Chemical Reactions Directed Peptide Self-Assembly
Abstract
:1. Introduction
2. Development of Molecular Self-Assembly
Entry | Chemical Reactions | Catalyst/Reaction Condition | Reaction Medium | References |
---|---|---|---|---|
1 | Disulfide formation | Air | Aqueous | [43] |
2 | Photochemical reaction | Light | Aqueous | [44,45,46] |
3 | Enzymatic reactions | Enzyme | Aqueous | [47,48,49,50] |
4 | Enzymatic reactions | Enzyme | Organic | [51,52] |
5 | Thioester mediated native chemical ligation | 4-Mercaptophenyl acetic acid | Aqueous | [53,54,55] |
6 | Oxo-ester mediated native chemical ligation | Heating 80 °C | Aqueous/MeOH | [56,57,58] |
7 | Seleno ester mediated native chemical ligation | No Catalyst | Aqueous/EtOH | [59] |
3. Photo-Switched Molecular Self-Assembly
4. Enzyme Catalyzed Peptide Self-Assembly
5. Self-Assembly Driven by Peptide Hydrolysis
6. Peptide Self-Assembly Driven by Amide Bond Formation
7. Lipase Catalyzed Peptide Self-Assembly
8. Native Chemical Ligation
9. Peptide Self-Assembly Driven by Thioester Mediated Native Chemical Ligation
10. Peptide Self-Assembly Driven by Oxo-Ester Mediated Native Chemical Ligation
11. Peptide Self-Assembly Driven by Selenoester Mediated Native Chemical Ligation
12. Application of Self-Assembled Materials
13. Conclusions
Acknowledgments
Conflicts of Interest
References
- Whitesides, G.M.; Mathias, J.P.; Seto, C.T. Molecular self-assembly and nanochemistry: A chemical strategy for the synthesis of nanostructures. Science 1991, 254, 1312–1319. [Google Scholar] [CrossRef] [PubMed]
- Yanagawa, H.; Kojima, K.; Ito, M.; Handa, N. Synthesis of polypeptides by microwave heating I. Formation of polypeptides during repeated hydration-dehydration cycles and their characterization. J. Mol. Evol. 1990, 31, 180–186. [Google Scholar] [CrossRef] [PubMed]
- Lee, D.H.; Granja, J.R.; Martinez, J.A.; Severin, K.; Ghadiri, M.R. A self-replicating peptide. Nature 1996, 382, 525–528. [Google Scholar] [CrossRef] [PubMed]
- Timpl, R.; Brown, J.C. Supramolecular assembly of basement membranes. Bioessays 1996, 18, 123–132. [Google Scholar] [CrossRef] [PubMed]
- Schnur, J.M. Lipid tubules: A paradigm for molecularly engineered structures. Science 1993, 262, 1669–1676. [Google Scholar] [CrossRef] [PubMed]
- Qi, S.Y.; Groves, J.T.; Chakraborty, A.K. Synaptic pattern formation during cellular recognition. Proc. Natl. Acad. Sci. USA 2001, 98, 6548–6553. [Google Scholar] [CrossRef] [PubMed]
- Conde, C.; Caceres, A. Microtubule assembly, organization and dynamics in axons and dendrites. Nat. Rev. Neurol. 2009, 10, 319–332. [Google Scholar] [CrossRef]
- Jones, M.R.; Osberg, K.D.; Macfarlane, R.J.; Langille, M.R.; Mirkin, C.A. Templated techniques for the synthesis and assembly of plasmonic nanostructures. Chem. Rev. 2011, 111, 3736–3827. [Google Scholar] [CrossRef] [PubMed]
- Nogales, E.; Wolf, S.; Downing, K.H. Structure of α,β-tubulin dimer by electron crystallography. Nature 1998, 391, 199–203. [Google Scholar] [CrossRef] [PubMed]
- Desai, A.; Mitchison, T. Microtubule polymerization dynamics. Annu. Rev. Cell Dev. Biol. 1997, 13, 83–117. [Google Scholar] [CrossRef] [PubMed]
- Uhlenheuer, D.A.; Petkau, K.; Brunsveld, L. Combining supramolecular chemistry with biology. Chem. Soc. Rev. 2010, 39, 2817–2826. [Google Scholar] [CrossRef] [PubMed]
- Collier, J.H. Modular self-assembling biomaterials for directing cellular responses. Soft Matter 2008, 4, 2310–2315. [Google Scholar] [CrossRef] [PubMed]
- Xu, H.; Song, J.; Tian, T.; Feng, R. Estimation of organogel formation and influence of solvent viscosity and molecular size on gel properties and aggregate structures. Soft Matter 2012, 8, 3478–3486. [Google Scholar] [CrossRef]
- Dunna, B.; Zink, J. Optical properties of sol-gel glasses doped with organic molecules. J. Mater. Chem. 1991, 1, 903–913. [Google Scholar] [CrossRef]
- Chen, Q.; Lv, Y.; Zhang, D.; Zhang, G.; Liu, C.; Zhu, D. Cysteine and pH-responsive hydrogel based on a saccharide derivative with an aldehyde group. Langmuir 2010, 26, 3165–3168. [Google Scholar] [CrossRef] [PubMed]
- Ajayaghosh, A.; Praveen, V.K.; Vijayakumar, C. Organogels as scaffolds for excitation energy transfer and light harvesting. Chem. Soc. Rev. 2008, 37, 109–122. [Google Scholar] [CrossRef] [PubMed]
- George, M.; Weiss, R.G. Molecular organogels soft matter comprised of low-molecular-mass organic gelators and organic liquids. Acc. Chem. Res. 2006, 39, 489–497. [Google Scholar] [CrossRef] [PubMed]
- Koley, P.; Pramanik, A. Multilayer vesicles, tubes, various porous structures and organo gels through the solvent-assisted self-assembly of two modified tripeptides and their different applications. Soft Matter 2012, 8, 5364–5374. [Google Scholar] [CrossRef]
- Roy, S.; Banerjee, A. Amino acid based smart hydrogel: Formation, characterization and fluorescence properties of silver nanoclusters within the hydrogel matrix. Soft Matter 2011, 7, 5300–5308. [Google Scholar] [CrossRef]
- Xu, H.; Das, A.K.; Horie, M.; Shaik, M.S.; Smith, A.M.; Luo, Y.; Lu, X.; Collins, R.; Liem, S.Y.; Song, A.; et al. An investigation of the conductivity of peptide nanotube networks prepared by enzyme-triggered self-assembly. Nanoscale 2010, 2, 960–966. [Google Scholar] [CrossRef] [PubMed]
- Ma, D.; Tu, K.; Zhang, L.M. Bioactive supramolecular hydrogel with controlled dual drug release characteristics. Biomacromolecules 2010, 11, 2204–2212. [Google Scholar] [CrossRef] [PubMed]
- Naskar, J.; Palui, G.; Banerjee, A. Tetrapeptide-based hydrogels: For incapsulation and slow release of an anticancer drug at physiological pH. J. Phys. Chem. B 2009, 113, 11787–11792. [Google Scholar] [CrossRef] [PubMed]
- Koley, P.; Gayen, A.; Drew, M.G.B.; Mukhopadhyay, C.; Pramanik, A. Design and self-assembly of a leucine-enkephalin analogue in different nanostructures: Application of nanovesicles. Small 2012, 8, 984–990. [Google Scholar] [CrossRef] [PubMed]
- Wada, A.; Tamaru, S.; Ikeda, M.; Hamachi, I. MCM-enzyme-supramolecular hydrogel hybrid as a fluorescence sensing material for polyanions of biological significance. J. Am. Chem. Soc. 2009, 131, 5321–5330. [Google Scholar] [CrossRef] [PubMed]
- Yemini, M.; Reches, M.; Rishpon, J.; Gazit, E. Novel electrochemical biosensing platform using self-assembled peptide nanotubes. Nano Lett. 2005, 5, 183–186. [Google Scholar] [CrossRef] [PubMed]
- Lee, K.Y.; Mooney, D.J. Hydrogels for tissue engineering. Chem. Rev. 2001, 101, 1869–1880. [Google Scholar] [CrossRef] [PubMed]
- Tsitsilianis, C. Responsive reversible hydrogels from associative “smart” macromolecules. Soft Matter 2010, 6, 2372–2388. [Google Scholar] [CrossRef]
- Zhao, X.B.; Pan, F.; Xu, H.; Yaseen, M.; Shan, H.; Hauser, C.A.E.; Zhang, S.; Lu, J.R. Molecular self-assembly and applications of designer peptide amphiphiles. Chem. Soc. Rev. 2010, 39, 3480–3498. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Fan, C.; Pei, H.; Shi, J.; Huang, Q. Smart drug delivery nanocarriers with self-assembled DNA nanostructures. Adv. Mater. 2013, 25, 4386–4396. [Google Scholar] [CrossRef]
- Rahmawan, Y.; Xu, L.; Yang, S. Self-assembly of nanostructures towards transparent, superhydrophobic surfaces. J. Mater. Chem. A 2013, 1, 2955–2969. [Google Scholar] [CrossRef]
- Berl, V.; Huc, I.; Khoury, R.G.; Krische, M.J.; Lehn, J.M. Interconversion of single and double helices formed from synthetic molecular strands. Nature 2000, 407, 720–723. [Google Scholar] [CrossRef] [PubMed]
- Ramstrom, O.; Bunyapaiboonsri, T.; Lohmann, S.; Lehn, J.M. Chemical biology of dynamic combinatorial libraries. Biochim. Biophys. Acta 2002, 1572, 178–186. [Google Scholar] [CrossRef] [PubMed]
- Mercuri, F.; Baldoniab, M.; Sgamellottia, A. Towards nano-organic chemistry: Perspectives for a bottom-up approach to the synthesis of low-dimensional carbon nanostructures. Nanoscale 2012, 4, 369–379. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S. Fabrication of novel biomaterials through molecular self-assembly. Nat. Biotechnol. 2003, 21, 1171–1178. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Xia, Y. Bottom-up and top-down approaches to the synthesis of monodispersed spherical colloids of low melting-point metals. Nano Lett. 2004, 4, 2047–2050. [Google Scholar] [CrossRef]
- Velev, O.D.; Lenhoff, A.M. Colloidal crystals as templates for porous materials. Curr. Opin. Colloid Interface Sci. 2000, 5, 56–63. [Google Scholar] [CrossRef]
- Xia, Y.; Gates, B.; Yin, Y.; Lu, Y. Monodispersed colloidal spheres: Old materials with new applications. Adv. Mater. 2000, 12, 693–713. [Google Scholar] [CrossRef]
- Ghadiri, M.R.; Granja, J.R.; Buehler, L.K. Artificial transmembrane ion channels from self-assembling peptide nanotubes. Nature 1994, 369, 301–304. [Google Scholar] [CrossRef] [PubMed]
- Ikeda, M.; Tanida, T.; Yoshii, T.; Hamachi, I. Rational molecular design of stimulus-responsive supramolecular hydrogels based on dipeptides. Adv. Mater. 2011, 23, 2819–2822. [Google Scholar] [CrossRef] [PubMed]
- Jewett, J.C.; Sletten, E.M.; Bertozzi, C.R. Rapid Cu-free click chemistry with readily synthesized biarylazacyclooctynones. J. Am. Chem. Soc. 2010, 132, 3688–3690. [Google Scholar] [CrossRef] [PubMed]
- Changa, P.V.; Preschera, J.A.; Slettena, E.M.; Baskina, J.M.; Millera, I.A.; Agarda, N.J.; Loa, A.; Bertozzia, C.R. Copper-free click chemistry in living animals. Proc. Natl. Acad. Sci. USA 2010, 107, 1821–1826. [Google Scholar] [CrossRef] [PubMed]
- Segarra-Maset, M.D.; Nebot, V.J.; Miravet, J.F.; Escuder, B. Control of molecular gelation by chemical stimuli. Chem. Soc. Rev. 2013, 42, 7086–7098. [Google Scholar] [CrossRef] [PubMed]
- Bowerman, C.J.; Nilsson, B.L. A reductive trigger for peptide self-assembly and hydrogelation. J. Am. Chem. Soc. 2010, 132, 9526–9527. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.-S.; Xu, X.-D.; Li, R.-X.; Zhuo, S.-Y.; Zhang, X.-Z. Photo-switched self-assembly of a gemini α-helical peptide into supramolecular architectures. Nanoscale 2013, 5, 6270–6274. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.H.; Lee, M.; Lee, J.S.; Park, C.B. Self-assembled light-harvesting peptide nanotubes for mimicking natural photosynthesis. Angew. Chem. Int. Ed. 2012, 51, 517–520. [Google Scholar] [CrossRef]
- Frkanec, L.; Jokic, M.; Makarevic, J.; Wolsperger, K.; Zinic, M. Bis(PheOH) Maleic acid amide-fumaric acid amide photoizomerization induces microsphere-to-gel fiber morphological transition: The photoinduced gelation system. J. Am. Chem. Soc. 2002, 124, 9716–9717. [Google Scholar] [CrossRef] [PubMed]
- Walsh, C. Correction: Enabling the chemistry of life. Nature 2001, 409, 226–231. [Google Scholar] [CrossRef] [PubMed]
- Um, S.H.; Lee, J.B.; Park, N.; Kwon, S.Y.; Umbach, C.C.; Luo, D. Enzyme-catalysed assembly of DNA hydrogel. Nat. Mater. 2006, 5, 797–801. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.; Xu, B. Using enzymes to control molecular hydrogelation. Adv. Mater. 2006, 18, 3043–3046. [Google Scholar] [CrossRef]
- Zhang, J.; Hao, R.; Huang, L.; Yao, J.; Chen, X.; Shao, Z. Self-assembly of a peptide amphiphile based on hydrolysed Bombyx mori silk fibroin. Chem. Commun. 2011, 47, 10296–10298. [Google Scholar] [CrossRef]
- Chronopoulou, L.; Sennato, S.; Bordi, F.; Giannella, D.; Nitto, A.D.; Barbetta, A.; Dentini, M.; Togna, A.R.; Togna, G.I.; Moschinic, S.; et al. Designing unconventional Fmoc-peptide-based biomaterials: Structure and related properties. Soft Matter 2014, 10, 1944–1952. [Google Scholar] [CrossRef] [PubMed]
- John, G.; Zhu, G.; Li, J.; Dordick, J.S. Enzymatically derived sugar-containing self-Assembled organogels with nanostructured morphologies. Angew. Chem. Int. Ed. 2006, 45, 4772–4775. [Google Scholar] [CrossRef]
- Dirksen, A.; Meijer, E.W.; Adriaens, W.; Hackeng, T.M. Strategy for the synthesis of multivalent peptide-based nonsymmetric dendrimers by native chemical ligation. Chem. Commun. 2006, 1667–1669. [Google Scholar] [CrossRef]
- Ryadnov, M.G.; Woolfson, D.N. Self-assembled templates for polypeptide synthesis. J. Am. Chem. Soc. 2007, 129, 14074–14081. [Google Scholar] [CrossRef] [PubMed]
- Jung, J.P.; Jones, J.L.; Cronier, S.A.; Collier, J.H. Modulating the mechanical properties of self-assembled peptide hydrogels via native chemical ligation. Biomaterials 2008, 29, 2143–215. [Google Scholar] [CrossRef] [PubMed]
- Fang, G.-M.; Cui, H.-K.; Zheng, J.-S.; Liu, L. Chemoselective ligation of peptide phenyl esters with N-terminal cysteines. ChemBioChem 2010, 11, 1061–1065. [Google Scholar] [CrossRef] [PubMed]
- Hentschel, J.; Krause, E.; Borner, H.G. Switch-peptides to trigger the peptide guided assembly of poly(ethylene oxide)-peptide conjugates into tape structures. J. Am. Chem. Soc. 2006, 128, 7722–7723. [Google Scholar] [CrossRef] [PubMed]
- Rasale, D.B.; Maity, I.; Konda, M.; Das, A.K. Peptide self-assembly driven by oxo-ester mediated native chemical ligation. Chem. Commun. 2013, 49, 4815–4817. [Google Scholar] [CrossRef]
- Rasale, D.B.; Maity, I.; Das, A.K. In situ generation of redox active peptides driven by selenoester mediated native chemical ligation. Chem. Commun. 2014, 50, 11397–11400. [Google Scholar] [CrossRef]
- Boekhoven, J.; Brizard, A.M.; Kowlgi, K.N.K.; Koper, G.J.M.; Eelkema, R.; van Esch, J.H. Dissipative self-assembly of a molecular gelator by using a chemical fuel. Angew. Chem. Int. Ed. 2010, 49, 4825–4828. [Google Scholar] [CrossRef]
- Miao, X.; Cao, W.; Zheng, W.; Wang, J.; Zhang, X.; Gao, J.; Yang, C.; Kong, D.; Xu, H.; Wang, L.; Yang, Z. Switchable catalytic activity: Selenium-containing peptides with redox-controllable self-assembly properties. Angew. Chem. Int. Ed. 2013, 52, 7781–7785. [Google Scholar] [CrossRef]
- Sreenivasachary, N.; Lehn, J.-M. Gelation-driven component selection in the generation of constitutional dynamic hydrogels based on guanine-quartet formation. Proc. Natl. Acad. Sci. USA 2005, 102, 5938–5943. [Google Scholar] [CrossRef] [PubMed]
- Liang, G.; Ren, H.; Rao, J. A biocompatible condensation reaction for controlled assembly of nanostructures in living cells. Nat. Chem. 2010, 2, 54–60. [Google Scholar] [CrossRef] [PubMed]
- Sayyad, A.S.; Balakrishnan, K.; Ajayan, P.M. Chemical reaction mediated self-assembly of PTCDA into nanofibers. Nanoscale 2011, 3, 3605–3608. [Google Scholar] [CrossRef] [PubMed]
- Maity, I.; Rasale, D.B.; Das, A.K. Exploiting a self-assembly driven dynamic nanostructured library. RSC Adv. 2013, 3, 6395–6400. [Google Scholar] [CrossRef]
- Carnall, J.M.A.; Waudby, C.A.; Belenguer, A.M.; Stuart, M.C.A.; Peyralans, J.J.P.; Otto, S. Mechanosensitive self-replication driven by self-organization. Science 2010, 327, 1502–1506. [Google Scholar] [CrossRef] [PubMed]
- Na, N.; Mu, X.; Liu, Q.; Wen, J.; Wang, F.; Ouyang, J. Self-assembly of diphenylalanine peptides into microtubes with “turn on” fluorescence using an aggregation-induced emission molecule. Chem. Commun. 2013, 49, 10076–10078. [Google Scholar] [CrossRef]
- Kumaraswamy, P.; Lakshmanan, R.; Sethuraman, S.; Krishnan, U.M. Self-assembly of peptides: Influence of substrate, pH and medium on the formation of supramolecular assemblies. Soft Matter 2011, 7, 2744–2745. [Google Scholar] [CrossRef]
- Guo, C.; Luo, Y.; Zhou, R.H.; Wei, G.H. Probing the self-assembly mechanism of diphenylalanine-based peptide nanovesicles and nanotubes. ACS Nano 2012, 6, 3907–3918. [Google Scholar] [CrossRef] [PubMed]
- Yan, X.; Su, Y.; Li, J.; Fruh, J.; Mçhwald, H. Uniaxially oriented peptide crystals for active optical waveguiding. Angew. Chem. Int. Ed. 2011, 50, 11186–11191. [Google Scholar] [CrossRef]
- Kim, J.H.; Lim, S.Y.; Nam, D.H.; Ryu, J.; Ku, S.H.; Park, C.B. Self-assembled, photoluminescent peptide hydrogel as a versatile platform for enzyme-based optical biosensors. Biosens. Bioelectron. 2011, 26, 1860–1865. [Google Scholar] [CrossRef] [PubMed]
- Zhu, P.; Yan, X.; Su, Y.; Yang, Y.; Li, J. Solvent-induced structural transition of self-assembled dipeptide: From organogels to microcrystals. Chem. Eur. J. 2010, 16, 3176–3183. [Google Scholar] [CrossRef] [PubMed]
- Yan, X.H.; He, Q.; Wang, K.; Duan, L.; Cui, Y.; Li, J.B. Transition of cationic dipeptide nanotubes into vesicles and oligonucleotide delivery. Angew. Chem. Int. Ed. 2007, 46, 2431–2434. [Google Scholar] [CrossRef]
- Mehler, A.; Reches, M.; Rechter, M.; Cohen, S.; Gazit, E. Rigid self-assembled hydrogel composed of a modified aromatic dipeptide. Adv. Mater. 2006, 18, 1365–1370. [Google Scholar] [CrossRef]
- Purich, D.L.; Scaife, R.M. Enzymatic modulation of cytoskeletal self-assembly: ADP ribosylation of microtubule protein components. In Enzyme Dynamics and Regulation; Springer-Verlag: New York, NY, USA, 1988; pp. 217–223. [Google Scholar]
- Gao, Y.; Shi, J.; Yuan, D.; Xu, B. Imaging enzyme-triggered self-assembly of small molecules inside live cells. Nat. Commun. 2012, 3, 1033. [Google Scholar] [CrossRef] [PubMed]
- Vemula, P.K.; Li, J.; John, G. Enzyme catalysis: Tool to make and break amygdalin hydrogelators from renewable resources: A delivery model for hydrophobic drugs. J. Am. Chem. Soc. 2006, 128, 8932–8938. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.; Liang, G.; Xu, B. Enzymatic hydrogelation of small molecules. Acc. Chem. Res. 2008, 41, 315–326. [Google Scholar] [CrossRef] [PubMed]
- Das, A.K.; Collins, R.; Ulijn, R.V. Exploiting enzymatic (Reversed) hydrolysis in directed self-assembly of peptide nanostructures. Small 2008, 4, 279–287. [Google Scholar] [CrossRef] [PubMed]
- Das, A.K.; Hirstb, A.R.; Ulijn, R.V. Evolving nanomaterials using enzyme-driven dynamic peptide libraries (eDPL). Faraday Discuss. 2009, 143, 293–303. [Google Scholar] [CrossRef] [PubMed]
- Hirst, A.R.; Roy, S.; Arora, M.; Das, A.K.; Hodson, N.; Murray, P.; Marshall, S.; Javid, N.; Sefcik, J.; Boekhoven, J.; et al. Biocatalytic induction of supramolecular order. Nat. Chem. 2010, 2, 1089–1094. [Google Scholar] [CrossRef] [PubMed]
- Guilbaud, J.-B.; Rochas, C.; Miller, A.F.; Saiani, A. Effect of enzyme concentration of the morphology and properties of enzymatically triggered peptide hydrogel. Biomacromolecules 2013, 14, 1403–1411. [Google Scholar] [CrossRef] [PubMed]
- Robinson, B.A.; Tester, J.W. Kinetics of alkaline hydrolysis of organic esters and amides in neutrally-buffered solution. Int. J. Chem. Kinet. 1990, 22, 431–448. [Google Scholar] [CrossRef]
- Tsugita, A.; Scheffler, J.-J. A raid method for acid hydrolysis of protein with a mixture of trifluoroacetic acid and hydrochloric acid. Eur. J. Biochem. 1982, 124, 585–588. [Google Scholar] [CrossRef] [PubMed]
- Rebecchi, K.R.; Go, E.P.; Xu, L.; Woodin, C.L.; Mure, M.; Desaire, H. A general protease digestion procedure for optimal protein sequence coverage and post-translational modifications analysis of recombinant glycoproteins: Application to the characterization of human lysyl oxidase-like 2 glycosylation. Anal. Chem. 2011, 83, 8484–8491. [Google Scholar] [CrossRef] [PubMed]
- Rasale, D.B.; Maity, I.; Das, A.K. Emerging p-stacked dynamic nanostructured library. RSC Adv. 2012, 2, 9791–9794. [Google Scholar] [CrossRef]
- Plunkett, K.N.; Berkowski, K.L.; Moore, J.S. Chymotrypsin responsive hydrogel: Application of a disulfide exchange protocol for the preparation of methacrylamide containing peptides. Biomacromolecules 2005, 6, 632–637. [Google Scholar] [CrossRef] [PubMed]
- Toledano, S.; Williams, R.J.; Jayawarna, V.; Ulijn, R.V. Enzyme-triggered self-assembly of peptide hydrogels via reversed hydrolysis. J. Am. Chem. Soc. 2006, 128, 1070–1071. [Google Scholar] [CrossRef] [PubMed]
- Williams, R.J.; Smith, A.M.; Collins, R.; Hodson, N.; Das, A.K.; Ulijn, R.V. Enzyme-assisted self-assembly under thermodynamic control. Nat. Nanotechnol. 2009, 4, 19–24. [Google Scholar] [CrossRef] [PubMed]
- Rasale, D.B.; Biswas, S.; Konda, M.; Das, A.K. Exploring thermodynamically downhill nanostructured peptide libraries: From structural to morphological insight. RSC Adv. 2015, 5, 1529–1537. [Google Scholar] [CrossRef]
- Wu, Q.; Soni, P.; Reetz, M.T. Laboratory evolution of enantiocomplementary candida antarctica lipase B mutants with broad substrate scope. J. Am. Chem. Soc. 2013, 135, 1872–1881. [Google Scholar] [CrossRef] [PubMed]
- Schmid, R.D.; Verger, R. Lipases: Interfacial enzymes with attractive applications. Angew. Chem. Int. Ed. 1998, 37, 1608–1633. [Google Scholar] [CrossRef]
- Naik, S.; Basu, A.; Saikia, R.; Madan, B.; Paul, P.; Chaterjee, R.; Brask, J.; Svendsen, A. Lipases for use in industrial biocatalysis: Specificity of selected structural groups of lipases. J. Mol. Catal. B Enzym. 2010, 65, 18–23. [Google Scholar] [CrossRef]
- Gardossi, L.; Bianchi, D.; Klibanov, A.M. Selective acylation of peptides catalyzed by lipases in organic solvents. J. Am. Chem. Soc. 1991, 113, 6328–6329. [Google Scholar] [CrossRef]
- Chronopoulou, L.; Lorenzoni, S.; Masci, G.; Dentini, M.; Togna, A.R.; Togna, G.; Bordic, F.; Palocci, C. Lipase-supported synthesis of peptidic hydrogels. Soft Matter 2010, 6, 2525–2532. [Google Scholar] [CrossRef]
- Yu, L.; Banerjee, I.A.; Gao, X.; Matsui, H. Fabrication of enzyme-incorporated and magnetic peptide nanotubes. Polym. Prepr. 2005, 46, 36. [Google Scholar]
- Rasale, D.B.; Maity, I.; Das, A.K. Lipase catalyzed inclusion of gastrodigenin for the evolution of blue light emitting peptide nanofibers. Chem. Commun. 2014, 50, 8685–8688. [Google Scholar] [CrossRef]
- Das, A.K.; Maity, I.; Parmar, H.S.; McDonald, T.O.; Konda, M. Lipase-catalyzed dissipative self-assembly of a thixotropic peptide bolaamphiphile hydrogel for human umbilical cord stem-cell proliferation. Biomacromolecules 2015, 16, 1157–1168. [Google Scholar] [CrossRef] [PubMed]
- Dawson, P.E.; Muir, T.W.; Clark-Lewis, I.; Kent, S.B.H. Synthesis of proteins by native chemical ligation. Science 1994, 266, 776–779. [Google Scholar] [CrossRef] [PubMed]
- Wieland, T.; Bokelmann, E.; Bauer, L.; Lang, H.U.; Lau, H. Über peptidsynthesen. 8. Mitteilung bildung von S-haltigen peptiden durch intramolekulare wanderung von aminoacylresten. Justus Liebigs Ann. Chem. 1953, 583, 129–149. [Google Scholar] [CrossRef]
- De Duve, C. The beginnings of life on earth. Am. Sci. 1995, 83, 428–437. [Google Scholar]
- Hojo, H.; Aimoto, S. Polypeptide synthesis using the S-alkyl thioester of a partially protected peptide segment. Synthesis of the DNA-binding domain of c-Myb protein (142-193)-NH2. Bull. Soc. Chem. Jpn. 1991, 64, 111. [Google Scholar] [CrossRef]
- Dheur, J.; Ollivier, N.; Melnyk, O. Synthesis of thiazolidine thioester peptides and acceleration of native chemical ligation. Org. Lett. 2011, 13, 1560–1563. [Google Scholar] [CrossRef] [PubMed]
- Hu, B.-H.; Su, J.; Messersmith, P.B. Hydrogels cross-linked by native chemical ligation. Biomacromolecules 2009, 10, 2194–2000. [Google Scholar] [CrossRef] [PubMed]
- Warren, J.D.; Miller, J.S.; Keding, S.J.; Danishefsky, S.J. Toward fully synthetic glycoproteins by ultimately convergent routes: A solution to a long-standing problem. J. Am. Chem. Soc. 2004, 126, 6576–6578. [Google Scholar] [CrossRef] [PubMed]
- Hackeng, T.M.; Griffin, J.H.; Dawson, P.E. Protein synthesis by native chemical ligation: Expanded scope by using straightforward methodology. Proc. Natl. Acad. Sci. USA 1999, 96, 10068–10073. [Google Scholar] [PubMed]
- Metanis, N.; Keinan, E.; Dawson, P.E. Traceless ligation of cysteine peptides using selective deselenization. Angew. Chem. Int. Ed. 2010, 49, 7049–7053. [Google Scholar] [CrossRef]
- Pollock, S.B.; Kent, S.B. An investigation into the origin of the dramatically reduced reactivity of peptide-prolyl-thioesters in native chemical ligation. Chem. Commun. 2011, 2342–2344. [Google Scholar] [CrossRef]
- Townsend, S.D.; Tan, Z.P.; Dong, S.W.; Shang, S.Y.; Brailsford, J.A.; Danishefsky, S.J. Advances in proline ligation. J. Am. Chem. Soc. 2012, 134, 3912–3916. [Google Scholar] [CrossRef] [PubMed]
- Weissenborn, M.J.; Castangia, R.; Wehner, J.W.; Sardzik, R.; Lindhorst, T.K.; Flitsch, S.L. Oxo-ester mediated native chemical ligation on microarrays: An efficient and chemoselective coupling methodology. Chem. Commun. 2012, 48, 4444–4446. [Google Scholar] [CrossRef]
- Strehin, I.; Gourevitch, D.; Zhang, Y.; Katzb, E.H.; Messersmith, P.B. Hydrogels formed by oxo-ester mediated native chemical ligation. Biomater. Sci. 2013, 1, 603–613. [Google Scholar] [CrossRef] [PubMed]
- Jacob, C.; Giles, G.I.; Giles, N.M.; Sies, H. Sulfur and selenium: The role of oxidation state in protein structure and function. Angew. Chem. Int. Ed. 2003, 42, 4742–4758. [Google Scholar] [CrossRef]
- Mugesh, G.; Singh, H.B. Synthetic organoselenium compounds as antioxidants: Glutathione peroxidase activity. Chem. Soc. Rev. 2000, 29, 347–357. [Google Scholar] [CrossRef]
- Nogueira, C.W.; Zeni, G.; Rocha, J.B.T. Organoselenium and organotellurium compounds: Toxicology and pharmacology. Chem. Rev. 2004, 104, 6255–6268. [Google Scholar] [CrossRef] [PubMed]
- Nishino, T.; Okada, M.; Kuroki, T.; Watanabe, T.; Nishiyama, Y.; Sonoda, N. One-pot synthetic method of unsymmetrical diorganyl selenides: Reaction of diphenyl diselenide with alkyl halides in the presence of lanthanum metal. J. Org. Chem. 2002, 67, 8696–8698. [Google Scholar] [CrossRef] [PubMed]
- Keck, G.E.; Grier, M.C. Generation and reactivity of oxazolidinone derived N-acyl radicals. Synlett 1999, 1999, 1657–1659. [Google Scholar] [CrossRef]
- Boger, D.L.; Mathvink, R.J. Acyl radicals: Intermolecular and intramolecular alkene addition reactions. J. Org. Chem. 1992, 57, 1429–1443. [Google Scholar] [CrossRef]
- Chen, C.; Crich, D.; Papadatos, A. The chemistry of acyl tellurides: Generation and trapping of acyl radicals, including aryltellurium group transfer. J. Am. Chem. Soc. 1992, 114, 8313–8314. [Google Scholar] [CrossRef]
- Hiiro, T.; Morita, Y.; Inoue, T.; Kambe, N.; Ogawa, A.; Ryu, I.; Sonoda, N. A new access to acyl- and aroyllithiums via lithium-tellurium exchange. J. Am. Chem. Soc. 1990, 112, 455–457. [Google Scholar] [CrossRef]
- Baca, M.; Muir, T.; Schonolzer, M.; Kent, S.B.H. Chemical ligation of cysteine-containing peptides: Synthesis of a 22 kDa tethered dimer of HIV-1 protease. J. Am. Chem. Soc. 1995, 117, 1881–1887. [Google Scholar] [CrossRef]
- Inoue, M.; Yamahita, S.; Ishihara, Y.; Hirama, M. Two convergent routes to the left-wing fragment of ciguatoxin CTX3C using O,S-acetals as key intermediates. Org. Lett. 2006, 8, 5805–5808. [Google Scholar] [CrossRef] [PubMed]
- Martin, S.F.; Chen, K.X.; Eary, C.T. An enantioselective total synthesis of (+)-geissoschizine. Org. Lett. 1999, 1, 79–82. [Google Scholar] [CrossRef] [PubMed]
- Durek, T.; Alewood, P.F. Preformed selenoesters enable rapid native chemical ligation at intractable sites. Angew. Chem. Int. Ed. 2011, 50, 12042–12045. [Google Scholar] [CrossRef]
- Chu-Kung, A.F.; Bozzelli, K.N.; Lockwood, N.A.; Haseman, J.R.; Mayo, K.H.; Tirrell, M.V. Promotion of peptide antimicrobial activity by fatty acid conjugation. Bioconj. Chem. 2004, 15, 530–535. [Google Scholar] [CrossRef]
- Maity, I.; Parmar, H.S.; Rasale, D.B.; Das, A.K. Self-programmed nanovesicle to nanofiber transformation of a dipeptide appended bolaamphiphile and its dose dependent cytotoxic behaviour. J. Mater. Chem. B 2014, 2, 5272–5279. [Google Scholar] [CrossRef]
- Ghanaati, S.; Webber, M.J.; Unger, R.E.; Orth, C.; Hulvat, J.F.; Kiehna, S.E.; Barbeck, M.; Rasic, A.; Stupp, S.I.; Kirkpatrick, C.J. Dynamic in vivo biocompatibility of angiogenic peptide amphiphile nanofibers. Biomaterials 2009, 30, 6202–6212. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.; Kuang, Y.; Guo, Z.-F.; Guo, Z.; Krauss, I.J.; Xu, B. Enzyme-instructed molecular self-assembly confers nanofibers and a supramolecular hydrogel of taxol derivative. J. Am. Chem. Soc. 2009, 131, 13576–13577. [Google Scholar] [CrossRef] [PubMed]
- Altunbas, A.; Lee, S.J.; Rajasekaran, S.A.; Schneider, J.P.; Pochan, D.J. Encapsulation of curcumin in self-assembling peptide hydrogels as injectable drug delivery vehicles. Biomaterials 2011, 32, 5906–5914. [Google Scholar] [CrossRef] [PubMed]
- Maity, I.; Manna, M.K.; Rasale, D.B.; Das, A.K. Peptide-nanofiber-supported palladium nanoparticles as an efficient catalyst for the removal of N-Terminus protecting groups. ChemPlusChem 2014, 79, 413–420. [Google Scholar] [CrossRef]
- Maity, I.; Rasale, D.B.; Das, A.K. Peptide nanofibers decorated with Pd nanoparticles to enhance the catalytic activity for C–C coupling reactions in aerobic conditions. RSC Adv. 2014, 4, 2984–2988. [Google Scholar] [CrossRef]
- Maity, I.; Rasale, D.B.; Das, A.K. Sonication induced peptide-appended bolaamphiphile hydrogels for in situ generation and catalytic activity of Pt nanoparticles. Soft Matter 2012, 8, 5301–5308. [Google Scholar] [CrossRef]
- Dickerson, M.B.; Sandhage, K.H.; Naik, R.R. Protein- and peptide-directed syntheses of inorganic materials. Chem. Rev. 2008, 108, 4935–4978. [Google Scholar] [CrossRef] [PubMed]
- Sone, E.D.; Stupp, S.I. Semiconductor-encapsulated peptide-amphiphile nanofibers. J. Am. Chem. Soc. 2004, 126, 12756–12757. [Google Scholar] [CrossRef] [PubMed]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rasale, D.B.; Das, A.K. Chemical Reactions Directed Peptide Self-Assembly. Int. J. Mol. Sci. 2015, 16, 10797-10820. https://doi.org/10.3390/ijms160510797
Rasale DB, Das AK. Chemical Reactions Directed Peptide Self-Assembly. International Journal of Molecular Sciences. 2015; 16(5):10797-10820. https://doi.org/10.3390/ijms160510797
Chicago/Turabian StyleRasale, Dnyaneshwar B., and Apurba K. Das. 2015. "Chemical Reactions Directed Peptide Self-Assembly" International Journal of Molecular Sciences 16, no. 5: 10797-10820. https://doi.org/10.3390/ijms160510797
APA StyleRasale, D. B., & Das, A. K. (2015). Chemical Reactions Directed Peptide Self-Assembly. International Journal of Molecular Sciences, 16(5), 10797-10820. https://doi.org/10.3390/ijms160510797