Polyphenol-Rich Dry Common Beans (Phaseolus vulgaris L.) and Their Health Benefits
Abstract
:1. Introduction
2. Common Beans and Their Health Benefits
3. Nutritional Compositions of Common Beans
4. Polyphenols in Common Beans
5. Health Promoting Effects of Polyphenol-Rich Dry Beans
5.1. Anti-Oxidant Activity
5.2. Anti-Diabetic Activity
5.3. Anti-Obesity and Cardioprotective Activity
5.4. Anti-Mutagenic and Anti-Carcinogenic Activities
5.5. Anti-Inflammatory Activity
6. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
Abbreviations
b.w. | Body weight |
BP | Blood pressure |
CAT | Catalase |
DPPH | 2,2’-Diphenyl-1-picrylhydrazyl |
FA | Fatty acids |
FFA | Free fatty acids |
GR | Glutathione reductase |
GSH | Reduced glutathione |
GST | Glutathione-s-transferase |
HDL | High density lipoprotein |
IL | Interleukin |
i.p. | Intraperitoneal |
i.v. | Intravenous |
kDa | Kilo daltons |
LDL | Low density lipoprotein |
MTT | 3-(4,5-Dimethylthiazol-2-Yl)-2,5-diphenyltetrazolium bromide |
p.o. | Per oral |
ROS | Reactive oxygen species |
SOD | Super oxide dismutase |
TBARS | Thiobarbituric acid reactive substances |
TC | Total cholesterol |
TG | Triglycerides |
TNF-α | Tumour necrosis factor α |
VLDL | Very low density lipoprotein |
w/w | Weight/weight |
References
- Sharma, A.; Kaur, M.; Katnoria, J.K.; Nagpal, A.K. Polyphenols in food: Cancer prevention and apoptosis induction. Curr. Med. Chem. 2017. [Google Scholar] [CrossRef] [PubMed]
- Ganesan, K.; Xu, B. A critical review on polyphenols and health benefits of black soybeans. Nutrients 2017, 9. [Google Scholar] [CrossRef]
- McDougall, G.J. Phenolic-enriched foods: Sources and processing for enhanced health benefits. Proc. Nutr. Soc. 2017, 76, 163–171. [Google Scholar] [CrossRef] [PubMed]
- Aparicio-Fernández, X.; García-Gasca, T.; Yousef, G.G.; Lila, M.A.; González de Mejía, E.; Loarca-Piña, G. Chemopreventive activity of polyphenolics from black Jamapa Bean (Phaseolus vulgaris L.) on HeLa and HaCaT cells. J. Agric. Food Chem. 2006, 54, 2116–2122. [Google Scholar] [CrossRef] [PubMed]
- Aparicio-Fernández, X.; Yousef, G.G.; Loarca-Piña, G.; González de Mejía, E.; Lila, M.A. Characterization of polyphenolics in the seed coat of Black Jamapa bean (Phaseolus vulgaris L.). J. Agric. Food Chem. 2005, 53, 4615–4622. [Google Scholar] [CrossRef] [PubMed]
- Aparicio-Fernández, X.; Manzo-Bonilla, L.; Loarca-Piña, G. Comparison of antimutagenic activity of phenolic compounds in newly harvested and stored common beans Phaseolus Vulgaris against aflatoxin B1. J. Food Sci. 2005, 70, S73–S78. [Google Scholar] [CrossRef]
- Beninger, C.W.; Hosfield, G.L. Antioxidant activity of extracts, condensed tannin fractions, and pure flavonoids from Phaseolus vulgaris L. seed coat color genotypes. J. Agric. Food Chem. 2003, 51, 7879–7883. [Google Scholar] [CrossRef] [PubMed]
- Cardador-Martínez, A.; Loarca-Piña, G.; Oomah, B.D. Antioxidant activity in common beans (Phaseolus vulgaris L.). J. Agric. Food Chem. 2002, 50, 6975–6980. [Google Scholar] [CrossRef] [PubMed]
- Guzmán-Maldonado, S.H.; Paredes-López, O. Functional products of plants indigenous of Latin America: Amaranth, quinoa, common beans and botanicals. In Functional Foods. Bichemical and Processing Aspects; Mazza, G., Ed.; Thechnomic: Lancaster, PA, USA, 1998; pp. 39–328. [Google Scholar]
- Hangen, L.; Bennink, M.R. Consumption of Black Beans and Navy Beans (Phaseolus vulgaris) Reduced azoxymethane-induced colon cancer in rats. Nutr. Cancer 2002, 44, 60–65. [Google Scholar] [PubMed]
- Queiroz-Monici, K.S.; Costa, G.E.A.; da Silva, N.; Reis, S.M.P.M.; de Oliveira, A.C. Bifidogenic effect of dietary fiber and resistant starch from leguminous on the intestinal microbiota of rats. Nutrition 2005, 21, 602–609. [Google Scholar] [CrossRef] [PubMed]
- FAO. Estadísticas de Fríjol Seco. Available online: http://www.fao.org/faostat/en/#data/QC (accessed on 26 May 2014).
- Adams, M.W. Energy inputs in dry bean production. In Handbook of Energy Utilization in Agriculture; Pimentel, D., Ed.; CRC Press: Boca Raton, FL, USA, 1980; pp. 123–126. [Google Scholar]
- Mitchell, D.C.; Lawrence, F.R.; Hartman, T.J.; Curran, J.M. Consumption of dry beans, peas, and lentils could improve diet quality in the US population. J. Am. Diet. Assoc. 2009, 109, 909–913. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Monk, J.M.; Lu, J.T.; Zarepoor, L.; Wu, W.; Liu, R.; Pauls, K.P.; Wood, G.A.; Robinson, L.; Tsao, R.; et al. Cooked navy and black bean diets improve biomarkers of colon health and reduce inflammation during colitis. Br. J. Nutr. 2014, 111, 1549–1563. [Google Scholar] [CrossRef] [PubMed]
- Borresen, E.C.; Brown, D.G.; Harbison, G.; Taylor, L.; Fairbanks, A.; O’Malia, J.; Bazan, M.; Rao, S.; Bailey, S.M.; Wdowik, M.; et al. A randomized controlled trial to increase navy bean or rice bran consumption in colorectal cancer survivors. Nutr. Cancer 2016, 68, 1269–1280. [Google Scholar] [CrossRef] [PubMed]
- Borresen, E.C.; Jenkins-Puccetti, N.; Schmitz, K.; Brown, D.G.; Pollack, A.; Fairbanks, A.; Wdowik, M.; Rao, S.; Nelson, T.L.; Luckasen, G.; et al. A pilot randomized controlled clinical trial to assess tolerance and efficacy of navy bean and rice bran supplementation for lowering cholesterol in children. Glob. Pediatr. Health 2017, 4. [Google Scholar] [CrossRef] [PubMed]
- Lestari, L.A.; Huriyati, E.; Marsono, Y. The development of low glycemic index cookie bars from foxtail millet (Setaria italica), arrowroot (Maranta arundinacea) flour, and kidney beans (Phaseolus vulgaris). J. Food Sci. Technol. 2017, 54, 1406–1413. [Google Scholar] [CrossRef] [PubMed]
- Monk, J.M.; Zhang, C.P.; Wu, W.; Zarepoor, L.; Lu, J.T.; Liu, R.; Pauls, K.P.; Wood, G.A.; Tsao, R.; Robinson, L.E.; et al. White, and dark kidney beans reduce colonic mucosal damage and inflammation in response to dextran sodium sulfate. J. Nutr. Biochem. 2015, 26, 752–760. [Google Scholar] [CrossRef] [PubMed]
- Chao, W.W.; Chung, Y.C.; Shih, I.P.; Wang, H.Y.; Chou, S.T.; Hsu, C.K. Red bean extract inhibits lipopolysaccharide-induced inflammation and H2O2-induced oxidative stress in RAW 264.7 macrophages. J. Med. Food. 2015, 18, 724–730. [Google Scholar] [CrossRef] [PubMed]
- Chan, Y.S.; Ng, T.B. Northeast red beans produce a thermostable and pH-stable defensin-like peptide with potent antifungal activity. Cell Biochem. Biophys. 2013, 66, 637–648. [Google Scholar] [CrossRef] [PubMed]
- Chan, Y.S.; Wong, J.H.; Fang, E.F.; Pan, W.; Ng, T.B. A hemagglutinin from northeast red beans with immunomodulatory activity and anti-proliferative and apoptosis-inducing activities toward tumor cells. Protein Pept. Lett. 2013, 20, 1159–1169. [Google Scholar] [CrossRef] [PubMed]
- Mojica, L.; Berhow, M.; Gonzalez de Mejia, E. Black bean anthocyanin-rich extracts as food colorants: Physicochemical stability and antidiabetes potential. Food Chem. 2017, 229, 628–639. [Google Scholar] [CrossRef] [PubMed]
- Yin, C.; Wong, J.H.; Ng, T.B. Isolation of a hemagglutinin with potent antiproliferative activity and a large antifungal defensin from Phaseolus vulgaris cv. Hokkaido Large Pinto Beans. J. Agric. Food Chem. 2015, 63, 5439–5448. [Google Scholar] [CrossRef] [PubMed]
- Ojeda, A.G.; Wrobel, K.; Escobosa, A.R.; Elguera, J.C.; Garay-Sevilla, M.E.; Wrobel, K. Molybdenum and copper in four varieties of common bean (Phaseolus vulgaris): New data of potential utility in designing healthy diet for diabetic patients. Biol. Trace Elem. Res. 2015, 163, 244–254. [Google Scholar] [CrossRef] [PubMed]
- Monk, J.M.; Lepp, D.; Zhang, C.P.; Wu, W.; Zarepoor, L.; Lu, J.T.; Pauls, K.P.; Tsao, R.; Wood, G.A.; Robinson, L.E.; et al. Diets enriched with cranberry beans alter the microbiota and mitigate colitis severity and associated inflammation. J. Nutr. Biochem. 2016, 28, 129–139. [Google Scholar] [CrossRef] [PubMed]
- Haddad, E.H.; Tanzman, J.S. What do vegetarians in the United States eat? Am. J. Clin. Nutr. 2003, 78, 626–632. [Google Scholar]
- Messina, V. Nutritional and health benefits of dried beans. Am. J. Clin. Nutr. 2014, 100, 437–442. [Google Scholar] [CrossRef] [PubMed]
- McCrory, M.A.; Hamaker, B.R.; Lovejoy, J.C.; Eichelsdoerfer, P.E. Pulse consumption, satiety, and weight management. Adv. Nutr. 2010, 1, 17–30. [Google Scholar] [CrossRef] [PubMed]
- Darmadi-Blackberry, I.; Wahlqvist, M.L.; Kouris-Blazos, A.; Steen, B.; Lukito, W.; Horie, Y.; Horie, K. Legumes: The most important dietary predictor of survival in older people of different ethnicities. Asia Pac. J. Clin. Nutr. 2004, 13, 217–220. [Google Scholar] [PubMed]
- Chávez-Mendoza, C.; Sánchez, E. Bioactive compounds from Mexican varieties of the common bean (Phaseolus vulgaris): Implications for health. Molecules 2017, 22, 1360. [Google Scholar] [CrossRef] [PubMed]
- Suárez-Martínez, S.E.; Ferriz-Martínez, R.A.; Campos-Vega, R.; Elton-Puente, J.E.; de la Torre Carbot, K.; García-Gasca, T. Bean seeds: Leading nutraceutical source for human health. CyTA J. Food 2016, 14, 131–137. [Google Scholar] [CrossRef]
- Ulloa, J.A.; Rosas, U.P.; Ramírez, R.J.C.; Rangel, U.B.E. El frijol (Phaseolus vulgaris): Su importancia nutricionaly como fuente de fitoquímicos. [Beans (Phaseolus vulgaris): Their nutritional importance and source of phytochemicals]. Rev. Fuente 2011, 3, 5–9. [Google Scholar]
- Mederos, Y. Indicadores de la calidad en el grano de frijol (Phaseolus vulgaris L.). [Quality indicators in bean (Phaseolus vulgaris L.)]. Cultiv. Trop. 2006, 27, 55–63. [Google Scholar]
- Díaz-Batalla, L.; Widholm, J.M.; Fahey, G.C.; Castaño-Tostado, E.; Paredes-López, O. Chemical components with health implications in wild and cultivated Mexican common bean seeds (Phaseolus vulgaris L.). J. Agric. Food Chem. 2006, 54, 2045–2052. [Google Scholar] [CrossRef] [PubMed]
- Machado, C.M.; Ferruzzi, M.G.; Nielsen, S.S. Impact of the hard-to-cook phenomenon on phenolic antioxidants in dry beans (Phaseolus vulgaris). J. Agric. Food Chem. 2008, 56, 3102–3110. [Google Scholar] [CrossRef] [PubMed]
- Aguilera, Y.; Estrella, I.; Benitez, V.; Esteban, R.M.; Martin-Cabrejas, M.A. Bioactive phenolic compounds and functional properties of dehydrated beans flours. Food Res. Int. 2010, 44, 774–780. [Google Scholar] [CrossRef]
- López-Amorós, M.L.; Hernández, T.; Estrella, I. Effect of germination on legume phenolic compounds and their antioxidant activity. J. Food Compos. Anal. 2006, 19, 277–283. [Google Scholar] [CrossRef]
- Butt, M.S.; Batool, R. Nutritional and functional properties of some promising legume protein isolates. Pak. J. Nutr. 2010, 9, 373–379. [Google Scholar] [CrossRef]
- Genovese, M.I.; Lajolo, F.M. Atividade inibito ria de tripsina do feijao (Phaseolus vulgaris L.): Avaliacao. crıtica dos metodos de determinacao. Arch. Latinoam. Nutr. 2001, 51, 386–394. [Google Scholar] [PubMed]
- Costa, G.E.A.; Queiroz-Monici, K.S.; Reis, S.M.P.M.; Oliveira, A.C. Chemical composition, dietary fibre and resistant starch contents of raw and cooked pea, common bean, chickpea and lentil legumes. Food Chem. 2006, 94, 327–330. [Google Scholar] [CrossRef]
- Tang, C.H.; Sun, X. Structure-physicochemical function relationships of 7S globulins (vicilins) from red bean (Phaseolus anglaris) with different polypeptide constituents. Food Hydrocoll. 2011, 25, 536–544. [Google Scholar] [CrossRef]
- Tang, C.H.; Sun, X. A comparative study of physicochemical and conformational properties in three vicilins from Phaseolus legumes: Implications for the structure-function relationship. Food Hydrocoll. 2011, 25, 315–324. [Google Scholar] [CrossRef]
- Tang, C.H.; Sun, X.; Yin, S.W. Physicochemical, functional and structural properties of vicilin-rich protein isolate from three Phaseolus legumes: Effect of heat treatment. Food Hydrocoll. 2009, 23, 1771–1778. [Google Scholar] [CrossRef]
- Adebowale, Y.A.; Adeyemi, I.A.; Oshodi, A.A.; Niranjan, K. Isolation, fractionation and characterization of proteins from Mucuna bean. Food Chem. 2007, 104, 287–299. [Google Scholar] [CrossRef]
- Seena, S.; Sridhar, K.R.; Bajia, B. Biochemical and biological evaluation of ANF unconventional legume, Canavalia maritima of coastal sand dunes of India. Trop. Subtrop. Agroecosyst. 2005, 5, 1–14. [Google Scholar]
- Slupski, J. Effect of cooking and sterilization on the composition of amino acids on immature seeds of flageolet beans (Phaseolus vulgaris L.) cultivars. Food Chem. 2010, 121, 1171–1176. [Google Scholar] [CrossRef]
- Welch, R.M.; House, W.A.; Beebe, S.; Cheng, Z. Genetic selection for enhanced bioavailable levels of iron in bean (Phaseolus vulgaris L.) seeds. J. Agric. Food Chem. 2000, 48, 3576–3580. [Google Scholar] [CrossRef] [PubMed]
- Shimelis, E.A.; Rakshit, S.K. Proximate composition and physico-chemical properties of improved dry bean (Phaseolus vulgaris L.) varieties grown in Ethiopia. LWT 2005, 38, 331–338. [Google Scholar] [CrossRef]
- Champ, M.M. Non-nutrient bioactive substances of pulses. Br. J. Nutr. 2002, 88, 307–319. [Google Scholar] [CrossRef] [PubMed]
- Muzquiz, M.; Burbano, C.; Ayet, G.; Pedrosa, M.M.; Cuadrado, C. The investigation of antinutritional factors in Phaseolus vulgaris. Environmental and varietal differences. Biotechnol. Agron. Soc. Environ. 1999, 3, 210–216. [Google Scholar]
- Ricroft, C.E.; Jones, M.R.; Gibson, G.R.; Rastall, R.A. A comparative in vitro evaluation of the fermentation properties of prebiotic oligosaccharides. J. Appl. Microbiol. 2001, 91, 878–887. [Google Scholar] [CrossRef]
- Midorikawa, K.; Murata, M.; Oikawa, S.; Hiraku, Y.; Kawanishi, S. Protective effect of phytic acid on oxidative DNA damage with reference to cancer chemoprevention. Biochem. Biophys. Res. Commun. 2001, 288, 552–557. [Google Scholar] [CrossRef] [PubMed]
- Mathers, J.C. Pulses and carcinogenesis: Potential for prevention of colon, breast and other cancers. Br. J. Nutr. 2002, 88, 272–279. [Google Scholar] [CrossRef] [PubMed]
- Lajolo, F.M.; Genovese, M.I. Nutritional significance of lectin and enzyme inhibitors from legumes. J. Agric. Food Chem. 2002, 50, 6592–6598. [Google Scholar] [CrossRef] [PubMed]
- Phillippy, B.Q. Inositol phosphates in food. Adv. Food Nutr. Res. 2003, 45, 1–60. [Google Scholar] [PubMed]
- Iqbal, A.; Khalil, I.A.; Ateeq, N.; Khan, M.S. Nutritional quality of important food legumes. Food Chem. 2006, 97, 331–335. [Google Scholar] [CrossRef]
- United States Department of Agriculture (USDA). Agricultural Research Service, National Nutrient Database for Standard Reference Release 28. Nutrient Database Laboratory Homepage. Available online: https://ndb.nal.usda.gov/ndb/search/list (accessed on 14 July 2016).
- Golam Masum Akond, A.S.M.; Khandaker, L.; Berthold, J.; Gates, J.; Peters, K.; Delong, H.; Hossain, K. Anthocyanin, total polyphenols and antioxidant activity of common bean. Am. J. Food Technol. 2011, 6, 385–394. [Google Scholar]
- Ren, S.C.; Liu, Z.L.; Wang, P. Proximate composition and flavonoids content and in vitro antioxidant activity of 10 varieties of legume seeds grown in China. J. Med. Plants Res. 2012, 6, 301–308. [Google Scholar]
- López, A.; El-Naggar, T.; Dueñas, M.; Ortega, T.; Estrella, I.; Hernández, T.; Gómez-Serranillos, M.P.; Palomino, O.M.; Carretero, M.E. Effect of cooking and germination on phenolic composition and biological properties of dark beans (Phaseolus vulgaris L.). Food Chem. 2013, 138, 547–555. [Google Scholar] [CrossRef] [PubMed]
- Cardador-Martinez, A.; Castano-Tostado, E.; Loarca-Pina, G. Antimutagenic activity of natural phenolic compounds present in the common bean (Phaseolus vulgaris) against aflatoxin B1. Food Addit. Contam. 2002, 19, 62–69. [Google Scholar] [CrossRef] [PubMed]
- Beninger, C.W.; Gu, L.; Prior, R.L.; Junk, D.C.; Vandenberg, A.; Bett, K.E. Changes in polyphenols of the seed coat during the after-darkening process in pinto beans (Phaseolus vulgaris L.). J. Agric. Food Chem. 2005, 53, 7777–7782. [Google Scholar] [CrossRef] [PubMed]
- Xu, B.J.; Chang, S.K. Total phenolic content and antioxidant properties of Eclipse black beans (Phaseolus vulgaris L.) as affected by processing methods. J. Food Sci. 2008, 73, 19–27. [Google Scholar] [CrossRef] [PubMed]
- Akillioglu, H.G.; Karakaya, S. Changes in total phenols, total flavonoids, and antioxidant activities of common beans and pinto beans after soaking, cooking, and in vitro digestion process. Food Sci. Biotechnol. 2010, 19, 633–639. [Google Scholar] [CrossRef]
- de Lima, P.F.; Colombo, C.A.; Chiorato, A.F.; Yamaguchi, L.F.; Kato, M.J.; Carbonell, S.A. Occurrence of isoflavonoids in Brazilian common bean germplasm (Phaseolus vulgaris L.). J. Agric. Food Chem. 2014, 62, 9699–9704. [Google Scholar] [CrossRef] [PubMed]
- Ranilla, L.G.; Genovese, M.I.; Lajolo, F.M. Polyphenols and antioxidant capacity of seed coat and cotyledon from Brazilian and Peruvian bean cultivars (Phaseolus vulgaris L.). J. Agric. Food Chem. 2007, 55, 90–98. [Google Scholar] [CrossRef] [PubMed]
- Ávalos, G.A.; Pérez-Urria, C.E. Metabolismo secundario de plantas. [Secondary plant metabolism]. Reduca (Biología). Ser. Fisiol. Veg. 2009, 2, 119–145. [Google Scholar]
- Reynoso Camacho, R.; del Carmen Ríos Ugalde, M.; Torres Pacheco, I.; Acosta Gallegos, J.A.; Palomino Salinas, A.C.; Ramos Gómez, M.; González Jasso, E.; Horacio Guzmán, Y.S.H. Common bean (Phaseolus vulgaris L.) consumption and its effects on colon cancer in Sprague–Dawley rats. Agric. Téc. Méx. 2007, 33, 43–52. [Google Scholar]
- Juárez-López, B.A.; Aparicio-Fernández, X. Polyphenolics concentration and antiradical capacity of common bean varieties (Phaseolus vulgaris L.) after thermal treatment. In Food Science and Food Biotechnology Essentials: A Contemporary Perspective, 1st ed.; Nevárez-Moorillón, G.V., Ortega-Rivas, E., Eds.; Asociación Mexicana de Ciencia de los Alimentos, A.C [Mexican Association of Food Science]: Durango, Mexico, 2012; pp. 25–33. [Google Scholar]
- Lin, L.Z.; Harnly, J.M.; Pastor-Corrales, M.S.; Luthria, D.L. The polyphenolic profiles of common beans (Phaseolus vulgaris L.). Food Chem. 2008, 107, 399–410. [Google Scholar] [CrossRef] [PubMed]
- Hayat, I.; Ahmad, A.; Masud, T.; Ahmed, A.; Bashir, S. Nutritional and health perspectives of beans (Phaseolus vulgaris L.): An overview. Crit. Rev. Food Sci. Nutr. 2014, 54, 580–592. [Google Scholar] [CrossRef] [PubMed]
- Ariga, T.; Hamano, M. Radical scavenging action and its mode in procyanidins B-1 and B-3 from adzuki beans to peroxyl radicals. Agric. Biol. Chem. 1990, 54, 2499–2504. [Google Scholar]
- Tsuda, T.; Ohshima, K.; Kawakishi, S.; Osawa, T. Antioxidative pigments isolated from the seeds of Phaseolus vulgaris L. J. Agric. Food Chem. 1994, 42, 248–251. [Google Scholar] [CrossRef]
- Guzman-Maldonado, G.H.; Castellanos, J.; De Mejıa, E.G. Relationship between theoretical and experimentally detected tannin content of common bean Phaseolus vulgaris L. Food Chem. 1996, 55, 333–335. [Google Scholar] [CrossRef]
- De Mejıa, E.G.; Castano-Tostado, E.; Loarca-Pina, G. Antimutagenic effects of natural phenolic compounds in beans. Mutat. Res. 1999, 441, 1–9. [Google Scholar] [CrossRef]
- Takeoka, G.R.; Dao, L.T.; Full, G.H.; Wong, R.Y.; Harden, L.A.; Edwards, R.H.; Berrios, S. Characterization of black bean (Phaseolus vulgaris L.) anthocyanins. J. Agric. Food Chem. 1997, 45, 3395–3400. [Google Scholar] [CrossRef]
- Espinosa-Alonso, L.G.; Lygin, A.; Widholm, J.M.; Valverde, M.E.; Paredes-Lopez, O. Polyphenols in wild and weedy Mexican common beans (Phaseolus vulgaris L.). J. Agric. Food Chem. 2006, 54, 4436–4444. [Google Scholar] [CrossRef] [PubMed]
- Jun, S.; Shin, S.; Joung, H. Estimation of dietary flavonoid intake and major food sources of Korean adults. Br. J. Nutr. 2016, 115, 480–489. [Google Scholar] [CrossRef] [PubMed]
- Guajardo-Flores, D.; García-Patiño, M.; Serna-Guerrero, D.; Gutiérrez-Uribe, J.A.; Serna-Saldívar, S.O. Characterization and quantification of saponins and flavonoids in sprouts, seed coats, and cotyledons of germinated black beans. Food Chem. 2012, 134, 1312–1319. [Google Scholar] [CrossRef] [PubMed]
- Choung, M.G.; Choi, B.R.; An, Y.N.; Chu, Y.H.; Cho, Y.S. Anthocyanin profile of Korean cultivated kidney bean (Phaseolus vulgaris L.). J. Agric. Food Chem. 2003, 51, 7040–7043. [Google Scholar] [CrossRef] [PubMed]
- Lima, J.E.; Sampaio, A.L.F.; Henriques, M.M.O.; Barja–Fidalgo, C. Lymphocyte activation and cytokine production by Pisum sativum agglutinin (PSA) in vivo and in vitro. Immunopharmacology 1999, 41, 147–155. [Google Scholar] [CrossRef]
- Huber, K.; Brigide, P.; Bretas, E.B.; Canniatti-Brazaca, S.G. Phenolic acid, flavonoids and antioxidant activity of common brown beans (Phaseolus vulgaris L.) before and after cooking. J. Nutr. Food Sci. 2016, 6, 1–7. [Google Scholar] [CrossRef]
- Díaz, A.M.; Caldas, G.V.; Blair, M.W. Concentrations of condensed tannins and anthocyanins in common bean seed coats. Food Res. Int. 2010, 43, 595–601. [Google Scholar] [CrossRef]
- Xu, B.; Chang, S.K. Total phenolic, phenolic acid, anthocyanin, flavan-3-ol, and flavonol profiles and antioxidant properties of pinto and black beans (Phaseolus vulgaris L.) as affected by thermal processing. J. Agric. Food Chem. 2009, 57, 4754–4764. [Google Scholar] [CrossRef] [PubMed]
- Chung, H.J.; Liu, Q.; Pauls, K.P.; Fan, M.Z.; Yada, R. In vitro starch digestibility, expected glycemic index and some physicochemical properties of starch and flour from common bean (Phaseolus vulgaris L.) varieties grown in Canada. Food Res. Int. 2008, 41, 869–875. [Google Scholar] [CrossRef]
- Romani, A.; Vignolini, P.; Galardi, C.; Mulinacci, N.; Benedettelli, S.; Heimler, D. Germplasm characterization of Zolfino landraces (Phaseolus vulgaris L.) by flavonoid content. J. Agric. Food Chem. 2004, 52, 3838–3842. [Google Scholar] [CrossRef] [PubMed]
- Jenkins, A.L. The glycemic index: Looking back 25 years. Cereal Foods World 2007, 52, 50–53. [Google Scholar] [CrossRef]
- Oomah, B.D.; Cardador-Martinez, A.; Loarca-Piña, G. Phenolics and antioxidative activities in common beans (Phaseolus vulgaris L). J. Sci. Food Agric. 2005, 85, 935–942. [Google Scholar] [CrossRef]
- Cardador-Martínez, A.; Albores, A.; Bah, M.; Calderón-Salinas, V.; Castaño-Tostado, E.; Guevara-González, R.; Shimada-Miyasaka, A.; Loarca-Piña, G. Relationship among antimutagenic, antioxidant and enzymatic activities of methanolic extract from common beans (Phaseolus vulgaris L). Plant Foods Hum. Nutr. 2006, 61, 161–168. [Google Scholar] [CrossRef] [PubMed]
- Xu, B.; Chang, S.K. Total phenolics, phenolic acids, isoflavones, and anthocyanins and antioxidant properties of yellow and black soybeans as affected by thermal processing. J. Agric. Food Chem. 2008, 56, 7165–7175. [Google Scholar] [CrossRef] [PubMed]
- Karaś, M.; Jakubczyk, A.; Szymanowska, U.; Materska, M.; Zielińska, E. Antioxidant activity of protein hydrolysates from raw and heat-treated yellow string beans (Phaseolus vulgaris L.). Acta Sci. Pol. Technol. Aliment. 2014, 13, 385–391. [Google Scholar] [CrossRef] [PubMed]
- Frassinetti, S.; Gabriele, M.; Caltavuturo, L.; Longo, V.; Pucci, L. Antimutagenic and antioxidant activity of a selected lectin-free common bean (Phaseolus vulgaris L.) in two cell-based models. Plant Foods Hum. Nutr. 2015, 70, 35–41. [Google Scholar] [CrossRef] [PubMed]
- Venkateswaran, S.; Pari, L. Antioxidant effect of Phaseolus vulgaris in streptozotocin-induced diabetic rats. Asia Pac. J. Clin. Nutr. 2002, 11, 206–209. [Google Scholar] [CrossRef] [PubMed]
- Amarowicz, R.; Dykes, G.A.; Pegg, R.B. Antibacterial activity of tannin constituents from Phaseolus vulgaris, Fagoypyrum esculentum, Corylus avellana and Juglans nigra. Fitoterapia 2008, 79, 217–219. [Google Scholar] [CrossRef] [PubMed]
- Lara-Díaz, V.J.; Gaytán-Ramos, A.A.; Dávalos-Balderas, A.J.; Santos-Guzmán, J.; Mata-Cárdenas, B.D.; Vargas-Villarreal, J.; Barbosa-Quintana, A.; Sanson, M.; López-Reyes, A.G.; Moreno-Cuevas, J.E. Microbiological and toxicological effects of Perla black bean (Phaseolus vulgaris L.) extracts: In vitro and in vivo studies. Basic Clin. Pharmacol. Toxicol. 2009, 104, 81–86. [Google Scholar] [CrossRef] [PubMed]
- Ranilla, L.G.; Kwon, Y.I.; Genovese, M.I.; Lajolo, F.M.; Shetty, K. Effect of thermal treatment on phenolic compounds and functionality linked to type 2 diabetes and hypertension management of Peruvian and Brazilian bean cultivars (Phaseolus vulgaris L.) using in vitro methods. J. Food Biochem. 2010, 34, 329–355. [Google Scholar] [CrossRef]
- Nilsson, A.; Johansson, E.; Ekström, L.; Björck, I. Effects of a brown beans evening meal on metabolic risk markers and appetite-regulating hormones at a subsequent standardized breakfast: A randomized cross-over study. PLoS ONE 2013, 8, e59985. [Google Scholar] [CrossRef] [PubMed]
- Rondanelli, M.; Giacosa, A.; Orsini, F.; Opizzi, A.; Villani, S. Appetite control and glycemia reduction in overweight subjects treated with a combination of two highly standardized extracts from Phaseolus vulgaris and Cynara scolymus. Phytother. Res. 2011, 25, 1275–1282. [Google Scholar] [PubMed]
- Okada, Y.; Okada, M.; Sagesaka, Y. Screening of dried plant seed extracts for adiponectin production activity and tumor necrosis factor-alpha inhibitory activity on 3T3-L1 adipocytes. Plant Foods Hum. Nutr. 2010, 65, 225–232. [Google Scholar] [CrossRef] [PubMed]
- Mojica, L.; Meyer, A.; Berhow, M.A.; González de Mejía, E. Bean cultivars (Phaseolus vulgaris L.) have similar high antioxidant capacity, in vitro inhibition of α-amylase and α-glucosidase while diverse phenolic composition and concentration. Food Res. Int. 2015, 69, 38–48. [Google Scholar] [CrossRef]
- Oseguera-Toledo, M.E.; de Mejia, E.G.; Dia, V.P.; Amaya-Llano, S.L. Common bean (Phaseolus vulgaris L.) hydrolysates inhibit inflammation in LPS-induced macrophages through suppression of NF-κB pathways. Food Chem. 2011, 127, 1175–1185. [Google Scholar] [CrossRef] [PubMed]
- Gupta, A.; Agarwal, N.K.; Byadgi, P.S. Clinical assessment of dietary interventions and lifestyle modifications in Madhumeha (type-2 diabetes mellitus). Ayu 2014, 35, 391–397. [Google Scholar] [PubMed]
- Kyznietsova, M.Y.; Halenova, T.I.; Savchuk, O.M.; Vereschaka, V.V.; Ostapchenko, L.I. Carbohydrate metabolism in type 1 diabetic rats under the conditions of the kidney bean pods aqueous extract application. Fiziolohichnyĭ Zhurnal 2015, 61, 96–103. [Google Scholar] [CrossRef] [PubMed]
- Pari, L.; Venkateswaran, S. Effect of an aqueous extract of Phaseolus vulgaris on plasma insulin and hepatic key enzymes of glucose metabolism in experimental diabetes. Pharmazie 2003, 58, 916–919. [Google Scholar] [PubMed]
- Spadafranca, A.; Rinelli, S.; Riva, A.; Morazzoni, P.; Magni, P.; Bertoli, S.; Battezzati, A. Phaseolus vulgaris extract affects glycometabolic and appetite control in healthy human subjects. Br. J. Nutr. 2013, 109, 1789–1795. [Google Scholar] [CrossRef] [PubMed]
- Thompson, M.D.; Mensack, M.M.; Jiang, W.; Zhu, Z.; Lewis, M.R.; McGinley, J.N.; Brick, M.A.; Thompson, H.J. Cell signaling pathways associated with a reduction in mammary cancer burden by dietary common bean (Phaseolus vulgaris L.). Carcinogenesis 2012, 33, 226–232. [Google Scholar] [CrossRef] [PubMed]
- Helmstädter, A. Beans and diabetes: Phaseolus vulgaris preparations as antihyperglycemic agents. J. Med. Food 2010, 13, 251–254. [Google Scholar] [CrossRef] [PubMed]
- Tormo, M.A.; Gil-Exojo, I.; Romero de Tejada, A.; Campillo, J.E. Hypoglycaemic and anorexigenic activities of an alpha-amylase inhibitor from white kidney beans (Phaseolus vulgaris) in Wistar rats. Br. J. Nutr. 2004, 92, 785–790. [Google Scholar] [CrossRef] [PubMed]
- Tormo, M.A.; Gil-Exojo, I.; Romero de Tejada, A.; Campillo, J.E. White bean amylase inhibitor administered orally reduces glycaemia in type 2 diabetic rats. Br. J. Nutr. 2006, 96, 539–544. [Google Scholar] [PubMed]
- Balestri, F.; Rotondo, R.; Moschini, R.; Pellegrino, M.; Cappiello, M.; Barracco, V.; Misuri, L.; Sorce, C.; Andreucci, A.; Del-Corso, A.; et al. Zolfino landrace (Phaseolus vulgaris L.) from Pratomagno: General and specific features of a functional food. Food Nutr. Res. 2016, 60, 31792–31803. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Ramírez, I.F.; Becerril-Ocampo, L.J.; Reynoso-Camacho, R.; Herrera, M.D.; Guzmán-Maldonado, S.H.; Cruz-Bravo, R.K. Cookies elaborated with oat and common bean flours improved serum markers in diabetic rats. J. Sci. Food Agric. 2017. [Google Scholar] [CrossRef] [PubMed]
- Ye, X.Y.; Ng, T.B.; Tsang, P.W.; Wang, J. Isolation of a homodimeric lectin with antifungal and antiviral activities from red kidney bean (Phaseolus vulgaris) seeds. J. Protein Chem. 2001, 20, 367–375. [Google Scholar] [CrossRef] [PubMed]
- Daniell, E.L.; Ryan, E.P.; Brick, M.A.; Thompson, H.J. Dietary dry bean effects on hepatic expression of stress and toxicity-related genes in rats. Br. J. Nutr. 2012, 108, 37–45. [Google Scholar] [CrossRef] [PubMed]
- García-Lafuente, A.; Moro, C.; Manchón, N.; Gonzalo-Ruiz, A.; Villares, A.; Guillamón, E.; Rostagno, M.; Mateo-Vivaracho, L. In vitro anti-inflammatory activity of phenolic-rich extracts from white and red common beans. Food Chem. 2014, 161, 216–223. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Z.; Jiang, W.; Thompson, H.J. Edible dry bean consumption (Phaseolus vulgaris L.) modulates cardiovascular risk factors and diet-induced obesity in rats and mice. Br. J. Nutr. 2012, 108, 66–73. [Google Scholar] [CrossRef] [PubMed]
- Oomah, B.D.; Corbé, A.; Balasubramanian, P. Antioxidant and anti-inflammatory activities of bean (Phaseolus vulgaris L.) hulls. J. Agric. Food Chem. 2010, 58, 8225–8230. [Google Scholar] [CrossRef] [PubMed]
- Gabriele, M.; Pucci, L.; La Marca, M.; Lucchesi, D.; Della Croce, C.M.; Longo, V.; Lubrano, V. A fermented bean flour extract down-regulates LOX-1, CHOP, and ICAM-1 in HMEC-1 stimulated by ox-LDL. Cell Mol. Biol. Lett. 2016, 21, 10–21. [Google Scholar] [CrossRef] [PubMed]
- Reverri, E.J.; Randolph, J.M.; Steinberg, F.M.; Kappagoda, C.T.; Edirisinghe, I.; Burton-Freeman, B.M. Black beans, fiber, and antioxidant capacity pilot study: Examination of whole foods vs. functional components on postprandial metabolic, oxidative stress, and inflammation in adults with metabolic syndrome. Nutrients 2015, 7, 6139–6154. [Google Scholar] [CrossRef] [PubMed]
- Monk, J.M.; Lepp, D.; Wu, W.; Pauls, K.P.; Robinson, L.E.; Power, K.A. Navy and black bean supplementation primes the colonic mucosal microenvironment to improve gut health. J. Nutr. Biochem. 2017, 49, 89–100. [Google Scholar] [CrossRef] [PubMed]
- Ombra, M.N.; d’Acierno, A.; Nazzaro, F.; Riccardi, R.; Spigno, P.; Zaccardelli, M.; Pane, C.; Maione, M.; Fratianni, F. Phenolic composition and antioxidant and antiproliferative activities of the extracts of twelve common bean (Phaseolus vulgaris L.) endemic ecotypes of southern Italy before and after cooking. Oxid. Med. Cell. Longev. 2016, 2016, 1398298. [Google Scholar] [CrossRef] [PubMed]
- Guajardo-Flores, D.; Serna-Saldívar, S.O.; Gutiérrez-Uribe, J.A. Evaluation of the antioxidant and antiproliferative activities of extracted saponins and flavonols from germinated black beans (Phaseolus vulgaris L.). Food Chem. 2013, 141, 1497–1503. [Google Scholar] [CrossRef] [PubMed]
- Venkateswaran, S.; Pari, L.; Saravanan, G. Effect of Phaseolus vulgaris on circulatory antioxidants and lipids in rats with streptozotocin-induced diabetes. J. Med. Food 2002, 5, 97–103. [Google Scholar] [CrossRef] [PubMed]
- Mendoza-Sánchez, M.; Guevara-González, R.G.; Castaño-Tostado, E.; Mercado-Silva, E.M.; Acosta-Gallegos, J.A.; Rocha-Guzmán, N.E.; Reynoso-Camacho, R. Effect of chemical stress on germination of cv Dalia bean (Phaseolus vularis L.) as an alternative to increase antioxidant and nutraceutical compounds in sprouts. Food Chem. 2016, 212, 128–137. [Google Scholar] [CrossRef] [PubMed]
- Ranilla, L.G.; Genovese, M.I.; Lajolo, F.M. Effect of different cooking conditions on phenolic compounds and antioxidant capacity of some selected Brazilian bean (Phaseolus vulgaris L.) cultivars. J. Agric. Food Chem. 2009, 57, 5734–5742. [Google Scholar] [CrossRef] [PubMed]
- Pereira, M.P.; Tavano, O.L. Use of different spices as potential natural antioxidant additives on cooked beans (Phaseolus vulgaris). Increase of DPPH radical scavenging activity and total phenolic content. Plant Foods Hum. Nutr. 2014, 69, 337–343. [Google Scholar] [CrossRef] [PubMed]
- Hernández-Salazar, M.; Osorio-Diaz, P.; Loarca-Piña, G.; Reynoso-Camacho, R.; Tovar, J.; Bello-Pérez, L.A. In vitro fermentability and antioxidant capacity of the indigestible fraction of cooked black beans (Phaseolus vulgaris L.), lentils (Lens culinaris L.) and chickpeas (Cicer arietinum L.). J. Sci. Food Agric. 2010, 90, 1417–1422. [Google Scholar] [CrossRef] [PubMed]
- Aguilera, Y.; Liébana, R.; Herrera, T.; Rebollo-Hernanz, M.; Sanchez-Puelles, C.; Benítez, V.; Martín-Cabrejas, M.A. Effect of illumination on the content of melatonin, phenolic compounds, and antioxidant activity during germination of lentils (Lens culinaris L.) and kidney beans (Phaseolus vulgaris L.). J. Agric. Food Chem. 2014, 62, 10736–10743. [Google Scholar] [CrossRef] [PubMed]
- Luzardo-Ocampo, I.; Campos-Vega, R.; Gaytán-Martínez, M.; Preciado-Ortiz, R.; Mendoza, S.; Loarca-Piña, G. Bioaccessibility and antioxidant activity of free phenolic compounds and oligosaccharides from corn (Zea mays L.) and common bean (Phaseolus vulgaris L.) chips during in vitro gastrointestinal digestion and simulated colonic fermentation. Food Res. Int. 2017, 100, 304–311. [Google Scholar] [CrossRef] [PubMed]
- Thompson, M.D.; Thompson, H.J.; Brick, M.A.; McGinley, J.N.; Jiang, W.; Zhu, Z.; Wolfe, P. Mechanisms associated with dose-dependent inhibition of rat mammary carcinogenesis by dry bean (Phaseolus vulgaris, L.). J. Nutr. 2008, 138, 2091–2097. [Google Scholar] [CrossRef] [PubMed]
- Thompson, S.V.; Winham, D.M.; Hutchins, A.M. Bean and rice meals reduce postprandial glycemic response in adults with type 2 diabetes: A cross-over study. Nutr. J. 2012, 11, 23–30. [Google Scholar] [CrossRef] [PubMed]
- Mensack, M.M.; McGinley, J.N.; Thompson, H.J. Metabolomic analysis of the effects of edible dry beans (Phaseolus vulgaris L.) on tissue lipid metabolism and carcinogenesis in rats. Br. J. Nutr. 2012, 108, 155–165. [Google Scholar] [CrossRef] [PubMed]
- Haydé, V.C.; Ramón, G.G.; Lorenzo, G.O.; Dave, O.B.; Rosalía, R.C.; Paul, W.; Guadalupe, L.P. Non-digestible fraction of beans (Phaseolus vulgaris L.) modulates signaling pathway genes at an early stage of colon cancer in Sprague-Dawley rats. Br. J. Nutr. 2012, 108, 145–154. [Google Scholar] [CrossRef] [PubMed]
- Vergara-Castañeda, H.A.; Guevara-González, R.G.; Ramos-Gómez, M.; Reynoso-Camacho, R.; Guzmán-Maldonado, H.; Feregrino-Pérez, A.A.; Oomah, B.D.; Loarca-Piña, G. Non-digestible fraction of cooked bean (Phaseolus vulgaris L.) cultivar Bayo Madero suppresses colonic aberrant crypt foci in azoxymethane-induced rats. Food Funct. 2010, 1, 294–300. [Google Scholar] [CrossRef] [PubMed]
- Feregrino-Pérez, A.A.; Berumen, L.C.; García-Alcocer, G.; Guevara-Gonzalez, R.G.; Ramos-Gomez, M.; Reynoso-Camacho, R.; Acosta-Gallegos, J.A.; Loarca-Piña, G. Composition and chemopreventive effect of polysaccharides from common beans (Phaseolus vulgaris L.) on azoxymethane-induced colon cancer. J. Agric. Food Chem. 2008, 56, 8737–8744. [Google Scholar] [CrossRef] [PubMed]
- Feregrino-Perez, A.A.; Piñol-Felis, C.; Gomez-Arbones, X.; Guevara-González, R.G.; Campos-Vega, R.; Acosta-Gallegos, J.; Loarca-Piña, G. A non-digestible fraction of the common bean (Phaseolus vulgaris L.) induces cell cycle arrest and apoptosis during early carcinogenesis. Plant Foods Hum. Nutr. 2014, 69, 248–254. [Google Scholar] [CrossRef] [PubMed]
- Campos-Vega, R.; García-Gasca, T.; Guevara-Gonzalez, R.; Ramos-Gomez, M.; Oomah, B.D.; Loarca-Piña, G. Human gut flora-fermented non-digestible fraction from cooked bean (Phaseolus vulgaris L.) modifies protein expression associated with apoptosis, cell cycle arrest, and proliferation in human adenocarcinoma colon cancer cells. J. Agric. Food Chem. 2012, 60, 12443–12450. [Google Scholar] [CrossRef] [PubMed]
- Nakanishi, S.; Kataoka, K.; Kuwahara, T.; Ohnishi, Y. Effects of high amylose maize starch and Clostridium butyricum on metabolism in colonic microbiota and formation of azoxymethane-induced aberrant crypt foci in the rat colon. Microbiol. Immunol. 2003, 47, 951–958. [Google Scholar] [CrossRef] [PubMed]
- Cruz-Bravo, R.K.; Guevara-Gonzalez, R.; Ramos-Gomez, M.; Garcia-Gasca, T.; Campos-Vega, R.; Oomah, B.D.; Loarca-Piña, G. Fermented nondigestible fraction from common bean (Phaseolus vulgaris L.) cultivar Negro 8025 modulates HT-29 cell behavior. J. Food Sci. 2011, 76, 41–47. [Google Scholar]
- Chávez-Santoscoy, R.A.; Gutiérrez-Uribe, J.A.; Serna-Saldívar, S.O. Effect of flavonoids and saponins extracted from black bean (Phaseolus vulgaris L.) seed coats as cholesterol micelle disruptors. Plant Foods Hum. Nutr. 2013, 68, 416–423. [Google Scholar] [CrossRef] [PubMed]
- Sidorova, Y.; Shipelin, V.; Mazo, V.; Zorin, S.; Petrov, N.; Kochetkova, A. Hypoglycemic and hypolipidemic effect of Vaccinium myrtillus L. leaf and Phaseolus vulgaris L. seed coat extracts in diabetic rats. Nutrition 2017, 41, 107–112. [Google Scholar] [CrossRef] [PubMed]
- Pari, L.; Venkateswaran, S. Protective role of Phaseolus vulgaris on changes in the fatty acid composition in experimental diabetes. J. Med. Food. 2004, 7, 204–209. [Google Scholar] [CrossRef] [PubMed]
- Loi, B.; Fantini, N.; Colombo, G.; Gessa, G.L.; Riva, A.; Bombardelli, E.; Morazzoni, P.; Carai, M.A. Reducing effect of an extract of Phaseolus vulgaris on food intake in micefocus on highly palatable foods. Fitoterapia 2013, 85, 14–19. [Google Scholar] [CrossRef] [PubMed]
- Zaru, A.; Maccioni, P.; Riva, A.; Morazzoni, P.; Bombardelli, E.; Gessa, G.L.; Carai, M.A.; Colombo, G. Reducing effect of a combination of Phaseolus vulgaris and Cynara scolymus extracts on operant self-administration of a chocolate-flavored beverage in rats. Phytother. Res. 2013, 27, 944–947. [Google Scholar] [CrossRef] [PubMed]
- Maccioni, P.; Colombo, G.; Riva, A.; Morazzoni, P.; Bombardelli, E.; Gessa, G.L.; Carai, M.A. Reducing effect of a Phaseolus vulgaris dry extract on operant self-administration of a chocolate-flavored beverage in rats. Br. J. Nutr. 2010, 104, 624–628. [Google Scholar] [CrossRef] [PubMed]
- Fantini, N.; Cabras, C.; Lobina, C.; Colombo, G.; Gessa, G.L.; Riva, A.; Donzelli, F.; Morazzoni, P.; Bombardelli, E.; Carai, M.A. Reducing effect of a Phaseolus vulgaris dry extract on food intake, body weight, and glycemia in rats. J. Agric. Food Chem. 2009, 57, 9316–9323. [Google Scholar] [CrossRef] [PubMed]
- Carai, M.A.; Fantini, N.; Loi, B.; Colombo, G.; Gessa, G.L.; Riva, A.; Bombardelli, E.; Morazzoni, P. Multiple cycles of repeated treatments with a Phaseolus vulgaris dry extract reduce food intake and body weight in obese rats. Br. J. Nutr. 2011, 106, 762–768. [Google Scholar] [CrossRef] [PubMed]
- Loi, B.; Fantini, N.; Colombo, G.; Gessa, G.L.; Riva, A.; Bombardelli, E.; Morazzoni, P.; Carai, M.A. Reducing effect of a combination of Phaseolus vulgaris and Cynara scolymus extracts on food intake and glycemia in rats. Phytother. Res. 2013, 27, 258–263. [Google Scholar] [CrossRef] [PubMed]
- Hernández-Saavedra, D.; Mendoza-Sánchez, M.; Hernández-Montiel, H.L.; Guzmán-Maldonado, H.S.; Loarca-Piña, G.F.; Salgado, L.M.; Reynoso-Camacho, R. Cooked common beans (Phaseolus vulgaris) protect against β-cell damage in streptozotocin-induced diabetic rats. Plant Foods Hum. Nutr. 2013, 68, 207–212. [Google Scholar] [CrossRef] [PubMed]
- Venn, B.J.; Mann, J.I. Cereal grains, legumes and diabetes. Eur. J. Clin. Nutr. 2004, 58, 1443–1461. [Google Scholar] [CrossRef] [PubMed]
- Campos-Vega., R.; Loarca-Pina, G.; Oomah, B.D. Minor components of pulses and their potential impact on human health. Food Res. Int. 2010, 43, 461–582. [Google Scholar] [CrossRef]
- Oseguera-Toledo, M.E.; Gonzalez de Mejia, E.; Amaya-Llano, S.L. Hard-to-cook bean (Phaseolus vulgaris L.) proteins hydrolyzed by alcalase and bromelain produced bioactive peptide fractions that inhibit targets of type-2 diabetes and oxidative stress. Food Res. Int. 2015, 76, 839–851. [Google Scholar] [CrossRef] [PubMed]
- Mojica, L.; de Mejía, E.G. Optimization of enzymatic production of anti-diabetic peptides from black bean (Phaseolus vulgaris L.) proteins, their characterization and biological potential. Food Funct. 2016, 7, 713–727. [Google Scholar] [CrossRef] [PubMed]
- Roman-Ramos, R.; Flores-Saenz, F.J.; Alarcon, A. Anti-hyperglycemic effect of some edible plants. J. Ethnopharmacol. 1995, 48, 25–32. [Google Scholar] [CrossRef]
- Villegas, R.; Gao, Y.T.; Yang, G.; Li, H.L.; Elasy, T.A.; Zheng, W. Legume and soy food intake and the incidence of type 2 diabetes in the Shanghai Women’s Health Study. Am. J. Clin. Nutr. 2008, 87, 162–167. [Google Scholar] [PubMed]
- Tang, G.Y.; Li, X.J.; Zhang, H.Y. Antidiabetic components contained in vegetables and legumes. Molecules 2008, 13, 1189–1194. [Google Scholar] [CrossRef] [PubMed]
- Pi-Sunyer, F.X. Pathophysiology and long-term management of the metabolic syndrome. Obes. Res. 2004, 12, 174–180. [Google Scholar] [CrossRef] [PubMed]
- Finley, J.W.; Burrell, J.B.; Reeves, P.G. Pinto bean consumption changes SCFA profiles in fecal fermentations, bacterial populations of the lower bowel, and lipid profiles in blood of humans. J. Nutr. 2007, 137, 2391–2398. [Google Scholar] [PubMed]
- Anderson, J.W.; Major, A.W. Pulses, and lipaemia, short- and long-term effects: Potential in the prevention of cardiovascular disease. Br. J. Nutr. 2002, 88, 263–271. [Google Scholar] [CrossRef] [PubMed]
- Winham, D.M.; Hutchins, M.H. Baked beans consumption reduces serum cholesterol in hypercholesterolemic adults. Nutr. Res. 2007, 27, 380–386. [Google Scholar] [CrossRef]
- Shutler, S.M.; Bircher, G.M.; Tredger, J.A.; Morgan, L.M.; Walker, A.F.; Low, A.G. The effect of daily baked bean (Phaseolus vulgaris) consumption on the plasma lipid levels of young, normocholesterolemic men. Br. J. Nutr. 1989, 61, 257–265. [Google Scholar] [CrossRef] [PubMed]
- Anderson, J.W.; Story, L.; Sieling, B.; Chen, W.L.; Petro, M.S.; Story, J. Hypocholesterolemic effects of bean intake for hypercholesterolemic men. Am. J. Clin. Nutr. 1990, 40, 1146–1155. [Google Scholar]
- Maruyama, C.; Araki, R.; Kawamura, M.; Kondo, N.; Kigawa, M.; Kawai, Y. Azuki bean juice lowers serum triglyceride concentrations in healthy young women. J. Clin. Biochem. Nutr. 2008, 43, 19–25. [Google Scholar] [CrossRef] [PubMed]
- Bazzano, L.H.J.; Ogden, L.G.; Loria, C.; Vupputuri, S.; Myers, L.; Whelton, P.K. Legume consumption and risk of coronary heart disease in US men and women: NHANES I Epidemiologic Follow-up Study. Arch. Int. Med. 2001, 161, 2573–2578. [Google Scholar] [CrossRef]
- Chavez-Santoscoy, R.A.; Gutierrez-Uribe, J.A.; Granados, O.; Torre-Villalvazo, I.; Serna-Saldivar, S.O.; Torres, N.; Palacios-González, B.; Tovar, A.R. Flavonoids and saponins extracted from black bean (Phaseolus vulgaris L.) seed coats modulate lipid metabolism and biliary cholesterol secretion in C57BL/6 mice. Br. J. Nutr. 2014, 112, 886–899. [Google Scholar] [CrossRef] [PubMed]
- Wu, P.; Liu, S.; Su, J.; Chen, J.; Li, L.; Zhang, R.; Chen, T. Apoptosis triggered by isoquercitrin in bladder cancer cells by activating the AMPK-activated protein kinase pathway. Food Funct. 2017. [Google Scholar] [CrossRef] [PubMed]
- Chatterjee, A.; Ronghe, A.; Padhye, S.B.; Spade, D.A.; Bhat, N.K.; Bhat, H.K. Antioxidant activities of novel resveratrol analogs in breast cancer. J. Biochem. Mol. Toxicol. 2017. [Google Scholar] [CrossRef] [PubMed]
- Correa, P. Epidemiological correlations between diet and cancer frequency. Cancer Res. 1981, 41, 3685–3689. [Google Scholar] [PubMed]
- Kolonel, L.N.; Hankin, J.H.; Whittemore, A.S.; Wu, A.H.; Gallagher, R.P.; Wilkens, L.R.; John, E.M.; Howe, G.R.; Dreon, D.M.; West, D.W.; et al. Vegetables, fruits, legumes and prostate cancer: A multiethnic case-control study. Cancer Epidemiol. Biomark. Prev. 2000, 9, 795–804. [Google Scholar]
- Thompson, M.D.; Brick, M.A.; McGinley, J.N.; Thompson, H.J. Chemical composition and mammary cancer inhibitory activity of dry beans. Crop Sci. 2009, 49, 179–186. [Google Scholar] [CrossRef]
- Hangen, L.A.; Bennink, M.R. Consumption of black beans and navy beans (Phaseolus vulgaris) reduced azoxymethane-induced colon cancer in rats. Nutr. Cancer 2003, 44, 60–65. [Google Scholar]
- Williams, G.M.; Iatropoulos, M.J.; Jeffrey, A.M. Anticarcinogenicity of monocyclic phenolic compounds. Eur. J. Cancer Prev. 2002, 11, 101–107. [Google Scholar]
- Sabater, V.M.; Kuilman-Wahls, M.E.M.; Fink-Gremmels, J. Inhibition of aflatoxin B1 mutagenicity by cyclopiazonic acid in the presence of human liver preparations. Toxicol. Lett. 2003, 143, 291–299. [Google Scholar] [CrossRef]
- De Flora, S. Mechanisms of inhibitors of mutagenesis and carcinogenesis. Mutat. Res. 1998, 402, 151–158. [Google Scholar] [CrossRef]
Nutrient | Units | Navy Beans | Kidney Beans | Red Beans | Black Beans | Pinto Beans | Cranberry Beans |
---|---|---|---|---|---|---|---|
Energy | kcal | 92 | 92 | 167 | 464 | 500 | 257 |
Protein | g | 6.15 | 5.38 | 22.22 | 14.29 | 10.71 | 22.86 |
Total lipid (fat) | g | 0.00 | 0.38 | 0.00 | 21.43 | 21.43 | 0.00 |
Carbohydrate | g | 16.15 | 20.77 | 63.89 | 57.14 | 60.71 | 60.00 |
Total dietary fiber | g | 4.6 | 5.4 | 44.4 | 14.3 | 10.7 | 25.7 |
Total sugars | g | 0.00 | 0.77 | 2.78 | 3.57 | 3.57 | 2.86 |
Resistant starch | g | 4.2 | 2.0 | 3.8 | 1.7 | 1.9 | 2.6 |
Minerals | |||||||
Calcium | mg | 62 | 46 | 167 | 143 | 71 | 114 |
Iron | mg | 1.38 | 1.38 | 7.29 | 3.86 | 2.57 | 5.1 |
Potassium | mg | 300 | 268 | 222 | 279 | 96 | 265 |
Magnesium | mg | 48 | 37 | 44 | 60 | 43 | 39 |
Sodium | mg | 108 | 8 | 69 | 286 | 286 | 10 |
Vitamins | |||||||
Vitamin C | mg | 0.9 | 0.9 | 0.0 | 0.0 | 0.0 | 0.0 |
Folate | µg | 127 | 115 | 140 | 128 | 147 | 124 |
Lipids | |||||||
Total saturated | g | 0.000 | 0.000 | 0.000 | 1.790 | 1.790 | 0.000 |
Total monounsaturated fatty acids | g | 0.000 | 0.000 | 0.000 | 14.290 | 14.290 | 0.000 |
Total polyunsaturated fatty acids | g | 0.000 | 0.000 | 0.000 | 5.360 | 5.360 | 0.000 |
Polyphenol | mg of gallic acid equiv/g | 12.47 | 14.14 | 13.68 | 12.60 | 12.52 | 11.73 |
Flavonoids | mg of rutin equiv/g | 1.78 | 2.59 | 1.55 | 1.28 | 0.98 | 1.65 |
Bean Name | Polyphenol Class | Polyphenol Sub-Class | Compound Name | References |
---|---|---|---|---|
Dark bean | Flavonoids | Anthocyanins | Cyanidin 3-O-glucoside, pelargonidin 3-O-glucoside, petunidin-3-O-β-glucopyranoside, malvidin 3-O-glucoside, delphinidin acetyl-glucoside, pelargonidin acetyl glucoside, pelargonidin 3-O-malonyl glucoside, petunidin feruloyl glucose | [61] |
Wild and weedy Mexican bean, pinto and black beans | Flavonoids | Anthocyanins | Peonidin, pelargonidin, cyanidin | [78,85] |
Dark bean, Wild, and weedy Mexican bean | Flavonoids | Anthocyanins | Delphinidin 3-O-glucoside | [61,78] |
Alubia, black, cranberry, dark red kidney, great northern, light red kidney, navy, pink, pinto, and small red | Flavonoids | Anthocyanins | Petunidin 3-O-(6″-acetyl-glucoside) | [71,81] |
Dark and kidney bean, zolfino landraces | Flavonoids | Anthocyanins | Pelargonidin 3,5-O-diglucoside | [45,61] |
Alubia, black, cranberry, dark red kidney, great northern, light red kidney, navy, pink, pinto, and small red | Flavonoids | Anthocyanins | Delphinidin 3-O-glucosyl-glucoside | [71,86] |
Dark bean | Flavonoids | Flavanols | (+)-Catechin, (-)-epicatechin, (+)-gallocatechin, procyanidin dimer, (-)-epigallocatechin, Procyanidin dimer B2, procyanidin dimer B3, procyanidin dimer B4, procyanidin trimer, procyanidin trimer EEC, naringenin 7-glucoside | [61] |
Dark bean | Flavonoids | Flavanones | Naringenin, hesperetin, naringin, naringenin 7-O-rutinoside, naringenin 7-O-glucoside, naringenin-7-methyl ether 2, hesperetin 3′-O-glucuronide, hesperetin 7-O-glucuronide, hesperetin 3′,7-O-diglucuronide, hesperetin 5,7-O-diglucuronide, hesperetin 7-O-rutinoside | [61] |
Dark bean | Flavonoids | Flavones | Apigenin, apigenin 7-O-glucoside | [61] |
Brazilian bean | Flavonoids | Flavones | Chrysin | [66] |
Dark bean, Brazilian bean, Mexican bean | Flavonoids | Flavonols | Kaempferol | [35,61,66] |
Dark bean, Brazilian bean, Mexican bean | Flavonoids | Flavonols | Quercetin | [35,61,66] |
Dark bean, and Brazilian bean | Flavonoids | Flavonols | Quercetin 3-O-galactoside, Quercetin 3-O-glucoside, Quercetin 3-O-rutinoside, Myricetin, Myricetin 3-O-glucoside, Myricetin 3-O-rhamnoside, Kaempferol 3-O-glucoside, Kaempferol 3-O-rutinoside | [61,66] |
Pinto beans, zolfino landraces | Flavonoids | Flavonols | Kaempferol 3-O-glucosylxylose | [63,87] |
Alubia, black, cranberry, dark red kidney, great northern, light red kidney, navy, pink, pinto, and small red | Flavonoids | Flavonols | Kaempferol 3-O-xylosyl-glucoside | [71,81] |
Pinto beans | Flavonoids | Flavonols | Kaempferol 3-O-acetyl-glucoside | [63] |
Dark bean, Brazilian bean | Flavonoids | Isoflavonoids | Daidzein | [61,66] |
Dark bean, Brazilian bean | Flavonoids | Isoflavonoids | Genistein | [61,66] |
Dark bean | Flavonoids | Isoflavonoids | Biochanin A | [61] |
Pinto and black beans | Flavonoids | Isoflavonoids | Glycitein | [85] |
Dark bean | Flavonoids | Isoflavonoids | Dihydrogenistein | [61] |
Brazilian bean | Polyphenols | Polyphenols | Coumestrol | [66] |
Dark bean, pinto and black beans, Mexican bean | Phenolic acids | Hydroxybenzoic acids | Protocatechuic acid | [35,61,85] |
Dark bean | Phenolic acids | Hydroxybenzoic acids | Gallic acid | [61] |
Mexican bean | Phenolic acids | Hydroxybenzoic acids | Vanillic acid | [35] |
Dark bean, Mexican bean | Phenolic acids | Hydroxycinnamic acids | p-Coumaric acid | [35,61] |
Pinto and black beans | Phenolic acids | Hydroxycinnamic acids | Caffeic acid | [85] |
Dark bean, Mexican bean | Phenolic acids | Hydroxycinnamic acids | Ferulic acid | [35,61] |
Dark bean | Phenolic acids | Hydroxycinnamic acids | Sinapic acid, Ferulic acid 4-glucoside | [61] |
Dark bean | Stilbenes | Stilbenes | trans-Resveratrol, resveratrol 3-O-glucoside | [61] |
Bean Name | Polyphenols Names | Model/Subjects | Dosage | Experimental Period | Activities | References |
---|---|---|---|---|---|---|
Kidney bean | p-coumaric, ferulic and sinapic acids, quercetin, kaempferol, procyanidins B-2 and B-3 and tannins | Brochothrix thermosphacta, Staphylococcus aureus, Listeria monocytogenes Scott A, Salmonella typhimurium, E. coli O157: H7, Pseudomonas fragi, and Lactobacillusplantarum | 62.5 to 500 µg/mL | 36–48 h | Anti-bacterial activity | [95] |
Perla black bean | Delphinidin 3-O-glucoside, petunidin 3-O-glucoside and malvidin 3-O-glucoside | Bacterial strain: Pseudomonas aeruginosa, Proteus vulgaris, Klebsiella oxytoca, Enterococcus faecalis, Staphylococcus aureus, Staphylococcus epidermidis and Listeria monocytogenes; Parasitic strain: Giardia lamblia, Entamoeba hystolitica and Trichomonas vaginalis | 0.05, 0.5 and 5.0 mg/disk | 36–48 h | Anti-bacterial and anti-parasitic activity | [96] |
Peruvian and Brazilian bean | Chlorogenic and caffeic acid | In vitro | 50 µL | 24 h | Anti-diabetic and anti-hypertensive activity | [97] |
Brown bean | Total phenolics | Human (16)-randomized crossover design | 100 g/bw/p.o. | 30 days | Anti-diabetic and anti-obesity activity | [98] |
Kidney bean | Total phenolics and anthocyanins | Human with overweight subjects (39)-A randomized, double-blind, placebo-controlled clinical trial | 50 g/bw/p.o. | 60 days | Anti-diabetic and anti-obesity activity | [99] |
Navy bean | Total phenolics and anthocyanins | 3T3-L1 adipocytes | 50 g/bw/p.o. | 60 days | Anti-diabetic and anti-obesity activity | [100] |
Pinto bean | Delphinidin glucoside, petunidin glucoside, malvidin glucoside, anthocyanins, catechin, myricetin 3-O-arabinoside, epicatechin, vanillic acid, syringic acid and O-coumaric acid | in vitro | 50 µL | 24 h | Anti-diabetic activity | [101] |
Kidney bean | Phenolic acids and bioactive peptide fractions | In vitro | <1, 1–3.5, 3.5–5, 5–10, and 10 kDa | 24 h | Anti-diabetic activity | [102] |
Black bean | Phenolic acids and bioactive peptide fractions | In vitro | 10.20 to 0.34 mg | 24 h | Anti-diabetic activity | [23] |
Black bean | Delphinidin-3-O-glucoside, petunidin-3-O-glucoside, and malvidin-3-O-glucoside | Caco-2 cells | Anthocyanin solutions (1 mg/mL), purified anthocyanins (100 µM malvidin, 100 µM delphinidin) or phloretin (100 µM). | 24–36 h | Anti-diabetic activity | [23] |
Black bean | Total phenolic, tannins and anthocyanins | Human (56)-diabetic patients | 100 g of black bean | 3 months | Anti-diabetic activity | [103] |
Kidney bean | Total phenolic, tannins and anthocyanins | Wistar albino rats | 200 mg/kg bw | 30 days | Anti-diabetic activity | [104] |
Black bean | Total phenolic, tannins and anthocyanins | Wistar albino rats | 200 mg/kg bw | 45 days | Anti-diabetic activity | [105] |
Pinto bean | Total phenolics | Human (12)-randomized, double-blind, placebo-controlled study | 100 g/bw/p.o. | 3 h | Anti-diabetic activity | [106] |
Navy bean | Total phenolics | Human with diabetes (17)-randomized 4 × 4 crossover trial | 50 g/bw/p.o. | 24 h | Anti-diabetic activity | [107] |
Black bean | Total phenolics and anthocyanins | In vitro | 100 µg | 24 h | Anti-diabetic activity | [108] |
White kidney bean | Total phenolics | Wistar albino rats | 50 mg/kg bw/p.o. | 7 days | Anti-diabetic activity | [109,110] |
Black bean | Phenolic acids and bioactive peptide fractions | In vitro | 10.20–0.34 mg | 24 h | Anti-diabetic, and anti-hypertensive activities | [101] |
Zolfino landrace | Phenolic acids | in vitro | 700 µL | 24 h | Anti-diabetic, anti-oxidant and anti-inflammatory activities | [111] |
Kidney bean | Phenolic acids (chlorogenic acid, gallic acid, p-hydroxy benzoic acid, caffeic acid, protocatechuic acid, p-coumaric acid, rosmarinic acid, ferulic acid, sinapic acid and ellagic acid) and flavonoids (epicatechin, cate chin, gallocatechin gallate, epigallocatechin gallate, quercetin, hesperidin, and rutin) | Male Wistar rats | 0.4, 0.8 and 1.2 g/kg bw/p.o. for 6 weeks | 21 days | Anti-diabetic, hypolipidemic and cardioprotective activity | [112] |
Kidney bean | Lectins and polyphenol | Fusarium oxysporum, Coprinus comatus, and Rhizoctonia solani | 20–200 µg/mL | 24 h | Antifungal activity | [113] |
Kidney bean | Total phenolics | Sprague-Dawley rats | 0, 7.5%, 15%, 30% or 60% w/w | 7 days | Anti-hepatotoxic effect | [114] |
White and red bean | Ferulic, coumaric, Sinapic acid, Catechin, Malvidin 6-O-glucoside, Quercetin, | Macrophages cell line RAW 264.7 | 20 µL | 36–48 h | Anti-inflammatory activity | [115] |
Navy and pinto bean | Phenolic acids and bioactive peptide fractions | RAW 264.7 macrophages | 1–3.5, 3.5–5, 5–10, and 10 kDa | 36–48 h | Anti-inflammatory activity | [102] |
Black, navy, kidney and pinto bean | (+)-catechin | Salmonella typhimurium strains TA98 and TA100 | 2.5, 5, 10, 12.5, 15 and 25 µg | 24 h | Anti-mutagenic activity | [62] |
Black and kidney beans | Quercetin, kaempferol, p-coumaric acid, ferulic acid, p-hydroxybenzoic acid, and vanillic acid | Sprague-Dawley rats and a diet-induced obesity model in C57Bl/6 mice | 7.5%, 15%, 30% or 60% w/w | 7 days | Anti-obesity activity | [116] |
Black bean | Total phenolics | In vitro | 50–200 µL | 24 h | Anti-oxidant and anti-inflammatory activities | [117] |
Kidney bean | Flavonoids | HMEC-1 line | 0.7 mg | 36–48 h | Anti-oxidant and anti-inflammatory activities | [118] |
Black bean | Total phenolic, tannins and anthocyanins | Human (12)-randomized, controlled, crossover trial | 100 g of black bean meal and soup | 3 days | Anti-oxidant and anti-inflammatory activities | [119] |
Navy and black bean | Phenolic acids, flavonoids, and anthocyanins | C57BL/6 mice | 20% navy bean or black bean/p.o. | 2 weeks | Anti-oxidant and anti-inflammatory activities | [15] |
White and dark kidney beans | Phenolic acids, flavonoids, and anthocyanins | C57BL/6 mice | 20% navy bean or black bean/p.o. | 2 weeks | Anti-oxidant and anti-inflammatory activities | [19] |
Cranberry bean | Phenolic acids, flavonoids, and anthocyanins | C57BL/6 mice | 20% navy bean or black bean/p.o. | 2 weeks | Anti-oxidant and anti-inflammatory activities | [26] |
Navy and black beans | Phenolic acids, flavonoids, and anthocyanins | C57BL/6 mice | 20% navy bean or black bean/p.o. | 2 weeks | Anti-oxidant and anti-inflammatory activities | [120] |
Pinto, navy and black beans | (+)-catechin | Salmonella typhimurium strains TA98 and TA100 | 2.5, 5, 10, 12.5, 15 and 25 µg | 24 h | Anti-oxidant and anti-mutagenecity activities | [90] |
Pinto, navy and black beans | Phenolic acids and Lectin-free fractions | Human erythrocytes and Saccharomyces cerevisiae cells | 0.2 mg | 24 h | Anti-oxidant and anti-mutagenic effects | [93] |
Black and kidney beans | Catechin | In vitro | 50–100 µL | 24 h | Anti-oxidant and anti-mutagenic activities | [91] |
12 varieties of non-pigmented bean, red bean, speckled bean, and dark bean | Gallic acid, chlorogenic acid, epicatechin, myricetin, formononetin, caffeic acid, and kaempferol | In vitro human epithelial colorectal adenocarcinoma (Caco-2) cells, breast cancer (MCF-7), and A549 NSCLC cell line | 15–300 µL | 36–48 h | Anti-oxidant and anti-proliferative Activities | [121] |
Black bean | Genistein, non-glycosylated flavonols | In vitro mammary gland, hepatic and colon cancer cell lines | 50–200 µL | 36–48 h | Anti-oxidant and anti-proliferative activities | [122] |
Black bean | Total phenolics | Wistar albino rats | 200 mg/kg bw/p.o. | 45 days- | Anti-oxidant anti-diabetic and anti-hyperlipidemic activities | [123] |
Dalia bean | Coumaric, salicylic, gallic, caffeic acids, epigallocatechin, rutin and quercetin, and flavonoids | In vitro | 100 µL | 24 h | Anti-oxidant activity | [124] |
Brazilian bean | Ferulic, sinapic, chlorogenic, and hydroxycinnamic acids | In vitro | 50 µL | 24 h | Anti-oxidant activity | [125] |
Pinto and black beans | Total phenolics, phenolic acids, isoflavones, and anthocyanins | In vitro | 50 µL | 24 h | Anti-oxidant activity | [64,85,91] |
Brazilian bean | Total phenolics, and phenolic acids | In vitro | 50–100 µL | 24 h | Anti-oxidant activity | [126] |
Black bean | Total phenolics | In vitro | 200 µL | 24 h | Anti-oxidant activity | [127,128] |
Yellow string bean | Total polyphenolics | In vitro | 10–100 µL | 24 h | Anti-oxidant activity | [92] |
Black bean | Total phenolics | Wistar albino rats | 200 mg/kg bw/p.o. | 45 days | Anti-oxidant activity | [94] |
Black bean | (+)-catechin, quercetin, vanillin and ellagic, caffeic, ferulic, gallic, chlorogenic, and sinapic acids | Human and in vitro | 1 g/p.o. | 36–48 h | Anti-oxidant activity and enhance gastrointestinal digestion and simulated colonic fermentation | [129] |
Dark bean | p-coumaric, ferulic, sinapic acids, myricetin, quercetin, kaempferol, flavanones, hesperetin and naringenin derivatives | In vitro cell line cultures of Astrocytes (U-373), renal adenocarcinoma (TK-10), breast adenocarcinoma (MCF-7) and melanoma (UACC-62) | 700 µL | 36–48 h | Anti-oxidant, neuroprotective and anticancer activities | [61] |
Kidney bean | Total phenolics | Female Sprague Dawley rats | 0, 7.5%, 15%, 30% or 60% w/w | 46 days | Chemoprotective effect on breast cancer | [130] |
Black bean | Total phenolics | Female Sprague Dawley rats | 7.5%, 15%, 30% or 60% w/w | 46 days | Chemoprotective effect on breast cancer | [131] |
Black, pinto and kidney beans | Tannins | Male Sprague–Dawley rats | 7.5%, 15%, 30% or 60% w/w | 46 days | Chemoprotective effect on breast cancer | [132] |
Black bean | Tannins | Male Sprague–Dawley rats | 2.5 g/kg bw/p.o. | 9 weeks | Chemoprotective effect on colon cancer | [133] |
Black and navy beans | Tannins | Male Sprague–Dawley rats | 2.5 g/kg bw/p.o. | 9 weeks | Chemoprotective effect on colon cancer | [134] |
Black beans | Tannins | Male Sprague–Dawley rats | 2.5 g/kg bw/p.o. | 9 weeks | Chemoprotective effect on colon cancer | [135,136] |
Kidney bean | Tannins | Human HT-29 cell lines | 100 µL | 48 h | Chemoprotective effect on colon cancer | [137] |
Kidney bean | Tannins | Sprague–Dawley rats and Clostridium butyricum strain MIYAIRI588 | 2.5 g/kg bw/p.o. | 9 weeks | Chemoprotective effect on colon cancer | [138] |
Black bean | (+)-catechin | Human HT-29 cell lines | 20 mg | 48 h | Chemoprotective effect on colon cancer | [139] |
Black bean | Flavonoids | In vitro | 5 mg | 24 h | Cholesterol-lowering effects | [140] |
Black bean | Orientin, isoorientin, rutin myricetin-3-O-rhamnoside, isorhamnetin-3-O-glucoside, isoquercitrin, myricetin, luteolin, quercetin, kaempferol, hyperoside, luteolin-7-O-glucoside, kaempferol-glucuronide, caffeine, isorhamnetin-3-O-glucoside, hydroxycinnamic acid, and proanthocyanidins | Male Wistar rats | 2% bean seed coat extract/p.o. | 7 days | Hypoglycemic and hypolipidemic effects | [141] |
Black bean | Total phenolics | Wistar albino rats | 200 mg/kg bw/p.o. | 45 days | Hypoglycemic and hypolipidemic effects | [142] |
Black bean | Flavonoids | Male Wistar rats | 200, 400 mg/kg bw | 7 days | Hypoglycemic effect | [143,144] |
Navy and pinto beans | Flavonoids | Male Wistar rats | 50, 200, 500 mg/kg bw | 15 days | Hypoglycemic effect and anti-obesity effect | [145] |
Kidney bean | Flavonoids | Male Wistar rats | 50, 200, 500 mg/kg bw | 21 days | Hypoglycemic effect and anti-obesity effect | [146] |
Black bean | Flavonoids | Obese Zucker fa/fa rats | 50 and 500 mg/kg bw | 3–7 days, 20 days | Hypoglycemic effect and anti-obesity effect | [147] |
Black bean | Catechin | Male Wistar rats | 50 mg/kg bw | 21 days | Hypoglycemic effect and anti-obesity effect | [109] |
Black bean | Flavonoids | CD1 mice | 200, 400 mg/kg bw | 45 days | Hypoglycemic effect and anti-obesity effect | [148] |
Black bean | Total phenolic, tannins and anthocyanins | CD1 mice | 200, 400 mg/kg bw | 21 days | Hypoglycemic effect and anti-obesity effect | [149] |
Black bean | Quercetin 3-O-glucoside | Rat hepatocytes and C57BL/6 mice | 25 mg | 48 h | Hypolipidemic activity | [140] |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ganesan, K.; Xu, B. Polyphenol-Rich Dry Common Beans (Phaseolus vulgaris L.) and Their Health Benefits. Int. J. Mol. Sci. 2017, 18, 2331. https://doi.org/10.3390/ijms18112331
Ganesan K, Xu B. Polyphenol-Rich Dry Common Beans (Phaseolus vulgaris L.) and Their Health Benefits. International Journal of Molecular Sciences. 2017; 18(11):2331. https://doi.org/10.3390/ijms18112331
Chicago/Turabian StyleGanesan, Kumar, and Baojun Xu. 2017. "Polyphenol-Rich Dry Common Beans (Phaseolus vulgaris L.) and Their Health Benefits" International Journal of Molecular Sciences 18, no. 11: 2331. https://doi.org/10.3390/ijms18112331
APA StyleGanesan, K., & Xu, B. (2017). Polyphenol-Rich Dry Common Beans (Phaseolus vulgaris L.) and Their Health Benefits. International Journal of Molecular Sciences, 18(11), 2331. https://doi.org/10.3390/ijms18112331