R.J.; Sutcliffe, J.S.; Leventhal, B.L.; Cook, E.H., Jr.; Veenstra-Vanderweele, J. Molecular genetics of the platelet serotonin system in first-degree relatives of patients with autism. Neuropsychopharmacology 2008, 33, 353–360. [Google Scholar] [CrossRef] [PubMed]
- Iwata, K.; Matsuzaki, H.; Tachibana, T.; Ohno, K.; Yoshimura, S.; Takamura, H.; Yamada, K.; Matsuzaki, S.; Nakamura, K.; Tsuchiya, K.J.; et al. N-ethylmaleimide-sensitive factor interacts with the serotonin transporter and modulates its trafficking: Implications for pathophysiology in autism. Mol. Autism 2014, 5, 33. [Google Scholar] [CrossRef] [PubMed]
- Prasad, H.C.; Steiner, J.A.; Sutcliffe, J.S.; Blakely, R.D. Enhanced activity of human serotonin transporter variants associated with autism. Philos. Trans. R. Soc. Lond. B 2009, 364, 163–173. [Google Scholar] [CrossRef]
- Aggarwal, B.B.; Yuan, W.; Li, S.; Gupta, S.C. Curcumin-free turmeric exhibits anti-inflammatory and anticancer activities: Identification of novel components of turmeric. Mol. Nutr. Food Res. 2013, 57, 1529–1542. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.; Li, Y.H.; Xu, Y.; Li, Y.B.; Wu, H.L.; Guo, H.; Zhang, J.Z.; Zhang, J.J.; Pan, X.Y.; Li, X.J. Curcumin produces neuroprotective effects via activating brain-derived neurotrophic factor/TrkB-dependent MAPK and PI-3K cascades in rodent cortical neurons. Prog Neuropsychopharmacol. Biol. Psychiatry 2010, 34, 147–153. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Li, Q.; Wang, X.; Yu, S.; Li, L.; Wu, X.; Chen, Y.; Zhao, J.; Zhao, Y. Neuroprotection by curcumin in ischemic brain injury involves the Akt/Nrf2 pathway. PLoS One 2013, 8, e59843. [Google Scholar] [CrossRef] [PubMed]
- Lipecka, J.; Norez, C.; Bensalem, N.; Baudouin-Legros, M.; Planelles, G.; Becq, F.; Edelman, A.; Davezac, N. Rescue of ΔF508-CFTR (cystic fibrosis transmembrane conductance regulator) by curcumin: Involvement of the keratin 18 network. J. Pharmacol. Exp. Ther. 2006, 317, 500–505. [Google Scholar] [CrossRef] [PubMed]
- Yu, Y.C.; Miki, H.; Nakamura, Y.; Hanyuda, A.; Matsuzaki, Y.; Abe, Y.; Yasui, M.; Tanaka, K.; Hwang, T.C.; Bompadre, S.G.; et al. Curcumin and genistein additively potentiate G551D-CFTR. J. Cyst. Fibros. 2011, 10, 243–252. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Browne, A.; Child, D.; Divito, J.R.; Stevenson, J.A.; Tanzi, R.E. Loss of function of ATXN1 increases amyloid β-protein levels by potentiating β-secretase processing of β-amyloid precursor protein. J. Biol. Chem. 2010, 285, 8515–8526. [Google Scholar] [CrossRef] [PubMed]
- Benammi, H.; el Hiba, O.; Romane, A.; Gamrani, H. A blunted anxiolytic like effect of curcumin against acute lead induced anxiety in rat: Involvement of serotonin. Acta Histochem. 2014, 116, 920–925. [Google Scholar] [CrossRef] [PubMed]
- Burgess, J.R.; Stevens, L.; Zhang, W.; Peck, L. Long-chain polyunsaturated fatty acids in children with attention-deficit hyperactivity disorder. Am. J. Clin. Nutr. 2000, 71, 327S–330S. [Google Scholar] [PubMed]
- Montgomery, P.; Burton, J.R.; Sewell, R.P.; Spreckelsen, T.F.; Richardson, A.J. Low blood long chain ω-3 fatty acids in UK children are associated with poor cognitive performance and behavior: A cross-sectional analysis from the DOLAB study. PLoS One 2013, 8, e66697. [Google Scholar] [CrossRef] [PubMed]
- Jia, D.; Heng, L.J.; Yang, R.H.; Gao, G.D. Fish oil improves learning impairments of diabetic rats by blocking PI3K/AKT/nuclear factor-κB-mediated inflammatory pathways. Neuroscience 2014, 258, 228–237. [Google Scholar] [CrossRef] [PubMed]
- Kitagishi, Y.; Nakanishi, A.; Ogura, Y.; Matsuda, S. Dietary regulation of PI3K/AKT/GSK-3β pathway in Alzheimer’s disease. Alzheimers Res. Ther. 2014, 6, 35. [Google Scholar] [CrossRef] [PubMed]
- Kitagishi, Y.; Matsuda, S. Diets involved in PPAR and PI3K/AKT/PTEN pathway may contribute to neuroprotection in a traumatic brain injury. Alzheimers Res. Ther. 2013, 5, 42. [Google Scholar] [CrossRef] [PubMed]
- Xie, F.; Su, M.; Qiu, W.; Zhang, M.; Guo, Z.; Su, B.; Liu, J.; Li, X.; Zhou, L. Kaempferol promotes apoptosis in human bladder cancer cells by inducing the tumor suppressor, PTEN. Int. J. Mol. Sci. 2013, 14, 21215–21226. [Google Scholar] [CrossRef] [PubMed]
- Gao, N.; Budhraja, A.; Cheng, S.; Liu, E.H.; Chen, J.; Yang, Z.; Chen, D.; Zhang, Z.; Shi, X. Phenethyl isothiocyanate exhibits antileukemic activity in vitro and in vivo by inactivation of Akt and activation of JNK pathways. Cell Death Dis. 2011, 2, e140. [Google Scholar] [CrossRef] [PubMed]
- Hsiung, S.C.; Adlersberg, M.; Arango, V.; Mann, J.J.; Tamir, H.; Liu, K.P. Attenuated 5-HT1A receptor signaling in brains of suicide victims: Involvement of adenylyl cyclase, phosphatidylinositol 3-kinase, Akt and mitogen-activated protein kinasze. J. Neurochem. 2003, 87, 182–194. [Google Scholar] [CrossRef] [PubMed]
- Carnero, A.; Paramio, J.M. The PTEN/PI3K/AKT pathway in vivo, cancer mouse models. Front. Oncol. 2014, 4, 252. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Zang, C.; Emde, A.; Planas-Silva, M.D.; Rosche, M.; Kühnl, A.; Schulz, C.O.; Elstner, E.; Possinger, K.; Eucker, J. Anti-tumor effect of honokiol alone and in combination with other anti-cancer agents in breast cancer. Eur. J. Pharmacol. 2008, 591, 43–51. [Google Scholar] [CrossRef] [PubMed]
- Hamidpour, M.; Hamidpour, R.; Hamidpour, S.; Shahlari, M. Chemistry, pharmacology, and medicinal property of sage (Salvia) to prevent and cure Illnesses such as obesity, diabetes, depression, dementia, lupus, autism, heart disease, and cancer. J. Tradit. Complement. Med. 2014, 4, 82–88. [Google Scholar] [CrossRef] [PubMed]
- Silva, S.R.; Zaytseva, Y.Y.; Jackson, L.N.; Lee, E.Y.; Weiss, H.L.; Bowen, K.A.; Townsend, C.M., Jr.; Evers, B.M. The effect of PTEN on serotonin synthesis and secretion from the carcinoid cell line BON. Anticancer Res. 2011, 31, 1153–1160. [Google Scholar] [PubMed]
- Cai, J.; Yi, Z.; Lu, W.; Fang, Y.; Zhang, C. Crosstalk between 5-HT2cR and PTEN signaling pathway in atypical antipsychotic-induced metabolic syndrome and cognitive dysfunction. Med. Hypotheses 2013, 80, 486–489. [Google Scholar] [CrossRef] [PubMed]
- Rovito, D.; Giordano, C.; Vizza, D.; Plastina, P.; Barone, I.; Casaburi, I.; Lanzino, M.; de Amicis, F.; Sisci, D.; Mauro, L.; et al. Omega-3 PUFA ethanolamides DHEA and EPEA induce autophagy through PPARγ activation in MCF-7 breast cancer cells. J. Cell Physiol. 2013, 228, 1314–1322. [Google Scholar] [CrossRef] [PubMed]
- Ghosh-Choudhury, T.; Mandal, C.C.; Woodruff, K.; St Clair, P.; Fernandes, G.; Choudhury, G.G.; Ghosh-Choudhury, N. Fish oil targets PTEN to regulate NFκB for down-regulation of anti-apoptotic genes in breast tumor growth. Breast Cancer Res. Treat. 2009, 118, 213–228. [Google Scholar] [CrossRef] [PubMed]
- Paintlia, A.S.; Paintlia, M.K.; Singh, A.K.; Orak, J.K.; Singh, I. Activation of PPAR-γ and PTEN cascade participates in lovastatin-mediated accelerated differentiation of oligodendrocyte progenitor cells. Glia 2010, 58, 1669–1685. [Google Scholar] [CrossRef] [PubMed]
- Montales, M.T.; Rahal, O.M.; Nakatani, H.; Matsuda, T.; Simmen, R.C. Repression of mammary adipogenesis by genistein limits mammosphere formation of human MCF-7 cells. J. Endocrinol. 2013, 218, 135–149. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Waltenberger, B.; Pferschy-Wenzig, E.M.; Blunder, M.; Liu, X.; Malainer, C.; Blazevic, T.; Schwaiger, S.; Rollinger, J.M.; Heiss, E.H.; et al. Natural product agonists of peroxisome proliferator-activated receptor gamma (PPARγ): A review. Biochem. Pharmacol. 2014, 92, 73–89. [Google Scholar] [CrossRef] [PubMed]
- Dave, B.; Eason, R.R.; Till, S.R.; Geng, Y.; Velarde, M.C.; Badger, T.M.; Simmen, R.C. The soy isoflavone genistein promotes apoptosis in mammary epithelial cells by inducing the tumor suppressor PTEN. Carcinogenesis 2005, 26, 1793–1803. [Google Scholar] [CrossRef] [PubMed]
- La Merrill, M.; Gordon, R.R.; Hunter, K.W.; Threadgill, D.W.; Pomp, D. Dietary fat alters pulmonary metastasis of mammary cancers through cancer autonomous and non-autonomous changes in gene expression. Clin. Exp. Metastasis 2010, 27, 107–116. [Google Scholar] [CrossRef] [PubMed]
- Yoshida, H.; Okumura, N.; Kitagishi, Y.; Nishimura, Y.; Matsuda, S. Ethanol extract of Rosemary repressed PTEN expression in K562 culture cells. Int. J. Appl. Biol. Pharm. Technol. 2011, 2, 316–322. [Google Scholar]
- Qi, M.; Anderson, A.E.; Chen, D.Z.; Sun, S.; Auborn, K.J. Indole-3-carbinol prevents PTEN loss in cervical cancer in vivo. Mol. Med. 2005, 11, 59–63. [Google Scholar] [CrossRef] [PubMed]
- Enns, L.C.; Morton, J.F.; Mangalindan, R.S.; McKnight, G.S.; Schwartz, M.W.; Kaeberlein, M.R.; Kennedy, B.K.; Rabinovitch, P.S.; Ladiges, W.C. Attenuation of age-related metabolic dysfunction in mice with a targeted disruption of the Cβ subunit of protein kinase A. J. Gerontol. A Biol. Sci. Med. Sci. 2009, 64, 1221–1231. [Google Scholar] [CrossRef] [PubMed]
- Szentandrássy, N.; Pérez-Bido, M.R.; Alonzo, E.; Negretti, N.; O’Neill, S.C. Protein kinase A is activated by the n-3 polyunsaturated fatty acid eicosapentaenoic acid in rat ventricular muscle. J. Physiol. 2007, 582, 349–358. [Google Scholar] [CrossRef] [PubMed]
- Chen, P.H.; Chen, G.C.; Yang, M.F.; Hsieh, C.H.; Chuang, S.H.; Yang, H.L.; Kuo, Y.H.; Chyuan, J.H.; Chao, P.M. Bitter melon seed oil-attenuated body fat accumulation in diet-induced obese mice is associated with cAMP-dependent protein kinase activation and cell death in white adipose tissue. J. Nutr. 2012, 142, 1197–1204. [Google Scholar] [CrossRef] [PubMed]
- Liu, D.; Zhen, W.; Yang, Z.; Carter, J.D.; Si, H.; Reynolds, K.A. Genistein acutely stimulates insulin secretion in pancreatic β-cells through a cAMP-dependent protein kinase pathway. Diabetes 2006, 55, 1043–1050. [Google Scholar] [CrossRef] [PubMed]
- O’Brien, L.J.; Levac, K.D.; Nagy, L.E. Moderate dietary protein and energy restriction modulate cAMP-dependent protein kinase activity in rat liver. J. Nutr. 1998, 128, 927–933. [Google Scholar] [PubMed]
- Castermans, D.; Wilquet, V.; Parthoens, E.; Huysmans, C.; Steyaert, J.; Swinnen, L.; Fryns, J.P.; van de ven, W.; Devriendt, K. The neurobeachin gene is disrupted by a translocation in a patient with idiopathic autism. J. Med. Genet. 2003, 40, 352–356. [Google Scholar] [CrossRef] [PubMed]
- Millichap, J.G.; Yee, M.M. The diet factor in attention-deficit/hyperactivity disorder. Pediatrics 2012, 129, 330–337. [Google Scholar] [CrossRef] [PubMed]
- Basselin, M.; Ramadan, E.; Rapoport, SI. Imaging brain signal transduction and metabolism via arachidonic and docosahexaenoic acid in animals and humans. Brain Res Bull. 2012, 87, 154–171. [Google Scholar]
- Shaikh, S.R.; Edidin, M. Polyunsaturated fatty acids, membrane organization, T cells, and antigen presentation. Am. J. Clin. Nutr. 2006, 84, 1277–1289. [Google Scholar] [PubMed]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kitagishi, Y.; Minami, A.; Nakanishi, A.; Ogura, Y.; Matsuda, S. Neuron Membrane Trafficking and Protein Kinases Involved in Autism and ADHD. Int. J. Mol. Sci. 2015, 16, 3095-3115. https://doi.org/10.3390/ijms16023095
Kitagishi Y, Minami A, Nakanishi A, Ogura Y, Matsuda S. Neuron Membrane Trafficking and Protein Kinases Involved in Autism and ADHD. International Journal of Molecular Sciences. 2015; 16(2):3095-3115. https://doi.org/10.3390/ijms16023095
Chicago/Turabian StyleKitagishi, Yasuko, Akari Minami, Atsuko Nakanishi, Yasunori Ogura, and Satoru Matsuda. 2015. "Neuron Membrane Trafficking and Protein Kinases Involved in Autism and ADHD" International Journal of Molecular Sciences 16, no. 2: 3095-3115. https://doi.org/10.3390/ijms16023095
APA StyleKitagishi, Y., Minami, A., Nakanishi, A., Ogura, Y., & Matsuda, S. (2015). Neuron Membrane Trafficking and Protein Kinases Involved in Autism and ADHD. International Journal of Molecular Sciences, 16(2), 3095-3115. https://doi.org/10.3390/ijms16023095