APOE Polymorphisms Contribute to Reduced Atorvastatin Response in Chilean Amerindian Subjects
Abstract
:1. Introduction
2. Results
Parameter | n = 139 |
---|---|
Age (years) | 56.4 ± 10.7 |
Men/Women (n) | 87/52 |
BMI (kg/m2) | 25.6 ± 2.7 |
Systolic blood pressure (mmHg) | 106.8 ± 12.3 |
Diastolic blood pressure (mmHg) | 72.7 ± 9.2 |
TC (mg/dL) | 274 ± 18.3 |
TG (mg/dL) | 213 ± 50.5 |
LDL-C (mg/dL) | 185 ± 17.5 |
HDL-C (mg/dL) | 46 ± 8.8 |
Amerindian mtDNA haplogroups (%) | |
Haplogroup A | 1.4 |
Haplogroup B | 29.0 |
Haplogroup C | 32.0 |
Haplogroup D | 22.0 |
Non-Amerindians | 15.6 |
Genotypes | Allele Frequency | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
LDLR | CC | CT | TT | C | T | |||||
(rs5925) | 22.4% | 66.4% | 11.2% | 0.556 | 0.444 | |||||
APOE | 2/3 | 3/3 | 3/4 | 2/4 | ε2 | ε3 | ε4 | |||
(rs429358, rs7412) | 2.5% | 61.5% | 34% | 2% | 0.021 | 0.802 | 0.177 |
Lipids (mg/dL) | Condition | Genotypes | p -Value | ||
---|---|---|---|---|---|
CC (n = 25) | CT (n = 78) | TT (n = 13) | |||
TC | basal | 271 ± 14.4 | 273 ± 18.2 | 283 ± 22.1 | 0.1080 |
treatment | 211 ± 26.2 | 226 ± 27.3 | 224 ± 26.5 | 0.2423 | |
% change | −22.0 ± 10.7 | −17 ± 10.6 | −20.0 ± 10.8 | 0.3054 | |
LDL-C | basal | 190 ± 16.1 | 183 ± 17.8 | 192 ± 20.0 | 0.1989 |
treatment | 127 ± 28.6 | 139 ± 27.5 | 137 ± 27.0 | 0.4655 | |
% change | −32.0 ± 18.0 | −24 ± 15.9 | −28.0 ± 15.1 | 0.2258 | |
HDL-C | basal | 48 ± 6.0 | 47 ± 9.4 | 46 ± 7.8 | 0.2643 |
treatment | 55 ± 6.0 | 54 ± 7.0 | 53 ± 6.3 | 0.7850 | |
% change | 15.0 ± 16.2 | 18.0 ± 14.7 | 18.0 ± 17.1 | 0.9576 | |
TG | basal | 197 ± 53 | 217 ± 48.7 | 224 ± 51.0 | 0.1047 |
treatment | 146 ± 48.6 | 167 ± 49.5 | 172 ± 48.9 | 0.2499 | |
% change | −25.0 ± 24.6 | −23.0 ± 17.9 | −22.0 ± 22.9 | 0.2305 |
Lipids (mg/dL) | Condition | Genotypes | p-Value | |
---|---|---|---|---|
E3/3 (n = 72) | E3/4 (n = 40) | |||
TC | basal | 276 ± 19.2 | 275 ± 18.7 | 0.2630 |
treatment | 218 ± 23.3 | 240 ± 26.8 | 0.0004 | |
% change | −21.0 ± 8.9 | −12.0 ± 10.9 | 0.0008 | |
LDL-C | basal | 188 ± 18.1 | 183 ± 18.4 | 0.4561 |
treatment | 132 ± 25.3 | 148 ± 25.8 | 0.0030 | |
% change | −29.0 ± 14.4 | −18.0 ± 15.9 | 0.0046 | |
HDL-C | basal | 48 ± 7.8 | 51 ± 11.1 | 0.1626 |
treatment | 54 ± 6.8 | 56 ± 7.5 | 0.1352 | |
% change | 20.0 ± 14.8 | 12.0 ± 15.2 | 0.0020 | |
TG | basal | 215 ± 50.2 | 209 ± 53.9 | 0.5598 |
treatment | 160 ± 51.4 | 181 ± 45.8 | 0.0263 | |
% change | −25.0 ± 20.0 | −12.0 ± 18.1 | 0.0127 |
3. Discussion
4. Experimental Section
4.1. Subjects
4.2. Biochemical Determinations
4.3. Molecular Analysis
4.4. mtDNA Haplogroups Genotyping
4.5. LDLR rs5925 Genotyping
4.6. APOE Isoforms Genotyping
4.7. Data Analysis
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Poss, J.; Custodis, F.; Werner, C.; Weingartner, O.; Bohm, M.; Laufs, U. Cardiovascular disease and dyslipidemia: Beyond LDL. Curr. Pharm. Des. 2011, 17, 861–870. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.Y.; Liu, P.Y.; Liao, J.K. Pleiotropic effects of statin therapy: Molecular mechanisms and clinical results. Trends Mol. Med. 2008, 14, 37–44. [Google Scholar] [CrossRef] [PubMed]
- Kajinami, K.; Takekoshi, N.; Brousseau, M.E.; Schaefer, E.J. Pharmacogenetics of HMG-CoA reductase inhibitors: Exploring the potential for genotype-based individualization of coronary heart disease management. Atherosclerosis 2004, 177, 219–234. [Google Scholar] [CrossRef] [PubMed]
- Schmitz, G.; Langmann, T. Pharmacogenomics of cholesterol-lowering therapy. Vascul. Pharmacol. 2006, 44, 75–89. [Google Scholar] [CrossRef] [PubMed]
- Kajinami, K.; Akao, H.; Polisecki, E.; Schaefer, E.J. Pharmacogenomics of statin responsiveness. Am. J. Cardiol. 2005, 96, 65K–70K. [Google Scholar] [CrossRef] [PubMed]
- Salazar, L.A.; Hirata, M.H.; Quintao, E.C.; Hirata, R.D. Lipid-lowering response of the HMG-CoA reductase inhibitor fluvastatin is influenced by polymorphisms in the low-density lipoprotein receptor gene in Brazilian patients with primary hypercholesterolemia. J. Clin. Lab. Anal. 2000, 14, 125–131. [Google Scholar] [CrossRef] [PubMed]
- Lahoz, C.; Pena, R.; Mostaza, J.M.; Laguna, F.; Garcia-Iglesias, M.F.; Taboada, M.; Pintó, X. Baseline levels of low-density lipoprotein cholesterol and lipoprotein(a) and the AvaII polymorphism of the low-density lipoprotein receptor gene influence the response of low-density lipoprotein cholesterol to pravastatin treatment. Metabolism 2005, 54, 741–747. [Google Scholar] [CrossRef] [PubMed]
- Kajinami, K.; Brousseau, M.E.; Ordovas, J.M.; Schaefer, E.J. CYP3A4 genotypes and plasma lipoprotein levels before and after treatment with atorvastatin in primary hypercholesterolemia. Am. J. Cardiol. 2004, 93, 104–107. [Google Scholar] [CrossRef] [PubMed]
- Willrich, M.A.; Hirata, M.H.; Genvigir, F.D.; Arazi, S.S.; Rebecchi, I.M.; Rodrigues, A.C.; Bernik, M.M.; Dorea, E.L.; Bertolami, M.C.; Faludi, A.A.; et al. CYP3A53A allele is associated with reduced lowering-lipid response to atorvastatin in individuals with hypercholesterolemia. Clin. Chim. Acta 2008, 398, 15–20. [Google Scholar]
- Fiegenbaum, M.; Silveira, F.R.; van der Sand, C.R.; van der Sand, L.C.; Ferreira, M.E.; Pires, R.C.; Hutz, M.H. Determinants of variable response to simvastatin treatment: The role of common variants of SCAP, SREBF-1A and SREBF-2 genes. Pharmacogenomics J. 2005, 5, 359–364. [Google Scholar] [CrossRef] [PubMed]
- Ferdinand, K.C. Ethnic, gender, and age-related differences in the treatment of dyslipidemia. Am. J. Manag. Care 2006, 12, S400–S404. [Google Scholar] [PubMed]
- Simon, J.A.; Lin, F.; Hulley, S.B.; Blanche, P.J.; Waters, D.; Shiboski, S.; Rotter, J.I.; Nickerson, D.A.; Yang, H.; Saad, M.; et al. Phenotypic predictors of response to simvastatin therapy among African-Americans and Caucasians: The Cholesterol and Pharmacogenetics (CAP) Study. Am. J. Cardiol. 2006, 97, 843–850. [Google Scholar]
- Krauss, R.M.; Mangravite, L.M.; Smith, J.D.; Medina, M.W.; Wang, D.; Guo, X.; Rieder, M.J.; Simon, J.A.; Hulley, S.B.; Waters, D.; et al. Variation in the 3-hydroxyl-3-methylglutaryl coenzyme a reductase gene is associated with racial differences in low-density lipoprotein cholesterol response to simvastatin treatment. Circulation 2008, 117, 1537–1544. [Google Scholar]
- Moraga, M.L.; Rocco, P.; Miquel, J.F.; Nervi, F.; Llop, E.; Chakraborty, R.; Rothhammer, F.; Carvallo, P. Mitochondrial DNA polymorphisms in Chilean aboriginal populations: Implications for the peopling of the southern cone of the continent. Am. J. Phys. Anthropol. 2000, 113, 19–29. [Google Scholar] [CrossRef] [PubMed]
- Rocco, P.; Morales, C.; Moraga, M.; Miquel, J.F.; Nervi, F.; Llop, E.; Carvallo, P.; Rothhammer, F. Genetic composition of the Chilean population. Analysis of mitochondrial DNA polymorphism. Rev. Med. Chile 2002, 130, 125–131. [Google Scholar]
- Santos, S.E.; Ribeiro-Dos-Santos, A.K.; Meyer, D.; Zago, M.A. Multiple founder haplotypes of mitochondrial DNA in Amerindians revealed by RFLP and sequencing. Ann. Hum. Genet. 1996, 60, 305–319. [Google Scholar] [CrossRef] [PubMed]
- Bailliet, G.; Rothhammer, F.; Carnese, F.R.; Bravi, C.M.; Bianchi, N.O. Founder mitochondrial haplotypes in Amerindian populations. Am. J. Hum. Genet. 1994, 55, 27–33. [Google Scholar] [PubMed]
- Liu, A.P.; Zhan, S.Y.; Li, L.M.; Hu, Y.H.; Cao, W.H.; Wu, T.; Li, J.; Guo, X.X. Association between AvaII exon 13 polymorphism at the LDL receptor gene different and serum lipid levels in normotensives and essential hypertensives in Shanghai. Zhonghua Liu Xing Bing Xue Za Zhi 2003, 24, 542–546. [Google Scholar] [PubMed]
- Long, X.J.; Yin, R.X.; Li, K.L.; Liu, W.Y.; Zhang, L.; Cao, X.L.; Miao, L.; Wu, D.F.; Htet Aung, L.H.; Hu, X.J. Low density lipoprotein receptor gene Ava II polymorphism and serum lipid levels in the Guangxi Bai Ku Yao and Han populations. Lipids Health Dis. 2011, 10. [Google Scholar] [CrossRef] [PubMed]
- Istvan, E.S. Structural mechanism for statin inhibition of 3-hydroxy-3-methylglutaryl coenzyme A reductase. Am. Heart J. 2002, 144, S27–S32. [Google Scholar] [CrossRef] [PubMed]
- Hatters, D.M.; Peters-Libeu, C.A.; Weisgraber, K.H. Apolipoprotein E structure: Insights into function. Trends Biochem. Sci. 2006, 31, 445–454. [Google Scholar] [CrossRef] [PubMed]
- Ahn, Y.I.; Kamboh, M.I.; Aston, C.E.; Ferrell, R.E.; Hamman, R.F. Role of common genetic polymorphisms in the LDL receptor gene in affecting plasma cholesterol levels in the general population. Arterioscler. Thromb. 1994, 14, 663–670. [Google Scholar] [CrossRef] [PubMed]
- Liu, A.; Zhan, S.; Li, L. The relationship of low density lipoprotein receptor gene polymorphism and hyperlipidemia. Zhonghua Liu Xing Bing Xue Za Zhi 2001, 22, 30–33. [Google Scholar] [PubMed]
- Mahley, R.W.; Rall, S.C., Jr. Apolipoprotein E: Far more than a lipid transport protein. Annu. Rev. Genomics Hum. Genet. 2000, 1, 507–537. [Google Scholar] [CrossRef] [PubMed]
- Hagberg, J.M.; Wilund, K.R.; Ferrell, R.E. APOE gene and gene-environment effects on plasma lipoprotein-lipid levels. Physiol. Genomics 2000, 4, 101–108. [Google Scholar] [PubMed]
- Baptista, R.; Rebelo, M.; Decq-Mota, J.; Dias, P.; Monteiro, P.; Providencia, L.A.; Silva, J.M. Apolipoprotein E epsilon-4 polymorphism is associated with younger age at referral to a lipidology clinic and a poorer response to lipid-lowering therapy. Lipids Health Dis. 2011, 10. [Google Scholar] [CrossRef] [PubMed]
- Austin, M.A.; Hokanson, J.E.; Edwards, K.L. Hypertriglyceridemia as a cardiovascular risk factor. Am. J. Cardiol. 1998, 81, 7B–12B. [Google Scholar] [CrossRef] [PubMed]
- Assmann, G.; Schulte, H.; Funke, H.; von Eckardstein, A. The emergence of triglycerides as a significant independent risk factor in coronary artery disease. Eur. Heart J. 1998, 19, M8–M14. [Google Scholar] [PubMed]
- Lagos, J.; Zambrano, T.; Rosales, A.; Salazar, L.A. Influence of SREBP-2 and SCAP gene polymorphisms on lipid-lowering response to atorvastatin in a cohort of Chilean subjects with Amerindian background. Mol. Diagn. Ther. 2014, 18, 435–443. [Google Scholar] [CrossRef] [PubMed]
- Kokaze, A.; Ishikawa, M.; Matsunaga, N.; Yoshida, M.; Sekine, Y.; Teruya, K.; Takeda, N.; Sumiya, Y.; Uchida, Y.; Takashima, Y. Association of the mitochondrial DNA 5178 A/C polymorphism with serum lipid levels in the Japanese population. Hum. Genet. 2001, 109, 521–525. [Google Scholar] [CrossRef] [PubMed]
- Grundy, S.M.; Cleeman, J.I.; Merz, C.N.; Brewer, H.B.; Clark, L.T.; Hunninghake, D.B.; Pasternak, R.C.; Smith, S.C.; Stone, N.J. National Heart, Lung, and Blood Institute. Implications of recent clinical trials for the National Cholesterol Education Program Adult Treatment Panel III guidelines. Circulation 2004, 110, 227–239. [Google Scholar]
- Salazar, L.A.; Hirata, M.H.; Cavalli, S.A.; Machado, M.O.; Hirata, R.D. Optimized procedure for DNA isolation from fresh and cryopreserved clotted human blood useful in clinical molecular testing. Clin. Chem. 1998, 44, 1748–1750. [Google Scholar] [PubMed]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lagos, J.; Zambrano, T.; Rosales, A.; Salazar, L.A. APOE Polymorphisms Contribute to Reduced Atorvastatin Response in Chilean Amerindian Subjects. Int. J. Mol. Sci. 2015, 16, 7890-7899. https://doi.org/10.3390/ijms16047890
Lagos J, Zambrano T, Rosales A, Salazar LA. APOE Polymorphisms Contribute to Reduced Atorvastatin Response in Chilean Amerindian Subjects. International Journal of Molecular Sciences. 2015; 16(4):7890-7899. https://doi.org/10.3390/ijms16047890
Chicago/Turabian StyleLagos, Jenny, Tomás Zambrano, Alexy Rosales, and Luis A. Salazar. 2015. "APOE Polymorphisms Contribute to Reduced Atorvastatin Response in Chilean Amerindian Subjects" International Journal of Molecular Sciences 16, no. 4: 7890-7899. https://doi.org/10.3390/ijms16047890
APA StyleLagos, J., Zambrano, T., Rosales, A., & Salazar, L. A. (2015). APOE Polymorphisms Contribute to Reduced Atorvastatin Response in Chilean Amerindian Subjects. International Journal of Molecular Sciences, 16(4), 7890-7899. https://doi.org/10.3390/ijms16047890