Effects and Mechanisms of Total Flavonoids from Blumea balsamifera (L.) DC. on Skin Wound in Rats
Abstract
:1. Introduction
2. Results
2.1. Content and Identification of Total Flavonoids
2.2. Effects of Different Doses of Total Flavonoids on Wound Healing Rates in Rats
2.3. Effects of Different Doses of Total Flavonoids on CD68 Levels on Rats
2.4. Effects of Total Flavonoids on VEGF and TGF-β1 of the Wound Tissues on Rats
2.5. Effects of Total Flavonoids on Hydroxyproline Level in Wound Tissues of Rats
3. Discussion
4. Materials and Methods
4.1. Plant Collection and Total Flavonoids Preparation
4.2. Establishment of Rutin Standard Curve
4.3. Qualitative Characteristics of Chemical Constituents of Total Flavonoids Extract
4.4. Animals
4.5. Animal Modeling and Drug Treatments
4.6. Measurements of Wound Healing
4.7. Immunohistochemistry
4.8. Clinical Chemistry
4.9. Statistical Analysis
5. Conclusions
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Li, Y.; Jalili, R.B.; Ghahary, A. Accelerating skin wound healing by M-CSF through generating SSEA-1 and -3 stem cells in the injured sites. Sci. Rep. 2016, 6, 28979. [Google Scholar] [CrossRef] [PubMed]
- Wahl, S.M.; Sporn, M.B. Transforming growth factor type beta induces monocyte chemotaxis and growth factor production. Proc. Natl. Acad. Sci. USA 1987, 84, 5788–5792. [Google Scholar] [CrossRef] [PubMed]
- Russell, P.K.; Zhang, H.P.; Breit, S.N. TGF-β and Related Cytokines in Inflammation; Birkhäuser: Basel, Switzerland, 2001. [Google Scholar]
- Esser, S.; Wolburg, K.; Wolburg, H.; Breier, G.; Kurzchalia, T.; Risau, W. Vascular endothelial growth factor induces endothelial fenestrations in vitro. Brain Inj. 2014, 140, 947–959. [Google Scholar] [CrossRef]
- Ferrara, N. Role of vascular endothelial growth factor in regulation of physiological angiogenesis. Am. J. Physiol. Cell Physiol. 2001, 280, C1358–C1366. [Google Scholar] [PubMed]
- Ashcrof, G.S.; Mills, S.J.; Ashworth, J.J. Ageing and wound healing. Biogerontology 2002, 3, 337–345. [Google Scholar] [CrossRef]
- Leibovich, S.J.; Ross, R. The role of the macrophage in wound repair. A study with hydrocortisone and antimacrophage serum. Am. J. Pathol. 1975, 78, 71–100. [Google Scholar] [PubMed]
- Mantovani, A.; Sica, A.; Sozzani, S.; Allavena, P.; Vecchi, A.; Locati, M. The chemokine system in diverse forms of macrophage activation and polarization. Trends Immunol. 2004, 25, 677–686. [Google Scholar] [CrossRef] [PubMed]
- Hameed, A.; Hruban, R.H.; Gage, W.; Pettis, G.; Fox, W.M. Immunohistochemical expression of CD68 antigen in human peripheral blood T cells. Hum. Pathl. 1994, 25, 872–876. [Google Scholar] [CrossRef]
- Nayak, B.S.; Pereira, L.M.P. Catharanthus roseus flower extract has wound-healing activity in Sprague Dawley rats. BMC Complement. Altern. Med. 2006, 6, 41. [Google Scholar] [CrossRef] [PubMed]
- Prockop, D.J.; Kivirikko, K.I. Collagens: Molecular biology, diseases, and potentials for therapy. Biochemistry 1995, 64, 403–434. [Google Scholar] [CrossRef] [PubMed]
- Diegelmann, R.F.; Evans, M.C. Wound healing: An overview of acute, fibrotic and delayed healing. Front. Biosci. 2004, 9, 283–289. [Google Scholar] [CrossRef] [PubMed]
- Nayak, B.S.; Sandiford, S.; Maxwell, A. Evaluation of the Wound-healing Activity of Ethanolic Extract of Morinda citrifolia L. Leaf. Evid.-Based Complement. Altern. Med. 2007, 6, 351–356. [Google Scholar] [CrossRef] [PubMed]
- Yuan, Y.; Pang, Y.X.; Wang, W.Q.; Zhang, Y.B.; Yu, J.B. Investigation on the Plants Resources of Blumea balsamifera (L.) DC. in China. J. Trop. Org. 2011, 2, 78–82. [Google Scholar]
- Guan, L.L.; Pang, Y.X.; Wang, D.; Zhang, Y.B.; Wu, K.Y. Research progress on Chinese Minority Medicine of Blumea balsamifera (L.) DC. J. Plant Genet. Resour. 2012, 13, 695–698. [Google Scholar]
- Nanjing University of Traditional Chinese Medicine. Dictionary of Chinese Medicine; Shanghai Science and Technology Press: Shanghai, China, 2006. [Google Scholar]
- De Boer, H.J.; Cotingting, C. Medicinal plants for women’s healthcare in southeast Asia: A meta-analysis of their traditional use, chemical constituents, and pharmacology. J. Ethnopharmacol. 2014, 151, 747–767. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Zhao, G.Z.; Chen, H.H.; Wang, H.B.; Qin, S.; Zhu, W.Y.; Xu, L.H.; Jiang, C.L.; Li, W.J. Antitumour and antimicrobial activities of endophytic streptomycetes from pharmaceutical plants in rainforest. Lett. Appl. Microbiol. 2008, 47, 574–580. [Google Scholar] [CrossRef] [PubMed]
- Fazilatun, N.; Nornisah, M.; Zhari, I. Superoxide radical scavenging properties of extracts and flavonoids isolated from the leaves of Blumea balsamifera. Pharm. Biol. 2008, 42, 404–408. [Google Scholar] [CrossRef]
- Norikura, T.; Kojima-Yuasa, A.; Shimizu, M.; Huang, X.; Xu, S.; Kametani, S.; Rho, S.N.; Kennedy, D.O.; Matsui-Yuasa, I. Anticancer activities and mechanisms of Blumea balsamifera extract in hepatocellular carcinoma Cells. Am. J. Chin. Med. 2012, 36, 411–424. [Google Scholar] [CrossRef] [PubMed]
- Hasegawa, H.; Yamada, Y.; Komiyama, K.; Hayashi, M.; Ishibashi, M.; Yoshida, T.; Sakai, T.; Koyano, T.; Kam, T.S.; Murata, K.; et al. Dihydroflavonol BB-1, an extract of natural plant Blumea balsamifera, abrogates TRAIL resistance in leukemia cells. Blood 2006, 107, 679–688. [Google Scholar] [CrossRef] [PubMed]
- Pang, Y.; Wang, D.; Fan, Z.; Chen, X.; Yu, F.; Hu, X.; Wang, K.; Yuan, L. Blumea balsamifera—A Phytochemical and Pharmacological Review. Molecules 2014, 19, 9453–9477. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Chen, J.; Su, W.S.; Huang, J.J. Influence of soy isoflavone tincture on wound healing of deep partial-thickness scald in mice. Chin. J. Tissue Eng. Res. 2013, 17, 264–269. [Google Scholar]
- Liu, G.L.; Li, J.M.; Yao, Y.; Zhang, N.; Jiang, Y.; Zhang, M.L.; Niu, C.Y.; Yu, Y.J. Effect of corylin on human fibroblast cells in an in vitro model of wound healing. Acta Chin. Med. Pharmacol. 2016, 44, 37–40. [Google Scholar]
- Qiu, Y.Y.; Cai, W.W.; Qiu, L.Y.; Wang, Q.Q.; Wei, Q.F. Preparation and study of vaccarin-loaded nanofibers used as wound healing material. J. Biomed. Eng. 2017, 34, 394–400. [Google Scholar]
- Barrientos, S.; Stojadinovic, O.; Golinko, M.S.; Brem, H.; Tomic-Canic, M. Growth factors and cytokines in wound healing. Wound Repair Regener. 2008, 16, 585–601. [Google Scholar] [CrossRef] [PubMed]
- Xie, F.; Feng, L.; Cai, W.; Qiu, Y.; Liu, Y.; Li, Y.; Du, B.; Qiu, L. Vaccarin promotes endothelial cell proliferation in association with neovascularization in vitro and in vivo. Mol. Med. Rep. 2015, 12, 1131–1136. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.L.; Wang, H.M.; Ni, F.Y.; Wang, X.J.; Zhao, Y.W.; Huang, W.Z.; Wang, Z.Z.; Xiao, W. Study on anti-inflammatory activities of phenolic acids from Lonicerae japonicae Flos. Chin. Tradit. Herb. Drugs 2015, 46, 490–495. [Google Scholar]
- Zhang, J.; Huang, W.; Zhang, L. The Application of Chlorogenic Acid in Drug Preparation of Promoting Fibroblast Proliferation. Chinese Patent: CN104825436A, 12 August 2015. [Google Scholar]
- Lim, J.S.; Yoo, G. Effects of adipose-derived stromal cells and of their extract on wound healing in a mouse model. J. Korean Med. Sci. 2010, 25, 746–751. [Google Scholar] [CrossRef] [PubMed]
- Greenwel, P.; Inagaki, Y.; Hu, W.; Walsh, M.; Ramirez, F. Sp1 is required for the early response of α2 (I) collagen to transforming growth factor-β1. J. Biol. Chem. 1997, 272, 19738–19745. [Google Scholar] [CrossRef] [PubMed]
- Mauviel, A.; Chung, K.Y.; Agarwal, A.; Tamai, K.; Uitto, J. Cell-specific Induction of Distinct Oncogenes of the Jun Family Is Responsible for Differential Regulation of Collagenase Gene Expression by Transforming Growth Factor-β in Fibroblasts and Keratinocytes. J. Biol. Chem. 1996, 271, 10917–10923. [Google Scholar] [CrossRef] [PubMed]
- Li, X.F.; Wang, H.J.; Luo, H. Tenporal relation of transforming growth factor-β mRNA expression with injury in the healing process of mouse skin wounds. J. Nanjing Univ. 2006, 26, 60–61. [Google Scholar]
- James, O.; Victoria, I.A. Excision and incision wound healing potential of Saba florida (Benth) leaf extract in rattus novergicus. Int. J. Pharm. Biomed. Res. 2010, 1, 101–107. [Google Scholar]
- Sapudom, J.; Rubner, S.; Martin, S.; Thoenes, S.; Anderegg, U.; Pompe, T. The interplay of fibronectin functionalization and TGF-β1 presence on fibroblast proliferation, differentiation and migration in 3D matrices. Biomater. Sci. 2015, 3, 1291–1301. [Google Scholar] [CrossRef] [PubMed]
- Meran, S.; Thomas, D.W.; Stephens, P.; Enoch, S.; Martin, J.; Steadman, R.; Phillips, A.O. Hyaluronan facilitates transforming growth factor-beta1-mediated fibroblast proliferation. J. Biol. Chem. 2008, 283, 6530–6545. [Google Scholar] [CrossRef] [PubMed]
- Morbidelli, L.; Chang, C.H.; Douglas, J.G.; Granger, H.J.; Ledda, F.A.; Ziche, M.A. Nitric oxide mediates mitogenic effect of VEGF on coronary venular endothelium. Am. J. Physiol. 1996, 270, 411–415. [Google Scholar]
- Corral, C.J.; Siddiqui, A.; Wu, L.; Farrell, C.L.; Lyons, D.; Mustoe, T.A. Vascular endothelial growth factor is more important than basic fibroblastic growth factor during ischemic wound healing. Arch. Surg. 1999, 134, 200–205. [Google Scholar] [CrossRef] [PubMed]
- Nessa, F.; Ismail, Z.; Mohamed, N.; Haris, M.R. Free radical-scavenging activity of organic extracts and of pure flavonoids of Blumea balsamifera DC leaves. Food Chem. 2004, 88, 243–252. [Google Scholar] [CrossRef]
- Nessa, F.; Ismail, Z.; Mohamed, N. Xanthine oxidases inhibitory activities of extracts and flavonoids of the leaves of Blumea balsamifera. Pharm. Biol. 2010, 48, 1405–1412. [Google Scholar] [CrossRef] [PubMed]
- Jingjing, W.; Ming, J.; Zhengjun, C.; Hui, C. Technical study on separation and purification of total flavonoid in Gentianopsis paludosa (Mum.) Ma by polyamide resin. J. Gansu Coll. Tradit. Chin. Med. 2013, 30, 35–38. [Google Scholar]
- Cai, W.R.; Gu, X.H.; Tang, J. Extraction, Purification, and Characterisationof the Flavonoids from Opuntia milpa alta skin. Czech J. Food Sci. 2010, 28, 108–116. [Google Scholar]
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pang, Y.; Zhang, Y.; Huang, L.; Xu, L.; Wang, K.; Wang, D.; Guan, L.; Zhang, Y.; Yu, F.; Chen, Z.; et al. Effects and Mechanisms of Total Flavonoids from Blumea balsamifera (L.) DC. on Skin Wound in Rats. Int. J. Mol. Sci. 2017, 18, 2766. https://doi.org/10.3390/ijms18122766
Pang Y, Zhang Y, Huang L, Xu L, Wang K, Wang D, Guan L, Zhang Y, Yu F, Chen Z, et al. Effects and Mechanisms of Total Flavonoids from Blumea balsamifera (L.) DC. on Skin Wound in Rats. International Journal of Molecular Sciences. 2017; 18(12):2766. https://doi.org/10.3390/ijms18122766
Chicago/Turabian StylePang, Yuxin, Yan Zhang, Luqi Huang, Luofeng Xu, Kai Wang, Dan Wang, Lingliang Guan, Yingbo Zhang, Fulai Yu, Zhenxia Chen, and et al. 2017. "Effects and Mechanisms of Total Flavonoids from Blumea balsamifera (L.) DC. on Skin Wound in Rats" International Journal of Molecular Sciences 18, no. 12: 2766. https://doi.org/10.3390/ijms18122766
APA StylePang, Y., Zhang, Y., Huang, L., Xu, L., Wang, K., Wang, D., Guan, L., Zhang, Y., Yu, F., Chen, Z., & Xie, X. (2017). Effects and Mechanisms of Total Flavonoids from Blumea balsamifera (L.) DC. on Skin Wound in Rats. International Journal of Molecular Sciences, 18(12), 2766. https://doi.org/10.3390/ijms18122766