Adjunctive Therapy Approaches for Ischemic Stroke: Innovations to Expand Time Window of Treatment
Abstract
:1. Introduction
2. Adjunctive Treatment to Expand Therapeutic Time Window for tPA
3. Pharmacological Approaches to Extend Thrombolytic Time Window for Ischemic Stroke Treatment
3.1. Ascorbic Acid
3.2. Atorvastatin
3.3. Batimastat (BB-94)
3.4. Bryostatin
3.5. Candesartan
3.6. Cilostazol
3.7. Dodecafluoropentane Emulsion (DDFPe) Nanodroplets
3.8. Fasudil
3.9. Granulocyte Colony-Stimulating Factor (G-CSF)
3.10. Ilomastat (GM6001)
3.11. Imatinib
3.12. IMM-H004, a Coumarin Derivative
3.13. Minocycline
4. Non-Drug Adjuvants to Extend Thrombolytic Time Window for Ischemic Stroke Treatment
4.1. Minocycline and Neural Stem Cells
4.2. Normobaric Hyperoxia (NBO) and Hyperbaric Oxygen (HBO) Therapy
4.3. Others
5. Summary and Conclusions
Acknowledgments
Author Contributions
Conflict of Interest
References
- Koton, S.; Schneider, A.L.; Rosamond, W.D.; Shahar, E.; Sang, Y.; Gottesman, R.F.; Coresh, J. Stroke incidence and mortality trends in US communities, 1987 to 2011. JAMA 2014, 312, 259–268. [Google Scholar] [CrossRef] [PubMed]
- NINDS rt-PA Stroke Study Group. Intracerebral hemorrhage after intravenous tPA therapy for ischemic stroke. Stroke 1997, 28, 2109–2118. [Google Scholar]
- Go, A.S.; Mozaffarian, D.; Roger, V.L.; Benjamin, E.J.; Berry, J.D.; Blaha, M.J.; Dai, S.; Ford, E.S.; Fox, C.S.; Franco, S.; et al. American Heart Association Statistics Committee and Stroke Statistics Subcommittee. Heart disease and stroke statistics—2014 update: A report from the American Heart Association. Circulation 2014, 129, e28–e292. [Google Scholar] [CrossRef] [PubMed]
- Graham, G.D. Tissue plasminogen activator for acute ischemic stroke in clinical practice: A meta-analysis of safety data. Stroke 2003, 34, 2847–2850. [Google Scholar] [CrossRef] [PubMed]
- Yip, T.R.; Demaerschalk, B.M. Estimated cost savings of increased use of intravenous tissue plasminogen activator for acute ischemic stroke in Canada. Stroke 2007, 38, 1952–1955. [Google Scholar] [CrossRef] [PubMed]
- Greenberg, D.A. Neurogenesis and stroke. CNS Neurol. Disord. Drug Targets 2007, 6, 321–325. [Google Scholar] [CrossRef] [PubMed]
- Adams, H.; Adams, R.; Del Zoppo, G.; Goldstein, L.B.; Stroke Council of the American Heart Association; American Stroke Association. Guidelines for the early management of patients with ischemic stroke: 2005 guidelines update a scientific statement from the Stroke Council of the American Heart Association/American Stroke Association. Stroke 2005, 36, 916–923. [Google Scholar] [PubMed]
- Wang, X.; Tsuji, K.; Lee, S.R.; Ning, M.; Furie, K.L.; Buchan, A.M.; Lo, E.H. Mechanisms of hemorrhagic transformation after tissue plasminogen activator reperfusion therapy for ischemic stroke. Stroke 2004, 35, 2726–2730. [Google Scholar] [CrossRef] [PubMed]
- Dela Peña, I.C.; Borlongan, C.V.; Shen, G.; Davis, W. Strategies to Extend Thrombolytic Time Window for Ischemic Stroke Treatment: An Unmet Clinical Need. J. Stroke 2017, 19, 50–60. [Google Scholar] [CrossRef] [PubMed]
- Rosell, A.; Foerch, C.; Murata, Y.; Lo, E.H. Mechanisms and markers for hemorrhagic transformation after stroke. Acta Neurochir. Suppl. 2008, 105, 173–178. [Google Scholar] [PubMed]
- Wang, W.; Li, M.; Chen, Q.; Wang, J. Hemorrhagic transformation after tissue plasminogen activator reperfusion therapy for ischemic stroke: Mechanisms, models, and biomarkers. Mol. Neurobiol. 2015, 52, 1572–1579. [Google Scholar] [CrossRef] [PubMed]
- Jickling, G.C.; Liu, D.Z.; Stamova, B.; Ander, B.P.; Zhan, X.; Lu, A.; Sharp, F.R. Hemorrhagic transformation after ischemic stroke in animals and humans. J. Cereb. Blood Flow Metab. 2014, 34, 185–199. [Google Scholar] [CrossRef] [PubMed]
- Lapchak, P.A. Hemorrhagic transformation following ischemic stroke: Significance, causes, and relationship to therapy and treatment. Curr. Neurol. Neurosci. Rep. 2002, 2, 38–43. [Google Scholar] [CrossRef] [PubMed]
- Kanazawa, M.; Takahashi, T.; Nishizawa, M.; Shimohata, T. Therapeutic strategies to attenuate hemorrhagic transformation after tissue plasminogen activator treatment for acute ischemic stroke. J. Atheroscler. Thromb. 2017, 24, 240–253. [Google Scholar] [CrossRef] [PubMed]
- Allahtavakoli, M.; Amin, F.; Esmaeeli-Nadimi, A.; Shamsizadeh, A.; Kazemi-Arababadi, M.; Kennedy, D. Ascorbic acid reduces the adverse effects of delayed daministration of tissue plasminogen activator in a rat stroke model. Basic Clin. Pharmacol. Toxicol. 2015, 117, 335–339. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Chopp, M.; Jia, L.; Cui, Y.; Lu, M.; Zhang, Z.G. Atorvastatin extends the therapeutic window for tPA to 6 h after the onset of embolic stroke in rats. J. Cereb. Blood Flow Metab. 2009, 29, 1816–1824. [Google Scholar] [CrossRef] [PubMed]
- Sumii, T.; Lo, E.H. Involvement of matrix metalloproteinase in thrombolysis-associated hemorrhagic transformation after embolic focal ischemia in rats. Stroke 2002, 33, 831–836. [Google Scholar] [CrossRef] [PubMed]
- Tan, Z.; Lucke-Wold, B.P.; Logsdon, A.F.; Turner, R.C.; Tan, C.; Li, X.; Hongpaison, J.; Alkon, D.L.; Simpkins, J.W.; Rosen, C.L.; et al. Bryostatin extends tPA time window to 6 h following middle cerebral artery occlusion in aged female rats. Eur. J. Pharmacol. 2015, 764, 404–412. [Google Scholar] [CrossRef] [PubMed]
- Ishrat, T.; Pillai, B.; Ergul, A.; Hafez, S.; Fagan, S.C. Candesartan reduces the hemorrhage associated with delayed tissue plasminogen activator treatment in rat embolic stroke. Neurochem. Res. 2013, 38, 2668–2677. [Google Scholar] [CrossRef] [PubMed]
- Culp, W.C.; Brown, A.T.; Lowery, J.D.; Arthur, M.C.; Roberson, P.K.; Skinner, R.D. Dodecafluoropentane emulsion extends window for tPA therapy in a rabbit stroke model. Mol. Neurobiol. 2015, 52, 979–984. [Google Scholar] [CrossRef] [PubMed]
- Ishiguro, M.; Kawasaki, K.; Suzuki, Y.; Ishizuka, F.; Mishiro, K.; Egashira, Y.; Ikegaki, I.; Tsuruma, K.; Shimazawa, M.; Yoshimura, S.; et al. A Rho kinase (ROCK) inhibitor, fasudil, prevents matrix metalloproteinase-9-related hemorrhagic transformation in mice treated with tissue plasminogen activator. Neuroscience 2012, 220, 302–312. [Google Scholar] [CrossRef] [PubMed]
- Dela Peña, I.C.; Yoo, A.; Tajiri, N.; Acosta, S.A.; Ji, X.; Kaneko, Y.; Borlongan, C.V. Granulocyte colony-stimulating factor attenuates delayed tPA-induced hemorrhagic transformation in ischemic stroke rats by enhancing angiogenesis and vasculogenesis. J. Cereb. Blood Flow Metab. 2015, 35, 338–346. [Google Scholar] [CrossRef] [PubMed]
- Mishiro, K.; Ishiguro, M.; Suzuki, Y.; Tsuruma, K.; Shimazawa, M.; Hara, H. A broad-spectrum matrix metalloproteinase inhibitor prevents hemorrhagic complications induced by tissue plasminogen activator in mice. Neuroscience 2012, 205, 39–48. [Google Scholar] [CrossRef] [PubMed]
- Su, E.J.; Fredriksson, L.; Geyer, M.; Folestad, E.; Cale, J.; Andrae, J.; Gao, Y.; Pietras, K.; Mann, K.; Yepes, M.; et al. Activation of PDGF-CC by tissue plasminogen activator impairs blood-brain barrier integrity during ischemic stroke. Nat. Med. 2008, 14, 731–737. [Google Scholar] [CrossRef] [PubMed]
- Zuo, W.; Chen, J.; Zhang, S.; Tang, J.; Liu, H.; Zhang, D.; Chen, N. IMM-H004 prevents toxicity induced by delayed treatment of tPA in a rat model of focal cerebral ischemia involving PKA-and PI3K-dependent Akt activation. Eur. J. Neurosci. 2014, 39, 2107–2118. [Google Scholar] [CrossRef] [PubMed]
- Murata, Y.; Rosell, A.; Scannevin, R.H.; Rhodes, K.J.; Wang, X.; Lo, E.H. Extension of the thrombolytic time window with minocycline in experimental stroke. Stroke 2008, 39, 3372–3377. [Google Scholar] [CrossRef] [PubMed]
- Eckert, A.D.; Hamblin, M.; Lee, J.P. Neural Stem Cells Reduce Symptomatic Inflammation and Mortality in Aged Stroke Mice following Delayed tPA Treatment. FASEB J. 2017, 31, 693–696. [Google Scholar]
- Liang, J.; Qi, Z.; Liu, W.; Wang, P.; Shi, W.; Dong, W.; Ji, X.; Luo, Y.; Liu, K.J. Normobaric hyperoxia slows blood-brain barrier damage and expands the therapeutic time window for tissue-type plasminogen activator treatment in cerebral ischemia. Stroke 2015, 46, 1344–1351. [Google Scholar] [CrossRef] [PubMed]
- Ballabh, P.; Braun, A.; Nedergaard, M. The blood-brain barrier: An overview: Structure, regulation, and clinical implications. Neurobiol. Dis. 2004, 16, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Ishiguro, M.; Mishiro, K.; Fujiwara, Y.; Chen, H.; Izuta, H.; Tsuruma, K.; Shimazawa, M.; Yoshimura, S.; Satoh, M.; Iwama, T.; et al. Phosphodiesterase-III inhibitor prevents hemorrhagic transformation induced by focal cerebral ischemia in mice treated with tPA. PLoS ONE 2010, 5. [Google Scholar] [CrossRef] [PubMed]
- Keep, R.F.; Zhou, N.; Xiang, J.; Andjelkovic, A.V.; Hua, Y.; Xi, G. Vascular disruption and blood-brain barrier dysfunction in intracerebral hemorrhage. Fluids Barriers CNS 2014, 11, 18. [Google Scholar] [CrossRef] [PubMed]
- Thiyagarajan, M.; Fernández, J.A.; Lane, S.M.; Griffin, J.H.; Zlokovic, B.V. Activated protein C promotes neovascularization and neurogenesis in post-ischemic brain via protease activated receptor 1. J. Neurosci. 2008, 28, 12788–12797. [Google Scholar] [CrossRef] [PubMed]
- Ullegaddi, R.; Powers, H.J.; Gariballa, S.E. Antioxidant supplementa-tion with or without B-group vitamins after acute ischemic stroke: A randomized controlled trial. JPEN J. Parenter Enter. Nutr. 2006, 30, 108–114. [Google Scholar] [CrossRef] [PubMed]
- Tan, Z.; Turner, R.C.; Leon, R.L.; Li, X.; Hongpaisan, J.; Zheng, W.; Logsdon, A.F.; Naser, Z.J.; Alkon, D.L.; Rosen, C.L.; et al. Bryostatin improves survival and reduces ischemic brain injury in aged rats after acute ischemic stroke. Stroke 2013, 44, 3490–3497. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, Y.; Nagai, N.; Umemura, K.; Collen, D.; Lijnen, H.R. Stromelysin-1 (MMP-3) is critical for intracranial bleeding after t-PA treatment of stroke in mice. J. Thromb. Haemost. 2007, 5, 1732–1739. [Google Scholar] [CrossRef] [PubMed]
- Huang, Z.; Huang, P.L.; Ma, J.; Meng, W.; Ayata, C.; Fishman, M.C.; Moskowitz, M.A. Enlarged infarcts in endothelial nitric oxide synthase knockout mice are attenuated by nitro-L-arginine. J. Cereb. Blood Flow Metab. 1996, 16, 981–987. [Google Scholar] [CrossRef] [PubMed]
- Matsumoto, M. Cilostazol in secondary prevention of stroke: Impact of the cilostazol stroke prevention study. Atheroscler. Suppl. 2005, 6, 33–40. [Google Scholar] [CrossRef] [PubMed]
- Koto, T.; Takubo, K.; Ishida, S.; Shinoda, H.; Inoue, M.; Tsubota, K.; Okada, Y.; Ikeda, E. Hypoxia disrupts the barrier function of neural blood vessels through changes in the expression of claudin-5 in endothelial cells. Am. J. Pathol. 2007, 170, 1389–1397. [Google Scholar] [CrossRef] [PubMed]
- Shibuya, M.; Suzuki, Y.; Sugita, K.; Saito, I.; Sasaki, T.; Takakura, K.; Nagata, I.; Kikuchi, H.; Takemae, T.; Hidaka, H.; et al. Effect of AT877 on cerebral vasospasm after aneurismal subarachnoid hemorrhage. Results of a prospective placebo-controlled double-blind trial. J. Neurosurg. 1992, 76, 571–577. [Google Scholar] [CrossRef] [PubMed]
- Hartung, T. Anti-inflammatory effects of granulocyte colony-stimulating factor. Curr. Opin. Hematol. 1998, 5, 221–225. [Google Scholar] [CrossRef] [PubMed]
- Sobrino, T.; Millán, M.; Castellanos, M.; Blanco, M.; Brea, D.; Dorado, L.; Rodríguez-González, R.; Rodríguez-Yáñez, M.; Serena, J.; Leira, R.; et al. Association of growth factors with arterial recanalization and clinical outcome in patients with ischemic stroke treated with tPA. J. Thromb. Haemost. 2010, 8, 1567–1574. [Google Scholar] [CrossRef] [PubMed]
- Hao, J.L.; Nagano, T.; Nakamura, M.; Kumagai, N.; Mishima, H.; Nishida, T. Galardin inhibits collagen degradation by rabbit keratocytes by inhibiting the activation of pro-matrix metalloproteinases. Exp. Eye Res. 1999, 68, 565–572. [Google Scholar] [CrossRef] [PubMed]
- Mayne, M.; Ni, W.; Yan, H.J.; Xue, M.; Johnston, J.B.; Del Bigio, M.R.; Peeling, J.; Power, C. Antisense oligodeoxynucleotide inhibition of tumor necrosis factor-alpha expression is neuroprotective after intracerebral hemorrhage. Stroke 2001, 32, 240–248. [Google Scholar] [CrossRef] [PubMed]
- Fylaktakidou, K.C.; Hadjipaclou-Litina, D.; Litinas, K.E.; Nicolaides, D.N. Natural and synthetic coumarin derivatives with anti-inflammatory/antioxidant activities. Curr. Pharm. Des. 2004, 30, 3813–3833. [Google Scholar] [CrossRef]
- Machado, L.S.; Kozak, A.; Ergul, A.; Hess, D.; Borlongan, C.V.; Fagan, S.C. Delayed minocycline inhibits ischemia-activated matrix metalloproteinases 2 and 9 after experimental stroke. BMC Neurosci. 2006, 7, 56. [Google Scholar] [CrossRef] [PubMed]
- Fagan, S.C.; Waller, J.L.; Nichols, F.T.; Edwards, D.J.; Pettigrew, L.C.; Clark, W.M.; Hall, C.E.; Switzer, J.A.; Ergul, A.; Hess, D.C. Minocycline to improve neurologic outcome in stroke (MINOS): A dose-finding study. Stroke 2010, 41, 2283–2287. [Google Scholar] [CrossRef] [PubMed]
- Switzer, J.A.; Hess, D.C.; Ergul, A.; Waller, J.L.; Machado, L.S.; Portik-Dobos, V.; Pettigrew, L.C.; Clark, W.M.; Fagan, S.C. Matrix metalloproteinase-9 in an exploratory trial of intravenous minocycline for acute ischemic stroke. Stroke 2011, 42, 2633–2635. [Google Scholar] [CrossRef] [PubMed]
- Blacker, D.J.; Prentice, D.; Alvaro, A.; Bates, T.R.; Bynevelt, M.; Kelly, A.; Kho, L.K.; Kohler, E.; Hankey, G.J.; Thompson, A.; et al. Reducing haemorrhagic transformation after thrombolysis for stroke: A strategy utilising minocycline. Stroke Res. Treat. 2013, 2013. [Google Scholar] [CrossRef] [PubMed]
- Borlongan, C.V. Bone marrow stem cell mobilization in stroke: A ‘bonehead’ may be good after all! Leukemia 2011, 25, 1674–1686. [Google Scholar] [CrossRef] [PubMed]
- Dela Peña, I.; Antoine, A.; Reyes, S.; Hernandez, D.; Acosta, S.; Pabon, M.; Tajiri, N.; Kaneko, Y.; Borlongan, C.V. Stem cell-based neuroprotective strategies in stroke. In Neural Stem Cells in Health and Disease; Shetty, A., Ed.; World Scientific: Singapore, 2015; pp. 371–408. [Google Scholar]
- Bentley, P.; Ganesalingam, J.; Carlton Jones, A.L.; Mahady, K.; Epton, S.; Rinne, P.; Sharma, P.; Halse, O.; Mehta, A.; Rueckert, D. Prediction of stroke thrombolysis outcome using CT brain machine learning. Neuroimage Clin. 2014, 4, 635–640. [Google Scholar] [CrossRef] [PubMed]
- Berkhemer, O.A.; Fransen, P.S.; Beumer, D.; van den Berg, L.A.; Lingsma, H.F.; Yoo, A.J.; Schonewille, W.J.; Vos, J.A.; Nederkoorn, P.J.; Wermer, M.J.; et al. A randomized trial of intraarterial treatment for acute ischemic stroke. N. Engl. J. Med. 2014, 372, 1009–1018. [Google Scholar] [CrossRef] [PubMed]
- Minnerup, J.; Wersching, H.; Teuber, A.; Wellmann, J.; Eyding, J.; Weber, R.; Reimann, G.; Weber, W.; Krause, L.U.; Kurth, T.; et al. Outcome after thrombectomy and intravenous thrombolysis in patients with acute ischemic stroke: A prospective observational study. Stroke 2016, 47, 1584–1592. [Google Scholar] [CrossRef] [PubMed]
- Huang, L.; Wong, S.; Snyder, E.Y.; Hamblin, M.H.; Lee, J.P. Human neural stem cells rapidly ameliorate symptomatic inflammation in early-stage ischemic-reperfusion cerebral injury. Stem Cell Res. Ther. 2014, 5. [Google Scholar] [CrossRef] [PubMed]
- Anderson, J.D.; Pham, M.T.; Contreras, Z.; Hoon, M.; Fink, K.; Johansson, H.J.; Rossignol, J.; Dunbar, G.L.; Showalter, M.; Fiehn, O.; et al. Mesenchymal stem cell-based therapy for ischemic stroke. Chin. Neurosurg. J. 2016, 2. [Google Scholar] [CrossRef]
- Nakazaki, M.; Sasaki, M.; Kataoka-Sasaki, Y.; Oka, S.; Namioka, T.; Namioka, A.; Onodera, R.; Suzuki, J.; Sasaki, Y.; Nagahama, H.; et al. Intravenous infusion of mesenchymal stem cells inhibits intracranial hemorrhage after recombinant tissue plasminogen activator therapy for transient middle cerebral artery occlusion in rats. J. Neurosurg. 2017, 6, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Bang, O.Y.; Lee, J.S.; Lee, P.H.; Lee, G. Autologous mesenchymal stem cell transplantation in stroke patients. Ann. Neurol. 2005, 57, 874–882. [Google Scholar] [CrossRef] [PubMed]
- Liu, N.; Deguchi, K.; Yamashita, T.; Liu, W.; Ikeda, Y.; Abe, K. Intracerebral transplantation of bone marrow stromal cells ameliorates tissue plasminogen activator-induced brain damage after cerebral ischemia in mice detected by in vivo and ex vivo optical imaging. J. Neurosci. Res. 2012, 90, 2086–2093. [Google Scholar] [CrossRef] [PubMed]
- Singhal, A.B. A review of oxygen therapy in ischemic stroke. Neurol. Res. 2007, 29, 173–183. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Sood, R.; Chen, Q.; Sakoglu, U.; Hendren, J.; Cetin, O.; Miyake, M.; Liu, K.J. Normobaric hyperoxia inhibits NADPH oxidase-mediated matrix metalloproteinase-9 induction in cerebral microvessels in experimental stroke. J. Neurochem. 2008, 107, 1196–1205. [Google Scholar] [CrossRef] [PubMed]
- Chang, C.F.; Niu, K.C.; Hoffer, B.J.; Wang, Y.; Borlongan, C.V. Hyperbaric oxygen therapy for treatment of postischemic stroke in adult rats. Exp. Neurol. 2000, 166, 298–306. [Google Scholar] [CrossRef] [PubMed]
- Hu, Q.; Manaenko, A.; Bian, H.; Guo, Z.; Huang, J.L.; Guo, Z.N.; Yang, P.; Tang, J.; Zhang, J.H. Hyperbaric Oxygen reduces infarction volume and hemorrhagic transformation through ATP/NAD+/Sirt1 pathway in hyperglycemic middle cerebral artery occlusion rats. Stroke 2017, 48, 1655–1664. [Google Scholar] [CrossRef] [PubMed]
- Zhai, W.W.; Sun, L.; Yu, Z.Q.; Chen, G. Hyperbaric oxygen therapy in experimental and clinical stroke. Med. Gas Res. 2016, 6, 111–118. [Google Scholar] [PubMed]
- Boussi-Gross, R.; Golan, H.; Volkov, O.; Bechor, Y.; Hoofien, D.; Beeri, M.S.; Ben-Jacob, E.; Efrati, S. Improvement of memory impairments in poststroke patients by hyperbaric oxygen therapy. Neuropsychology 2015, 29, 610–621. [Google Scholar] [CrossRef] [PubMed]
- Ehrenreich, H.; Weissenborn, K.; Prange, H.; Schneider, D.; Weimar, C.; Wartenberg, K.; Schellinger, P.D.; Bohn, M.; Becker, H.; Wegrzyn, M.; et al. Recombinant human erythropoietin in the treatment of acute ischemic stroke. Stroke 2009, 40, e647–e656. [Google Scholar] [CrossRef] [PubMed]
- Whiteley, W.N.; Emberson, J.; Lees, K.R.; Blackwell, L.; Albers, G.; Bluhmki, E.; Brott, T.; Cohen, G.; Davis, S.; Donnan, G.; et al. Risk of intracerebral haemorrhage with alteplase after acute ischaemic stroke: A secondary analysis of an individual patient data meta-analysis. Lancet Neurol. 2016, 15, 925–933. [Google Scholar] [CrossRef]
- Albers, G.W.; Goldstein, L.B.; Hess, D.C.; Wechsler, L.R.; Furie, K.L.; Gorelick, P.B.; Hurn, P.; Liebeskind, D.S.; Nogueira, R.G.; Saver, J.L.; et al. Stroke Treatment Academic Industry Roundtable (STAIR) recommendations for maximizing the use of intravenous thrombolytics and expanding treatment options with intra-arterial and neuroprotective therapies. Stroke 2011, 42, 2645–2650. [Google Scholar] [CrossRef] [PubMed]
- Lapchak, P.A.; Zhang, J.H.; Noble-Haeusslein, L.J. RIGOR guidelines: Escalating STAIR and STEPS for effective translational research. Transl. Stroke Res. 2013, 4, 279–285. [Google Scholar] [CrossRef] [PubMed]
- Diamandis, T.; Borlongan, C.V. One, two, three steps toward cell therapy for stroke. Stroke 2015, 46, 588–591. [Google Scholar] [CrossRef] [PubMed]
- Rubin, M.N.; Barrett, K.M. What to do with wake-up stroke. Neurohospitalist 2015, 5, 161–172. [Google Scholar] [CrossRef] [PubMed]
- Parsons, M.; Spratt, N.; Bivard, A.; Campbell, B.; Chung, K.; Miteff, F.; O’Brien, B.; Bladin, C.; McElduff, P.; Allen, C.; et al. A randomized trial of tenecteplase versus alteplase for acute ischemic stroke. N. Engl. J. Med. 2012, 366, 1099–1107. [Google Scholar] [CrossRef] [PubMed]
- Henninger, N.; Fisher, M. Extending the Time Window for Endovascular and Pharmacological Reperfusion. Transl. Stroke Res. 2016, 7, 284–293. [Google Scholar] [CrossRef] [PubMed]
Adjunctive Treatment (Dosage, Mode and Timing of Treatment) | Species & Stroke Model | tPA Dose, Mode & Timing of Treatment | Parameter/Molecular Target | Outcome | Timing of Evaluation | Ref. |
---|---|---|---|---|---|---|
Ascorbic acid (500 mg, p.o.) 5 h post stroke | Male rats; MCA cauterization | 1 mg/kg, i.v., 5 h post stroke | infarct volume | decreased | 48 h post stroke | [15] |
brain edema | decreased | |||||
brain permeability | decreased | |||||
MMP-9 | decreased | |||||
Sensorimotor functions | improved | |||||
Atovarstatin (First dose: 20 mg/kg 4 h after stroke, Second dose: 20 mg/kg at 24 h after the first dose, s.c.) | Male Wistar rats; embolic | 10 mg/kg, i.v., 6 h post stroke | HT | 7 h 30 h post stroke | [16] | |
infarct volume | decreased | |||||
neurological functions | improved | |||||
thrombolysis and vascular patency | increased | |||||
ICAM-1 | reduced | |||||
PAR-1 | reduced | |||||
Collagen type IV | reduced | |||||
MMP-9 | increased | |||||
Batimastat (MMP inhibitor; 50 mg/kg; i.p., 3 and 6 h after stroke) | Male spontaneously hypertensive rats; embolic | 10 mg/kg, i.v., 6 h post stroke | HT | decreased | 24 h post stroke | [17] |
infarct volume | decreased | |||||
neurological functions | improved | |||||
Mortality | decreased | |||||
Bryostatin (PKC modulator; 2.5 mg/kg, i.v., alongside tPA) | Female SD rats, 18–20 mo old; embolic | 5 mg/kg, i.v., 6 h post stroke | HT | decreased | 24 h post stroke | [18] |
infarct volume | not changed | |||||
MMP-9 | decreased | |||||
MMP-2 | not changed | |||||
PKCɛ | increased | |||||
PKCα | not changed | |||||
PKCδ | not changed | |||||
Candesartan (AT1R blocker; 1 mg/kg, i.v., 3 h after stroke) | Male Wistar rats (330–350 g); embolic | 10 mg/kg, i.v., 6 h post stroke | HT | decreased | 24 h post stroke | [19] |
infarct volume | not changed | |||||
MMP-9 | not changed | |||||
MMP-2 | not changed | |||||
MMP-3 | decreased | |||||
NF-κB | decreased | |||||
TNF-α | decreased | |||||
p-eNOS | decreased | |||||
Cilostazol (PDEIII-inhibitor; 10 mg/kg, i.p., before tPA) | Male ddY (22–26 g) 4 weeks old; intraluminal filament/reperfusion | 10 mg/kg, i.v., 6 h post stroke, before reperfusion | HT | decreased | 18 h post reperfusion 7 days post stroke | [17] |
infarct volume | decreased | |||||
MMP-9 | decreased | |||||
claudin 5 | enhanced | |||||
locomotor behavior | improved | |||||
Dodecafluoropentane emulsion (DDFPe) nanodroplets 0.3 mL/ kg, i.v. 1 h after stroke, and 5 additional doses at 90 min intervals | New Zealand male or female rabbits; 3.4 to 4.7 kg/bw; Embolic | 0.9 mg/kg tPA, 9 h after last DDFPe dose | stroke volume | decreased | 24 h post stroke | [20] |
neurological functions | improved | |||||
Fasudil (ROCK inhibitor; 3 mg/kg, i.p., before tPA) | Male SD rats (250–330 g); intraluminal filament/reperfusion | 10 mg/kg, i.v., 6 h post stroke, after reperfusion | HT | decreased | 18 h post reperfusion 7 days post stroke | [21] |
infarct volume | not changed | |||||
MMP-9 (in vitro) | decreased | |||||
locomotor behavior | improved | |||||
G-CSF (300 μg/kg, i.v., alongside tPA) | Male SD rats, (200–250 g) 9–10 weeks old; intraluminal filament/reperfusion | 10 mg/kg, i.v., post stroke, before reperfusion | HT | decreased | 24 h post drug treatment | [22] |
infarct volume | not changed | |||||
neurological functions | improved | |||||
Ang-1 | not changed | |||||
Ang-2 | increased | |||||
CD34 | increased | |||||
eNOS | increased | |||||
VEGFR2 | increased | |||||
vWF | increased | |||||
GM6001 (MMP inhibitor; 100 mg/kg, i.p., alongside tPA) | Male ddY mice (22–30 g) 4 weeks old; intraluminal filament/reperfusion | 10 mg/kg, i.v., 6 h post stroke, after reperfusion | HT | decreased | 48 h post stroke/reperfusion | [23] |
infarct volume | not examined | |||||
MMP-9 | decreased | |||||
claudin (in vitro, in vivo) | not changed | |||||
occludin (in vitro, in vivo) | enhanced | |||||
ZO-1 (in vitro, in vivo) | enhanced | |||||
Imatinib (PDGFR-α antagonist; 200 mg/kg, at 1 h after ischemia) | C57BL/6J mice, 10 weeks old, photothrombotic induction of MCAO | 10 mg/kg, i.v., 5 h after stroke | HT | decreased | 24 h post stroke | [24] |
IMM-H004 (Coumarin derivative; 6 mg/kg, i.v., alongside tPA) | Male SD rats (300–320 g); embolic Male SD rats (260–280 g); intraluminal filament/reperfusion | 10 mg/kg, i.v., post stroke | HT | decreased | 18 h post stroke 24 h post stroke 1, 2, 3 days post stroke 24 h post stroke 1–7 days post stroke 24 h post stroke/reperfusion 7 days post stroke/reperfusion | [25] |
infarct volume | decreased | |||||
neurological functions | improved | |||||
HT | decreased | |||||
infarct volume | decreased | |||||
neurological functions | improved | |||||
pro-MMP-9 | decreased | |||||
Akt (in vitro) | decreased | |||||
Ang-1 | increased | |||||
CD31 | increased | |||||
CD31 + Ki67 | increased | |||||
MMP-2 | not co-localized in astrocytes | |||||
occludin | decreased | |||||
Tie2 | increased | |||||
Minocycline (antibiotic; 3 mg/kg, intravenous (i.v.), 4 h after stroke) | Male SHR; embolic | 10 mg/kg, i.v., 6 h post stroke | HT | decreased | 24 h post stroke | [26] |
infarct volume | decreased | |||||
MMP-9 (plasma) | decreased |
Adjunctive Treatment (Dosage, Mode and Timing of Treatment) | Species & Stroke Model | tPA Dose, Mode & Timing of Treatment | Parameter/Molecular Target | Outcome | Timing of Evaluation | Ref. |
---|---|---|---|---|---|---|
Neural stem cells (1 day post stroke) + minocycline | Aged mice | 10 mg/kg, i.v., 6 h post stroke | neurological functions | improved | 48 h post stroke | [27] |
Intraluminal filament model | mortality | reduced | ||||
Normobaric oxygen (100% O2) | Male Sprague-Dawley rats (290–320 g) suture occlusion, and reperfusion | 10 mg/kg, i.v., 5 and 7 h post stroke, 15 min prior to reperfusion | HT | reduced | 24 h post stroke | [28] |
infarct volume | reduced | |||||
brain edema | reduced | |||||
BBB disruption | reduced | |||||
MMP-9 | reduced | |||||
Occludin | enhanced | |||||
Claudin-5 | enhanced | |||||
neurological deficits | reduced | |||||
mortality | decreased |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Knecht, T.; Story, J.; Liu, J.; Davis, W.; Borlongan, C.V.; Dela Peña, I.C. Adjunctive Therapy Approaches for Ischemic Stroke: Innovations to Expand Time Window of Treatment. Int. J. Mol. Sci. 2017, 18, 2756. https://doi.org/10.3390/ijms18122756
Knecht T, Story J, Liu J, Davis W, Borlongan CV, Dela Peña IC. Adjunctive Therapy Approaches for Ischemic Stroke: Innovations to Expand Time Window of Treatment. International Journal of Molecular Sciences. 2017; 18(12):2756. https://doi.org/10.3390/ijms18122756
Chicago/Turabian StyleKnecht, Talia, Jacob Story, Jeffrey Liu, Willie Davis, Cesar V. Borlongan, and Ike C. Dela Peña. 2017. "Adjunctive Therapy Approaches for Ischemic Stroke: Innovations to Expand Time Window of Treatment" International Journal of Molecular Sciences 18, no. 12: 2756. https://doi.org/10.3390/ijms18122756
APA StyleKnecht, T., Story, J., Liu, J., Davis, W., Borlongan, C. V., & Dela Peña, I. C. (2017). Adjunctive Therapy Approaches for Ischemic Stroke: Innovations to Expand Time Window of Treatment. International Journal of Molecular Sciences, 18(12), 2756. https://doi.org/10.3390/ijms18122756