Antiplatelet Usage Impacts Clot Density in Acute Anterior Circulation Ischemic Stroke
Abstract
:1. Introduction
2. Results
2.1. Normal-Appearing Contralateral Artery (CA)
2.2. Clot Density
2.3. Relative Hounsfield Unit Ratio (rHU) (Clot Density/CA Density)
2.4. Clinico-Radiological Outcome
2.5. Multivariate Analysis
3. Discussion
4. Material and Methods
4.1. Study Design
4.2. Patient Selection
4.3. Quantification of the Clot Density
4.4. Quantification of the Final Infarct Volume and Recanalization
4.5. Data Analysis
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Liebeskind, D.S.; Sanossian, N.; Yong, W.H.; Starkman, S.; Tsang, M.P.; Moya, A.L.; Zheng, D.D.; Abolian, A.M.; Kim, D.; Ali, L.K.; et al. CT and MRI early vessel signs reflect clot composition in acute stroke. Stroke 2011, 42, 1237–1243. [Google Scholar] [CrossRef] [PubMed]
- Jang, I.K.; Gold, H.K.; Ziskind, A.A.; Fallon, J.T.; Holt, R.E.; Leinbach, R.C.; May, J.W.; Collen, D. Differential sensitivity of erythrocyte-rich and platelet-rich arterial thrombi to lysis with recombinant tissue-type plasminogen activator. A possible explanation for resistance to coronary thrombolysis. Circulation 1989, 79, 920–928. [Google Scholar] [CrossRef] [PubMed]
- Ajjan, R.A.; Standeven, K.F.; Khanbhai, M.; Phoenix, F.; Gersh, K.C.; Weisel, J.W.; Kearney, M.T.; Ariens, R.A.; Grant, P.J. Effects of aspirin on clot structure and fibrinolysis using a novel in vitro cellular system. Arterioscler. Thromb. Vasc. Boil. 2009, 29, 712–717. [Google Scholar] [CrossRef] [PubMed]
- Antovic, A.; Perneby, C.; Ekman, G.J.; Wallen, H.N.; Hjemdahl, P.; Blomback, M.; He, S. Marked increase of fibrin gel permeability with very low dose ASA treatment. Thromb. Res. 2005, 116, 509–517. [Google Scholar] [CrossRef] [PubMed]
- Boeckh-Behrens, T.; Schubert, M.; Forschler, A.; Prothmann, S.; Kreiser, K.; Zimmer, C.; Riegger, J.; Bauer, J.; Neff, F.; Kehl, V.; et al. The impact of histological clot composition in embolic stroke. Clin. Neuroradiol. 2016, 26, 189–197. [Google Scholar] [CrossRef] [PubMed]
- Eltayeb, A.A.; Askar, G.A.; Abu Faddan, N.H.; Kamal, T.M. Prothrombotic risk factors and antithrombotic therapy in children with ischemic stroke. Ther. Adv. Neurol. Disord. 2015, 8, 71–81. [Google Scholar] [CrossRef] [PubMed]
- Schuhmann, M.K.; Gunreben, I.; Kleinschnitz, C.; Kraft, P. Immunohistochemical analysis of cerebral thrombi retrieved by mechanical thrombectomy from patients with acute ischemic stroke. Int. J. Mol. Sci. 2016, 17, 298. [Google Scholar] [CrossRef] [PubMed]
- Smith, W.S.; Lev, M.H.; English, J.D.; Camargo, E.C.; Chou, M.; Johnston, S.C.; Gonzalez, G.; Schaefer, P.W.; Dillon, W.P.; Koroshetz, W.J.; et al. Significance of large vessel intracranial occlusion causing acute ischemic stroke and TIA. Stroke 2009, 40, 3834–3840. [Google Scholar] [CrossRef] [PubMed]
- Marder, V.J.; Chute, D.J.; Starkman, S.; Abolian, A.M.; Kidwell, C.; Liebeskind, D.; Ovbiagele, B.; Vinuela, F.; Duckwiler, G.; Jahan, R.; et al. Analysis of thrombi retrieved from cerebral arteries of patients with acute ischemic stroke. Stroke 2006, 37, 2086–2093. [Google Scholar] [CrossRef] [PubMed]
- Moftakhar, P.; English, J.D.; Cooke, D.L.; Kim, W.T.; Stout, C.; Smith, W.S.; Dowd, C.F.; Higashida, R.T.; Halbach, V.V.; Hetts, S.W. Density of thrombus on admission CT predicts revascularization efficacy in large vessel occlusion acute ischemic stroke. Stroke 2013, 44, 243–245. [Google Scholar] [CrossRef] [PubMed]
- Niesten, J.M.; van der Schaaf, I.C.; van Dam, L.; Vink, A.; Vos, J.A.; Schonewille, W.J.; de Bruin, P.C.; Mali, W.P.; Velthuis, B.K. Histopathologic composition of cerebral thrombi of acute stroke patients is correlated with stroke subtype and thrombus attenuation. PLoS ONE 2014, 9, e88882. [Google Scholar] [CrossRef] [PubMed]
- Sadowski, M.; Zabczyk, M.; Undas, A. Coronary thrombus composition: Links with inflammation, platelet and endothelial markers. Atherosclerosis 2014, 237, 555–561. [Google Scholar] [CrossRef] [PubMed]
- Silvain, J.; Collet, J.P.; Nagaswami, C.; Beygui, F.; Edmondson, K.E.; Bellemain-Appaix, A.; Cayla, G.; Pena, A.; Brugier, D.; Barthelemy, O.; et al. Composition of coronary thrombus in acute myocardial infarction. J. Am. Coll. Cardiol. 2011, 57, 1359–1367. [Google Scholar] [CrossRef] [PubMed]
- Dowlatshahi, D.; Hakim, A.; Fang, J.; Sharma, M. Pre admission antithrombotics are associated with improved outcomes following ischaemic stroke: A cohort from the registry of the Canadian stroke network. Int. J. Stroke 2009, 4, 328–334. [Google Scholar] [CrossRef] [PubMed]
- Qazi, E.M.; Sohn, S.I.; Mishra, S.; Almekhlafi, M.A.; Eesa, M.; d’Esterre, C.D.; Qazi, A.A.; Puig, J.; Goyal, M.; Demchuk, A.M.; et al. Thrombus characteristics are related to collaterals and angioarchitecture in acute stroke. Can. J. Neurol. Sci. 2015, 42, 381–388. [Google Scholar] [CrossRef] [PubMed]
- Simons, N.; Mitchell, P.; Dowling, R.; Gonzales, M.; Yan, B. Thrombus composition in acute ischemic stroke: A histopathological study of thrombus extracted by endovascular retrieval. J. Neuroradiol. 2015, 42, 86–92. [Google Scholar] [CrossRef] [PubMed]
- Kovacs, A.; Sotonyi, P.; Nagy, A.I.; Tenekedjiev, K.; Wohner, N.; Komorowicz, E.; Kovacs, E.; Nikolova, N.; Szabo, L.; Kovalszky, I.; et al. Ultrastructure and composition of thrombi in coronary and peripheral artery disease: Correlations with clinical and laboratory findings. Thromb. Res. 2015, 135, 760–766. [Google Scholar] [CrossRef] [PubMed]
- Niesten, J.M.; van der Schaaf, I.C.; Biessels, G.J.; van Otterloo, A.E.; van Seeters, T.; Horsch, A.D.; Luitse, M.J.; van der Graaf, Y.; Kappelle, L.J.; Mali, W.P.; et al. Relationship between thrombus attenuation and different stroke subtypes. Neuroradiology 2013, 55, 1071–1079. [Google Scholar] [CrossRef] [PubMed]
- Goyal, M.; Menon, B.K.; Krings, T.; Patil, S.; Qazi, E.; McTaggart, R.A.; Almekhlafi, M.A.; Jehan, R.; Saver, J.; Jayaraman, M.V. What constitutes the M1 segment of the middle cerebral artery? J. Neurointerv. Surg. 2016. [Google Scholar] [CrossRef] [PubMed]
- Tziomalos, K.; Giampatzis, V.; Bouziana, S.D.; Spanou, M.; Kostaki, S.; Papadopoulou, M.; Angelopoulou, S.M.; Tsopozidi, M.; Savopoulos, C.; Hatzitolios, A.I. Treatment with clopidogrel prior to acute non-cardioembolic ischemic stroke attenuates stroke severity. Cerebrovasc. Dis. 2016, 41, 226–232. [Google Scholar] [CrossRef] [PubMed]
- Bembenek, J.P.; Niewada, M.; Karlinski, M.; Czlonkowska, A. Effect of prestroke antiplatelets use on first-ever ischaemic stroke severity and early outcome. Int. J. Clin. Pract. 2016, 70, 477–481. [Google Scholar] [CrossRef] [PubMed]
Characteristics (N) | Antiplatelet Treatment † | Without Antiplatelet Treatment | p Value |
---|---|---|---|
Age (years) * | 80 (70, 86; n = 40) | 72 (57, 82; n = 110) | 0.003 |
Men | 20 (28.6%) | 50 (71.4%) | 0.622 |
Medical History | |||
Prior stroke/TIA (n = 21) | 10 (47.6%) | 11 (52.4%) | 0.019 |
Atrial fibrillation (n = 71) | 23 (32.4%) | 48 (67.6%) | 0.133 |
Peripheral artery disease (n = 8) | 3 (37.5%) | 5 (62.5%) | 0.476 |
Carotid stenosis >50% (n = 24) | 9 (37.5%) | 15 (62.5%) | 0.190 |
Arterial hypertension (n = 103) | 35 (33.9%) | 68 (66.0%) | 0.003 |
Diabetes mellitus (n = 21) | 5 (23.4%) | 16 (76.2%) | 0.750 |
Chronic heart failure (n = 24) | 9 (37.5%) | 15 (62.5%) | 0.190 |
Use of anticoagulants (n = 18) | 0 | 18 (100.0%) | 0.006 |
Stroke Type by TOAST | |||
Cardioembolic (n = 73) | 23 (31.5%) | 50 (68.5%) | 0.343 |
Unknown (n = 42) | 7 (16.7%) | 35 (83.3%) | |
Large artery atherosclerosis (n = 26) | 8 (30.8%) | 18 (69.2%) | |
Other (n = 9) | 2 (22.2%) | 7 (77.8%) | |
Clinical Presentation | |||
NIHSS (150) * | 18.5 (13.5, 22) | 17.0 (11.0, 20.0) | 0.054 |
Serum glucose (mg/dL) (n = 148) * | 120.0 (109.0, 144.3) | 117.0 (103.7, 136.0) | 0.239 |
Erythrocytes (×1012/L) (n = 117) * | 4.4 (3.6, 4.8) | 4.5 (4.2, 4.7) | 0.142 |
Thrombocytes (×109/L) (n = 117) * | 219 (170, 280) | 197 (238, 275) | 0.322 |
Hematocrit (%) (n = 117) * | 39.5 (33.6, 43.0) | 40.5 (37.4, 42.6) | 0.273 |
HbA1c (mmol/L) (n = 101) * | 5.4 (5.1, 5.8) | 5.6 (5.4, 5.8) | 0.1258 |
Fibrinogen (mg/dL) (n = 146) * | 356 (304, 473) | 348 (305, 425) | 0.613 |
C-reactive protein (mg/L) (n = 101) * | 0.3 (0.2, 1.3) | 0.35 (0.18, 0.9) | 0.648 |
Acute Treatment | |||
Thrombolysis (t-PA, n = 123) | 33 (26.8%) | 90 (73.2%) | 0.923 |
Thrombectomy (n = 87) | 21 (24.1%) | 66 (75.9%) | 0.411 |
Thrombolysis + Thrombectomy (n = 75) | 17 (22.7%) | 58 (77.3%) | 0.268 |
Thrombectomy Outcome [TICI] (n = 83) | |||
No perfusion (0) (n = 16) | 5 (31.2%) | 11 (68.7%) | 0.590 |
Penetration, no distal filling [1] (n = 2) | 0 (0%) | 2 (100.0%) | |
Perfusion, <50% distal filling [2a] (n = 4) | 2 (50.0%) | 2 (50.0%) | |
Perfusion, >50% distal filling [2b] (n = 19) | 4 (21.0%) | 15 (78.9%) | |
Full perfusion [3] (n = 42) | 9 (21.4%) | 33 (78.6%) | |
Inadequate (0–2a total) (n = 22) | 7 (31.8%) | 15 (68.2%) | 0.323 |
Adequate (2b–3 total) (n = 61) | 13 (21.3%) | 48 (78.7%) | |
Imaging Characteristics | |||
Symptoms to image (min) (n = 150) * | 95.5 (73.5. 116.5) | 87.5 (66.5, 128) | 0.619 |
Affected vessel (n = 150) | |||
Middle cerebral artery M1 (n = 120) | 30 (25.0%) | 90 (75.0%) | 0.356 |
Middle cerebral artery M2 (n = 30) | 10 (33.3%) | 20 (66.7) | |
Clot area (mm2) (n = 147) * | 23.8 (13.0, 40.3) | 27.1 (14.5, 47.0) | 0.499 |
Clot-relative Hounsfield Unit ratio (rHU) (n = 150) | 1.37 (1.22, 1.51) | 1.27 (1.15, 1.39) | 0.024 |
Final infarct volume (cm3) (n = 139) * | 58.8 (16.2, 149.9) | 41.2 (7.2, 138.2) | 0.366 |
Outcome on control imaging (n = 141) | |||
Infarction (n = 106) | 28 (26.4%) | 78 (73.6%) | 0.275 |
Hemorrhagic infarction (n = 28) | 8 (28.6%) | 20 (71.4%) | |
Resolution (infarct volume = 0) (n = 7) | 0 | 7 (100%) | |
Clinical Outcome | |||
In-hospital mortality (30 of 150) | 9 (30%) | 21 (70%) | 0.644 |
NIHSS at discharge (points) (130) * | 11 (4, 18) | 6 (2, 13) | 0.102 |
Independent Predictors for Higher rHU | OR (95% CI) | p |
---|---|---|
Use of Antiplatelets | 4.24 (1.10–16.3) | 0.036 |
Erythrocyte Count | 0.18 (0.05–0.55) | 0.003 |
Thrombocyte Count | 0.99 (0.98–0.99) | 0.029 |
Vessel Affected (M1 vs. M2) | 9.03 (1.36–59.73) | 0.022 |
History of Atrial Fibrillation | 2.96 (1.07–8.20) | 0.036 |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pikija, S.; Magdic, J.; Lukic, A.; Schreiber, C.; Mutzenbach, J.S.; McCoy, M.R.; Sellner, J. Antiplatelet Usage Impacts Clot Density in Acute Anterior Circulation Ischemic Stroke. Int. J. Mol. Sci. 2016, 17, 1382. https://doi.org/10.3390/ijms17091382
Pikija S, Magdic J, Lukic A, Schreiber C, Mutzenbach JS, McCoy MR, Sellner J. Antiplatelet Usage Impacts Clot Density in Acute Anterior Circulation Ischemic Stroke. International Journal of Molecular Sciences. 2016; 17(9):1382. https://doi.org/10.3390/ijms17091382
Chicago/Turabian StylePikija, Slaven, Jozef Magdic, Anita Lukic, Catharina Schreiber, Johannes Sebastian Mutzenbach, Mark R. McCoy, and Johann Sellner. 2016. "Antiplatelet Usage Impacts Clot Density in Acute Anterior Circulation Ischemic Stroke" International Journal of Molecular Sciences 17, no. 9: 1382. https://doi.org/10.3390/ijms17091382
APA StylePikija, S., Magdic, J., Lukic, A., Schreiber, C., Mutzenbach, J. S., McCoy, M. R., & Sellner, J. (2016). Antiplatelet Usage Impacts Clot Density in Acute Anterior Circulation Ischemic Stroke. International Journal of Molecular Sciences, 17(9), 1382. https://doi.org/10.3390/ijms17091382