Investigation of Ternary Mixtures Containing 1-Ethyl-3-methylimidazolium Bis(trifluoromethanesulfonyl)azanide, Ethylene Carbonate and Lithium Bis(trifluoromethanesulfonyl)azanide
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
4. Conclusions
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
Abbreviations
EC | Ethylene carbonate |
EMIM-TFSA | 1-Ethyl-3-methylimidazolium bis(trifluoromethanesulfonyl)azanide |
Li-TFSA | Lithium bis(trifluoromethanesulfonyl)azanide |
DSC | Differential scanning calorimetry |
VFTH | Vogel-Fulcher-Tammann-Hesse |
References
- Wilken, S.; Xiong, S.; Scheers, J.; Jacobsson, P.; Johansson, P. Ionic liquids in lithium battery electrolytes: Composition versus safety and physical properties. J. Power Sources 2015, 275, 935–942. [Google Scholar] [CrossRef]
- Yang, B.; Li, C.; Zhou, J.; Liu, J.; Zhang, Q. Pyrrolidinium-based ionic liquid electrolyte with organic additive and LiTFSI for high-safety lithium-ion batteries. Electrochim. Acta 2014, 148, 39–45. [Google Scholar] [CrossRef]
- Pohlmann, S.; Olyschläger, T.; Goodrich, P.; Vicente, J.A.; Jacquemin, J.; Balducci, A. Mixtures of azepanium based ionic liquids and propylene carbonate as high voltage electrolytes for supercapacitors. Electrochim. Acta 2015, 153, 426–432. [Google Scholar] [CrossRef]
- Indris, S.; Heinzmann, R.; Schulz, M.; Hofmann, A. Ionic liquid based electrolytes: Correlating Li diffusion coefficients and battery performance. J. Electrochem. Soc. 2014, 161, A2036–A2041. [Google Scholar] [CrossRef]
- Hofmann, A.; Schulz, M.; Hanemann, T. Effect of conducting salts in ionic liquid based electrolytes: Viscosity, conductivity, and li-ion cell testing. Int. J. Electrochem. Sci. 2013, 8, 10170–10189. [Google Scholar]
- Salem, N.; Abu-Lebdeh, Y. Non-flammable electrolyte mixtures of ringed ammonium-based ionic liquids and ethylene carbonate for high voltage li-ion batteries. J. Electrochem. Soc. 2014, 161, A1593–A1601. [Google Scholar] [CrossRef]
- Hofmann, A.; Schulz, M.; Indris, S.; Heinzmann, R.; Hanemann, T. Mixtures of ionic liquid and sulfolane as electrolytes for Li-ion batteries. Electrochim. Acta 2014, 147, 704–711. [Google Scholar] [CrossRef]
- Stoppa, A.; Hunger, J.; Buchner, R. Conductivities of binary mixtures of ionic liquids with polar solvents. J. Chem. Eng. Data 2009, 54, 472–479. [Google Scholar] [CrossRef]
- Lombardo, L.; Brutti, S.; Navarra, M.A.; Panero, S.; Reale, P. Mixtures of ionic liquid—Alkylcarbonates as electrolytes for safe lithium-ion batteries. J. Power Sources 2013, 227, 8–14. [Google Scholar] [CrossRef]
- Sato, T.; Maruo, T.; Marukane, S.; Takagi, K. Ionic liquids containing carbonate solvent as electrolytes for lithium ion cells. J. Power Sources 2004, 138, 253–261. [Google Scholar] [CrossRef]
- Kühnel, R.S.; Böckenfeld, N.; Passerini, S.; Winter, M.; Balducci, A. Mixtures of ionic liquid and organic carbonate as electrolyte with improved safety and performance for rechargeable lithium batteries. Electrochim. Acta 2011, 56, 4092–4099. [Google Scholar] [CrossRef]
- Sato, T.; Masuda, G.; Takagi, K. Electrochemical properties of novel ionic liquids for electric double layer capacitor applications. Electrochim. Acta 2004, 49, 3603–3611. [Google Scholar] [CrossRef]
- Arbizzani, C.; Gabrielli, G.; Mastragostino, M. Thermal stability and flammability of electrolytes for lithium-ion batteries. J. Power Sources 2011, 196, 4801–4805. [Google Scholar] [CrossRef]
- Bayley, P.M.; Lane, G.H.; Rocher, N.M.; Clare, B.R.; Best, A.S.; MacFarlane, D.R.; Forsyth, M. Transport properties of ionic liquid electrolytes with organic diluents. Phys. Chem. Chem. Phys. 2009, 11, 7202. [Google Scholar] [CrossRef] [PubMed]
- Wilson, G.J.; Hollenkamp, A.F.; Pandolfo, A.G. Resolving ambiguous naming for an ionic liquid anion. Chem. Int. 2007, 29, 16–18. [Google Scholar]
- Hofmann, A.; Migeot, M.; Thißen, E.; Schulz, M.; Heinzmann, R.; Indris, S.; Bergfeldt, T.; Lei, B.; Ziebert, C.; Hanemann, T. Electrolyte mixtures based on ethylene carbonate and dimethyl sulfone for Li-ion batteries with improved safety characteristics. ChemSusChem 2015, 8, 1892–1900. [Google Scholar] [CrossRef] [PubMed]
- Kühnel, R.-S.; Balducci, A. Lithium ion transport and solvation in N-butyl-N-methylpyrrolidinium bis(trifluoromethanesulfonyl)imide–propylene carbonate mixtures. J. Phys. Chem. C 2014, 118, 5742–5748. [Google Scholar] [CrossRef]
- Wu, T.-Y.; Hao, L.; Chen, P.-R.; Liao, J.-W. Ionic conductivity and transporting properties in LiTFSI-doped bis(trifluoromethanesulfonyl)imide-based ionic liquid electrolyte. Int. J. Electrochem. Sci. 2013, 8, 2606–2624. [Google Scholar]
- Borodin, O.; Smith, G.D.; Henderson, W. Li cation environment, transport, and mechanical properties of the LiTFSI doped N-methyl-N-alkylpyrrolidiniumTFSI ionic liquids. J. Phys. Chem. B 2006, 110, 16879–16886. [Google Scholar] [CrossRef] [PubMed]
- Le, M.L.P.; Alloin, F.; Strobel, P.; Leprétre, J.-C.; del Valle, C.P.; Judeinstein, P. Structure-properties relationships of lithium electrolytes based on ionic liquid. J. Phys. Chem. B 2010, 114, 894–903. [Google Scholar] [CrossRef] [PubMed]
- Seo, D.M.; Boyle, P.D.; Sommer, R.D.; Daubert, J.S.; Borodin, O.; Henderson, W.A. Solvate structures and spectroscopic characterization of litfsi electrolytes. J. Phys. Chem. B 2014, 118, 13601–13608. [Google Scholar] [CrossRef] [PubMed]
- Hardwick, L.J.; Holzapfel, M.; Wokaun, A.; Novak, P. Raman study of lithium coordination in EMI-TFSI additive systems as lithium-ion battery ionic liquid electrolytes. J. Raman Spectrosc. 2007, 38, 110–112. [Google Scholar] [CrossRef]
- Lassègues, J.-C.; Grondin, J.; Talaga, D. Lithium solvation in bis(trifluoromethanesulfonyl)imide-based ionic liquids. Phys. Chem. Chem. Phys. 2006, 8, 5629. [Google Scholar] [CrossRef] [PubMed]
- Brouillette, D.; Perron, G.; Desnoyers, J.E. Effect of viscosity and volume on the specific conductivity of lithium salts in solvent mixtures. Electrochim. Acta 1999, 44, 4721–4742. [Google Scholar] [CrossRef]
- Xu, K. Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. Chem. Rev. 2004, 104, 4303–4417. [Google Scholar] [CrossRef] [PubMed]
- Xu, K. Electrolytes and interphases in li-ion batteries and beyond. Chem. Rev. 2014, 114, 11503–11618. [Google Scholar] [CrossRef] [PubMed]
- Borodin, O.; Smith, G.D. Development of many-body polarizable force fields for li-battery applications: 2. LiTFSI-doped oligoether, polyether, and carbonate-based electrolytes. J. Phys. Chem. B 2006, 110, 6293–6299. [Google Scholar] [CrossRef] [PubMed]
- Borodin, O.; Smith, G.D. LiTFSI structure and transport in ethylene carbonate from molecular dynamics simulations. J. Phys. Chem. B 2006, 110, 4971–4977. [Google Scholar] [CrossRef] [PubMed]
- Hofmann, A.; Migeot, M.; Hanemann, T. Investigation of binary mixtures containing 1-ethyl-3-methylimidazolium bis(trifluoromethanesulfonyl)azanide and ethylene carbonate. J. Chem. Eng. Data 2016, 61, 114–123. [Google Scholar] [CrossRef]
- Kubota, K.; Tamaki, K.; Nohira, T.; Goto, T.; Hagiwara, R. Electrochemical properties of alkali bis(trifluoromethylsulfonyl)amides and their eutectic mixtures. Electrochim. Acta 2010, 55, 1113–1119. [Google Scholar] [CrossRef] [Green Version]
- Bayley, P.M.; Lane, G.H.; Lyons, L.J.; MacFarlane, D.R.; Forsyth, M. Undoing lithium ion association in ionic liquids through the complexation by oligoethers. J. Phys. Chem. C 2010, 114, 20569–20576. [Google Scholar] [CrossRef]
- Zhou, Q.; Fitzgerald, K.; Boyle, P.D.; Henderson, W.A. Phase behavior and crystalline phases of ionic liquid-lithium salt mixtures with 1-alkyl-3-methylimidazolium salts. Chem. Mater. 2010, 22, 1203–1208. [Google Scholar] [CrossRef]
- Pitawala, J.; Kim, J.K.; Jacobsson, P.; Koch, V.; Croce, F.; Matic, A. Phase behaviour, transport properties, and interactions in li-salt doped ionic liquids. Faraday Discuss. 2012, 154, 71. [Google Scholar] [CrossRef] [PubMed]
- Martinelli, A.; Matic, A.; Jacobsson, P.; Börjesson, L.; Fernicola, A.; Scrosati, B. Phase behavior and ionic conductivity in lithium bis(trifluoromethanesulfonyl)imide-doped ionic liquids of the pyrrolidinium cation and bis(trifluoromethanesulfonyl)imide anion. J. Phys. Chem. B 2009, 113, 11247–11251. [Google Scholar] [CrossRef] [PubMed]
- Paillard, E.; Zhou, Q.; Henderson, W.A.; Appetecchi, G.B.; Montanino, M.; Passerini, S. Electrochemical and physicochemical properties of PY14FSI-based electrolytes with LiFSI. J. Electrochem. Soc. 2009, 156, A891–A895. [Google Scholar] [CrossRef]
- Hayamizu, K.; Yaihra, Y.; Nakagawa, H.; Nukuda, T.; Price, W.S. Ionic conduction and ion diffusion in binary room-temperature ionic liquids composed of [emim][BF4] and LiBF4. J. Phys. Chem. B 2004, 108, 19527. [Google Scholar] [CrossRef]
- Foley, M.P.; Seo, D.M.; Worosz, C.J.; Boyle, P.D.; Henderson, W.A.; De Long, H.C.; Trulove, P.C. Phase behavior and solvation of lithium triflate in ethylene carbonate. ECS Trans. 2012, 41, 99–105. [Google Scholar]
- Angell, C.A. Formation of glasses from liquids and biopolymers. Science 1995, 267, 1924–1935. [Google Scholar] [CrossRef] [PubMed]
- Angell, C.A. Liquid fragility and the glass transition in water and aqueous solutions. Chem. Rev. 2002, 102, 2627–2650. [Google Scholar] [CrossRef] [PubMed]
- Hodge, I.M. Strong and fragile liquids—A brief critique. J. Non-Crystalline Sol. 1996, 202, 164–172. [Google Scholar] [CrossRef]
- Böhmer, R.; Angell, C.A. Correlations of the nonexponentiality and state dependence of mechanical relaxations with bond connectivity in Ge-as-Se supercooled liquids. Phys. Rev. B 1992, 45, 10091. [Google Scholar] [CrossRef]
- Böhmer, R.; Ngai, K.L.; Angell, C.A.; Plazek, D.J. Nonexponential relaxations in strong and fragile glass formers. J. Chem. Phys. 1993, 99, 4201–4209. [Google Scholar] [CrossRef]
- Schreiner, C.; Zugmann, S.; Hartl, R.; Gores, H.J. Temperature dependence of viscosity and specific conductivity of fluoroborate-based ionic liquids in light of the fractional walden rule and angell’s fragility concept. J. Chem. Eng. Data 2010, 55, 4372–4377. [Google Scholar] [CrossRef]
- Xu, W.; Cooper, E.I.; Angell, C.A. Ionic liquids: Ion mobilities, glass temperatures, and fragilities. J. Phys. Chem. B 2003, 107, 6170–6178. [Google Scholar] [CrossRef]
- Nascimento, M.L.F.; Aparicio, C. Data classification with the Vogel–Fulcher–Tammann–Hesse viscosity equation using correspondence analysis. Phys. B Condens. Matter 2007, 398, 71–77. [Google Scholar] [CrossRef]
- Schreiner, C.; Zugmann, S.; Hartl, R.; Gores, H.J. Fractional walden rule for ionic liquids: Examples from recent measurements and a critique of the so-called ideal KCL line for the walden plot. J. Chem. Eng. Data 2009, 55, 1784–1788. [Google Scholar] [CrossRef]
- Le, M.L.P.; Tran, N.A.; Ngo, H.P.K.; Nguyen, T.G.; Tran, V.M. Liquid electrolytes based on ionic liquids for lithium-ion batteries. J. Sol. Chem. 2015, 44, 2332–2343. [Google Scholar] [CrossRef]
- MacFarlane, D.R.; Forsyth, M.; Izgorodina, E.I.; Abbott, A.P.; Annat, G.; Fraser, K. On the concept of ionicity in ionic liquids. Phys. Chem. Chem. Phys. 2009, 11, 4962–4967. [Google Scholar] [CrossRef] [PubMed]
- Duluard, S.; Grondin, J.; Bruneel, J.-L.; Pianet, I.; Grélard, A.; Campet, G.; Delville, M.-H.; Lassègues, J.-C. Lithium solvation and diffusion in the 1-butyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide ionic liquid. J. Raman Spectrosc. 2008, 39, 627–632. [Google Scholar] [CrossRef]
- Saito, Y.; Umecky, T.; Niwa, J.; Sakai, T.; Maeda, S. Existing condition and migration property of ions in lithium electrolytes with ionic liquid solvent. J. Phys. Chem. B 2007, 111, 11794–11802. [Google Scholar] [CrossRef] [PubMed]
- Umebayashi, Y.; Mitsugi, T.; Fukuda, S.; Fujimori, T.; Fujii, K.; Kanzaki, R.; Takeuchi, M.; Ishiguro, S.-I. Lithium ion solvation in room-temperature ionic liquids involving bis(trifluoromethanesulfonyl) imide anion studied by Raman spectroscopy and DFT calculations. J. Phys. Chem. B 2007, 111, 13028–13032. [Google Scholar] [CrossRef] [PubMed]
EMIM-TFSA:EC (wt/wt) | c/mol·kg−1 Li-TFSA | d/g·cm−3 (20 °C) | κ/mS·cm−1 (20 °C) | η/mPa·s (20 °C) | Tm 1/°C (peak max) | Tg 1/°C 4 |
---|---|---|---|---|---|---|
100:0 | 0 | 1.5208 | 7.34 | 41.3 | −4.0 | −85.3 |
100:0 | 0.3 | – | 4.97 | 70.2 | −19.6 | −83.6 |
100:0 | 0.6 | 1.5848 | 2.87 | 123.4 | – 2 | −73.9 |
100:0 | 0.9 | – | 1.24 | 288.0 | – 2 | −66.1 |
100:0 | 1.2 | 1.6276 | 0.92 | 555.9 | – 2 | −63.9 |
80:20 | 0 | 1.4858 | 12.36 | 15.3 | −14.1 | −91.9 |
80:20 | 0.3 | – | 8.08 | 27.1 | – 2 | −85.9 |
80:20 | 0.6 | 1.5480 | 4.96 | 51.1 | – 2 | −79.5 |
80:20 | 0.9 | – | 2.43 | 105.0 | – 2 | −72.5 |
80:20 | 1.2 | 1.6161 | 1.11 | 230.0 | – 2 | −66.1 |
60:40 | 0 | 1.4476 | 15.68 | 7.9 | 9.3 | −96.6 |
60:40 | 0.3 | – | 10.88 | 11.6 | −0.7 | −89.6 |
60:40 | 0.6 | 1.5122 | 6.94 | 24.0 | – 2 | −83.2 |
60:40 | 0.9 | – | 4.17 | 50.1 | – 2 | −75.6 |
60:40 | 1.2 | 1.5933 | 1.76 | 110.0 | – 2 | −67.7 |
40:60 | 0 | 1.4096 | 14.42 | 4.8 | 23.6 | – 2 |
40:60 | 0.3 | – | 11.53 | 7.9 | 15.0 | −90.2 |
40:60 | 0.6 | 1.4868 | 7.75 | 13.4 | 5.5 | −85.5 |
40:60 | 0.9 | – | 5.22 | 28.2 | −5.9 | −78.6 |
40:60 | 1.2 | 1.5656 | 2.46 | 65.3 | – 2 | −68.5 |
20:80 | 0 | 1.3765 | 10.30 | 3.5 | 34.5 | – 2 |
20:80 | 0.3 | – | 7.09 | 5.7 | 28.9 | −70.7 |
20:80 | 0.6 | 1.4554 | 8.11 | 9.72 | 20.5 | −67.6 |
20:80 | 0.9 | – | 6.68 | 18.0 | 15.3 | −82.8 |
20:80 | 1.2 | 1.5353 | 2.70 | 41.0 | −5.3 | −81.0 |
0:100 | 0 | 1.3219 3 | – | – | 41.6 | – 2 |
0:100 | 0.3 | – | 4.76 | 4.2 | 37 | −55.5 |
0:100 | 0.6 | 1.4321 | 6.02 | 6.7 | 28.8 | −60.3 |
0:100 | 0.9 | – | 5.31 | 12.9 | 20.3 | −57.9 |
0:100 | 1.2 | 1.5139 | 2.83 | 26.5 | 7.5 | −72.4 |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hofmann, A.; Migeot, M.; Arens, L.; Hanemann, T. Investigation of Ternary Mixtures Containing 1-Ethyl-3-methylimidazolium Bis(trifluoromethanesulfonyl)azanide, Ethylene Carbonate and Lithium Bis(trifluoromethanesulfonyl)azanide. Int. J. Mol. Sci. 2016, 17, 670. https://doi.org/10.3390/ijms17050670
Hofmann A, Migeot M, Arens L, Hanemann T. Investigation of Ternary Mixtures Containing 1-Ethyl-3-methylimidazolium Bis(trifluoromethanesulfonyl)azanide, Ethylene Carbonate and Lithium Bis(trifluoromethanesulfonyl)azanide. International Journal of Molecular Sciences. 2016; 17(5):670. https://doi.org/10.3390/ijms17050670
Chicago/Turabian StyleHofmann, Andreas, Matthias Migeot, Lukas Arens, and Thomas Hanemann. 2016. "Investigation of Ternary Mixtures Containing 1-Ethyl-3-methylimidazolium Bis(trifluoromethanesulfonyl)azanide, Ethylene Carbonate and Lithium Bis(trifluoromethanesulfonyl)azanide" International Journal of Molecular Sciences 17, no. 5: 670. https://doi.org/10.3390/ijms17050670
APA StyleHofmann, A., Migeot, M., Arens, L., & Hanemann, T. (2016). Investigation of Ternary Mixtures Containing 1-Ethyl-3-methylimidazolium Bis(trifluoromethanesulfonyl)azanide, Ethylene Carbonate and Lithium Bis(trifluoromethanesulfonyl)azanide. International Journal of Molecular Sciences, 17(5), 670. https://doi.org/10.3390/ijms17050670