Antiretroviral Treatment in HIV-1-Positive Mothers: Neurological Implications in Virus-Free Children
Abstract
:1. Introduction
2. Antiretroviral Drug Regimens for HIV-1 Mother to Child Transmission Prevention
3. Antiretroviral Therapy Adverse Effects in the Context of HIV-1 Mother to Child Transmission Prevention
4. Neurodevelopment in HIV-1- and ART-Exposed but Uninfected Children: A Meta-Analysis
5. Cellular and Animal Models of Antiretroviral Therapy-Related Central Nervous System Adverse Effects
5.1. Neuronal Cell Models
5.2. Astrocytes Cell Models
5.3. Oligodendrocyte Cell Lines
5.4. Animal Models
6. The Role of Epigenetics in Antiretroviral Drug-Related Adverse Effects
7. Future Perspectives in the Management of Treated Children Born to HIV-1-Positive Mothers
8. Concluding Remarks
Acknowledgments
Conflicts of Interest
References
- United Nations. United Nations Millennium Declaration. Available online: http://www.un.org/millennium/declaration/ares552e.htm (accessed on 6 January 2017).
- UNAIDS. It Takes a Village: Ending Mother-to-Child Transmission, a Partnership Uniting the Millennium Villages Project and UNAIDS. Available online: http://www.unaids.org/en/media/unaids/contentassets/documents/document/2010/20101231_MVP_en.pdf (accessed on 5 January 2017).
- World Health Organization. 2015 Progress Report on the Global Plan towards the Elimination of New HIV Infections among Children and Keeping Their Mothers Alive; WHO: Geneva, Switzerland, 2015. [Google Scholar]
- McCormack, S.A.; Best, B.M. Protecting the fetus against HIV infection: A systematic review of placental transfer of antiretrovirals. Clin. Pharmacokinet. 2014, 53, 989–1004. [Google Scholar] [CrossRef] [PubMed]
- Williams, P.L.; Hazra, R.; van Dyke, R.B.; Yildirim, C.; Crain, M.J.; Seage, G.R., 3rd; Civitello, L.; Ellis, A.; Butler, L.; Rich, K.; et al. Antiretroviral exposure during pregnancy and adverse outcomes in HIV-exposed uninfected infants and children using a trigger-based design. AIDS 2016, 30, 133–144. [Google Scholar] [PubMed]
- European Collaborative Study. Mother-to-child transmission of HIV infection in the era of highly active antiretroviral therapy. Clin. Infect. Dis. 2005, 40, 458–465. [Google Scholar]
- Fowler, M.G.; Qin, M.; Fiscus, S.A.; Currier, J.S.; Makanani, B.; Martinson, F.; Chipato, T.; Browning, R.; Shapiro, D.; Mofenson, L. PROMISE: Efficacy and Safety of 2 Strategies to Prevent Perinatal HIV Transmission. In Proceedings of the 22nd Conference on Retroviruses and Opportunistic Infections, Seattle, WA, USA, 23–26 February 2015.
- USA National Health and Human Services Department. Recommendations for Use of Antiretroviral Drugs in Pregnant HIV-1-Infected Women for Maternal Health and Interventions to Reduce Perinatal HIV Transmission in the United States. Available online: https://aidsinfo.nih.gov/guidelines/html/3/perinatal-guidelines/156/pregnant-women-living-with-hiv-who-have-never-received-antiretroviral-drugs-antiretroviral-naive (accessed on 5 January 2017).
- Stek, A.M.; Mirochnick, M.; Capparelli, E.; Best, B.M.; Hu, C.; Burchett, S.K.; Elgie, C.; Holland, D.T.; Smith, E.; Tuomala, R.; et al. Reduced lopinavir exposure during pregnancy. AIDS 2006, 20, 1931–1939. [Google Scholar] [CrossRef] [PubMed]
- Watts, D.H.; Brown, Z.A.; Tartaglione, T.; Burchett, S.K.; Opheim, K.; Coombs, R.; Corey, L. Pharmacokinetic disposition of zidovudine during pregnancy. J. Infect. Dis. 1991, 163, 226–232. [Google Scholar] [CrossRef] [PubMed]
- Moodley, J.; Moodley, D.; Pillay, K.; Coovadia, H.; Saba, J.; van Leeuwen, R.; Goodwin, C.; Harrigan, P.R.; Moore, K.H.; Stone, C.; et al. Pharmacokinetics and antiretroviral activity of lamivudine alone or when coadministered with zidovudine in human immunodeficiency virus type 1-infected pregnant women and their offspring. J. Infect. Dis. 1998, 178, 1327–1333. [Google Scholar] [CrossRef] [PubMed]
- Best, B.M.; Burchett, S.; Li, H.; Stek, A.; Hu, C.; Wang, J.; Hawkins, E.; Byroads, M.; Watts, D.H.; Smith, E.; et al. Pharmacokinetics of tenofovir during pregnancy and postpartum. HIV Med. 2015, 16, 502–511. [Google Scholar] [CrossRef] [PubMed]
- Ford, N.; Mofenson, L.; Shubber, Z.; Calmy, A.; Andrieux-Meyer, I.; Vitoria, M.; Shaffer, N.; Renaud, F. Safety of efavirenz in the first trimester of pregnancy: An updated systematic review and meta-analysis. AIDS 2014, 28, S123–S131. [Google Scholar] [CrossRef] [PubMed]
- Colbers, A.; Greupink, R.; Burger, D. Pharmacological considerations on the use of antiretrovirals in pregnancy. Curr. Opin. Infect. Dis. 2013, 26, 575–588. [Google Scholar] [CrossRef] [PubMed]
- Poirier, M.C.; Divi, R.L.; Al-Harthi, L.; Olivero, O.A.; Nguyen, V.; Walker, B.; Landay, A.L.; Walker, V.E.; Charurat, M.; Blattner, W.A.; et al. Long-term mitochondrial toxicity in HIV-uninfected infants born to HIV-infected mothers. J. Acquir. Immune Defic. Syndr. 2003, 33, 175–183. [Google Scholar] [CrossRef] [PubMed]
- Gerschenson, M.; Brinkman, K. Mitochondrial dysfunction in AIDS and its treatment. Mitochondrion 2004, 4, 763–777. [Google Scholar] [CrossRef] [PubMed]
- Brogly, S.B.; Ylitalo, N.; Mofenson, L.M.; Oleske, J.; van Dyke, R.; Crain, M.J.; Abzug, M.J.; Brady, M.; Jean-Philippe, P.; Hughes, M.D.; et al. In utero nucleoside reverse transcriptase inhibitor exposure and signs of possible mitochondrial dysfunction in HIV-uninfected children. AIDS 2007, 21, 929–938. [Google Scholar] [CrossRef] [PubMed]
- Santini-Oliveira, M.; Grinsztejn, B. Adverse drug reactions associated with antiretroviral therapy during pregnancy. Expert Opin. Drug Saf. 2014, 13, 1623–1652. [Google Scholar] [CrossRef] [PubMed]
- Blanche, S.; Tardieu, M.; Rustin, P.; Slama, A.; Barret, B.; Firtion, G.; Ciraru-Vigneron, N.; Lacroix, C.; Rouzioux, C.; Mandelbrot, L.; et al. Persistent mitochondrial dysfunction and perinatal exposure to antiretroviral nucleoside analogues. Lancet 1999, 354, 1084–1089. [Google Scholar] [CrossRef]
- Rice, M.L.; Zeldow, B.; Siberry, G.K.; Purswani, M.; Malee, K.; Hoffman, H.J.; Frederick, T.; Buchanan, A.; Sirois, P.A.; Allison, S.M.; et al. Evaluation of risk for late language emergence after in utero antiretroviral drug exposure in HIV-exposed uninfected infants. Pediatr. Infect. Dis. J. 2013, 32, e406–e413. [Google Scholar] [CrossRef] [PubMed]
- Powis, K.M.; Smeaton, L.; Hughes, M.D.; Tumbare, E.A.; Souda, S.; Jao, J.; Wirth, K.E.; Makhema, J.; Lockman, S.; Fawzi, W.; et al. In-utero triple antiretroviral exposure associated with decreased growth among HIV-exposed uninfected infants in Botswana. AIDS 2016, 30, 211–220. [Google Scholar] [CrossRef] [PubMed]
- Mofenson, L.M.; Watts, D.H. Safety of Pediatric HIV Elimination: The Growing Population of HIV- and Antiretroviral-Exposed but Uninfected Infants. PLoS Med. 2014, 11, e1001636. [Google Scholar] [CrossRef] [PubMed]
- Zash, R.M.; Williams, P.L.; Sibiude, J.; Lyall, H.; Kakkar, F. Surveillance monitoring for safety of in utero antiretroviral therapy exposures: Current strategies and challenges. Expert Opin. Drug Saf. 2016, 15, 1501–1513. [Google Scholar] [CrossRef] [PubMed]
- Le Doare, K.; Bland, R.; Newell, M.L. Neurodevelopment in children born to HIV-infected mothers by infection and treatment status. Pediatrics 2012, 130, e1326–e1344. [Google Scholar] [CrossRef] [PubMed]
- Ngoma, M.S.; Hunter, J.A.; Harper, J.A.; Church, P.T.; Mumba, S.; Chandwe, M.; Cote, H.C.; Albert, A.Y.; Smith, M.L.; Selemani, C.; et al. Cognitive and language outcomes in HIV-uninfected infants exposed to combined antiretroviral therapy in utero and through extended breast-feeding. AIDS 2014, 28, S323–S330. [Google Scholar] [CrossRef] [PubMed]
- Culnane, M.; Fowler, M.; Lee, S.S.; McSherry, G.; Brady, M.; O’Donnell, K.; Mofenson, L.; Gortmaker, S.L.; Shapiro, D.E.; Scott, G.; et al. Lack of long-term effects of in utero exposure to zidovudine among uninfected children born to HIV-infected women. Pediatric AIDS Clinical Trials Group Protocol 219/076 Teams. JAMA 1999, 281, 151–157. [Google Scholar] [CrossRef] [PubMed]
- Alimenti, A.; Forbes, J.C.; Oberlander, T.F.; Money, D.M.; Grunau, R.E.; Papsdorf, M.P.; Maan, E.; Cole, L.J.; Burdge, D.R. A prospective controlled study of neurodevelopment in HIV-uninfected children exposed to combination antiretroviral drugs in pregnancy. Pediatrics 2006, 118, e1139–e1145. [Google Scholar] [CrossRef] [PubMed]
- Gomez, C.; Archila, M.E.; Rugeles, C.; Carrizosa, J.; Rugeles, M.T.; Cornejo, J.W. A prospective study of neurodevelopment of uninfected children born to human immunodeficiency virus type 1 positive mothers. Revista Neurologia 2009, 48, 287–291. [Google Scholar]
- Williams, P.L.; Marino, M.; Malee, K.; Brogly, S.; Hughes, M.D.; Mofenson, L.M. Neurodevelopment and in utero antiretroviral exposure of HIV-exposed uninfected infants. Pediatrics 2010, 125, e250–e260. [Google Scholar] [CrossRef] [PubMed]
- Voigt, R.G.; Brown, F.R., 3rd; Fraley, J.K.; Llorente, A.M.; Rozelle, J.; Turcich, M.; Jensen, C.L.; Heird, W.C. Concurrent and predictive validity of the cognitive adaptive test/clinical linguistic and auditory milestone scale (CAT/CLAMS) and the Mental Developmental Index of the Bayley Scales of Infant Development. Clin. Pediatr. 2003, 42, 427–432. [Google Scholar]
- White, I.R.; Thomas, J. Standardized mean differences in individually-randomized and cluster-randomized trials, with applications to meta-analysis. Clin. Trials 2005, 2, 141–151. [Google Scholar] [CrossRef] [PubMed]
- Sirois, P.A.; Huo, Y.; Williams, P.L.; Malee, K.; Garvie, P.A.; Kammerer, B.; Rich, K.; van Dyke, R.B.; Nozyce, M.L.; Pediatric, H.C.S. Safety of perinatal exposure to antiretroviral medications: Developmental outcomes in infants. Pediatr. Infect. Dis. J. 2013, 32, 648–655. [Google Scholar] [CrossRef] [PubMed]
- Schwarzer, G. Meta: An R package for meta-analysis. R. News 2007, 7, 40–45. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing: Vienna, Austria. Available online: https://www.R-project.org/ (accessed on 17 November 2016).
- Institute of Medicine; Board on Health Sciences Policy; Committee on Understanding Premature Birth and Assuring Healthy Outcomes. Preterm Birth: Causes, Consequences, and Prevention; National Academies Press: Washington, DC, USA, 2007; p. 790. [Google Scholar]
- Lindl, K.A.; Marks, D.R.; Kolson, D.L.; Jordan-Sciutto, K.L. HIV-associated neurocognitive disorder: Pathogenesis and therapeutic opportunities. J. Neuroimmune Pharmacol. 2010, 5, 294–309. [Google Scholar] [CrossRef] [PubMed]
- Etherton, M.R.; Lyons, J.L.; Ard, K.L. HIV-associated Neurocognitive Disorders and Antiretroviral Therapy: Current Concepts and Controversies. Curr. Infect. Dis. Rep. 2015, 17, 485. [Google Scholar] [CrossRef] [PubMed]
- Robertson, K.; Liner, J.; Meeker, R.B. Antiretroviral neurotoxicity. J. Neurovirol. 2012, 18, 388–399. [Google Scholar] [CrossRef] [PubMed]
- Decloedt, E.H.; Maartens, G. Neuronal toxicity of efavirenz: A systematic review. Expert Opin. Drug Saf. 2013, 12, 841–846. [Google Scholar] [CrossRef] [PubMed]
- Purnell, P.R.; Fox, H.S. Efavirenz induces neuronal autophagy and mitochondrial alterations. J. Pharmacol. Exp. Ther. 2014, 351, 250–258. [Google Scholar] [CrossRef] [PubMed]
- Apostolova, N.; Funes, H.A.; Blas-Garcia, A.; Alegre, F.; Polo, M.; Esplugues, J.V. Involvement of nitric oxide in the mitochondrial action of efavirenz: A differential effect on neurons and glial cells. J. Infect. Dis. 2015, 211, 1953–1958. [Google Scholar] [CrossRef] [PubMed]
- Funes, H.A.; Blas-Garcia, A.; Esplugues, J.V.; Apostolova, N. Efavirenz alters mitochondrial respiratory function in cultured neuron and glial cell lines. J. Antimicrob. Chemother. 2015, 70, 2249–2254. [Google Scholar] [CrossRef] [PubMed]
- Estaquier, J.; Lelievre, J.D.; Petit, F.; Brunner, T.; Moutouh-De Parseval, L.; Richman, D.D.; Ameisen, J.C.; Corbeil, J. Effects of antiretroviral drugs on human immunodeficiency virus type 1-induced CD4+ T-cell death. J. Virol. 2002, 76, 5966–5973. [Google Scholar] [CrossRef] [PubMed]
- Valcour, V.G.; Sacktor, N.C.; Paul, R.H.; Watters, M.R.; Selnes, O.A.; Shiramizu, B.T.; Williams, A.E.; Shikuma, C.M. Insulin resistance is associated with cognition among HIV-1-infected patients: The Hawaii Aging With HIV cohort. J. Acquir. Immune Defic. Syndr. 2006, 43, 405–410. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Henderson, L.J.; Major, E.O.; Al-Harthi, L. IFN-γ mediates enhancement of HIV replication in astrocytes by inducing an antagonist of the β-catenin pathway (DKK1) in a STAT 3-dependent manner. J. Immunol. 2011, 186, 6771–6778. [Google Scholar] [CrossRef] [PubMed]
- Dugas, J.C.; Emery, B. Purification of oligodendrocyte precursor cells from rat cortices by immunopanning. Cold Spring Harb. Protoc. 2013, 2013, 745–758. [Google Scholar] [CrossRef] [PubMed]
- Douvaras, P.; Fossati, V. Generation and isolation of oligodendrocyte progenitor cells from human pluripotent stem cells. Nat. Protoc. 2015, 10, 1143–1154. [Google Scholar] [CrossRef] [PubMed]
- Stettner, M.; Wolffram, K.; Mausberg, A.K.; Wolf, C.; Heikaus, S.; Derksen, A.; Dehmel, T.; Kieseier, B.C. A reliable in vitro model for studying peripheral nerve myelination in mouse. J. Neurosci. Methods 2013, 214, 69–79. [Google Scholar] [CrossRef] [PubMed]
- Jensen, B.K.; Monnerie, H.; Mannell, M.V.; Gannon, P.J.; Espinoza, C.A.; Erickson, M.A.; Bruce-Keller, A.J.; Gelman, B.B.; Briand, L.A.; Pierce, R.C.; et al. Altered Oligodendrocyte Maturation and Myelin Maintenance: The Role of Antiretrovirals in HIV-Associated Neurocognitive Disorders. J. Neuropathol. Exp. Neurol. 2015, 74, 1093–1118. [Google Scholar] [CrossRef] [PubMed]
- Gao, F.; Yue, L.; White, A.T.; Pappas, P.G.; Barchue, J.; Hanson, A.P.; Greene, B.M.; Sharp, P.M.; Shaw, G.M.; Hahn, B.H. Human infection by genetically diverse SIVSM-related HIV-2 in west Africa. Nature 1992, 358, 495–499. [Google Scholar] [CrossRef] [PubMed]
- Carryl, H.; Swang, M.; Lawrence, J.; Curtis, K.; Kamboj, H.; van Rompay, K.K.A.; de Paris, K.; Burke, M.W. Of Mice and Monkeys: Can Animal Models Be Utilized to Study Neurological Consequences of Pediatric HIV-1 Infection? ACS Chem. Neurosci. 2015, 6, 1276–1289. [Google Scholar] [CrossRef] [PubMed]
- Worlein, J.M.; Leigh, J.; Larsen, K.; Kinman, L.; Schmidt, A.; Ochs, H.; Ho, R.J. Cognitive and motor deficits associated with HIV-2(287) infection in infant pigtailed macaques: A nonhuman primate model of pediatric neuro-AIDS. J. Neurovirol. 2005, 11, 34–45. [Google Scholar] [CrossRef] [PubMed]
- Abel, K. The rhesus macaque pediatric SIV infection model—A valuable tool in understanding infant HIV-1 pathogenesis and for designing pediatric HIV-1 prevention strategies. Curr. HIV Res. 2009, 7, 2–11. [Google Scholar] [CrossRef] [PubMed]
- Curtis, K.; Rollins, M.; Carryl, H.; Bradshaw, K.; van Rompay, K.K.; Abel, K.; Burke, M.W. Reduction of pyramidal and immature hippocampal neurons in pediatric simian immunodeficiency virus infection. Neuroreport 2014, 25, 973–978. [Google Scholar] [CrossRef] [PubMed]
- Rausch, D.M.; Heyes, M.; Eiden, L.E. Effects of chronic zidovudine administration on CNS function and virus burden after perinatal SIV infection in rhesus monkeys. Adv. Neuroimmunol. 1994, 4, 233–237. [Google Scholar] [CrossRef]
- Rausch, D.M.; Heyes, M.P.; Murray, E.A.; Eiden, L.E. Zidovudine treatment prolongs survival and decreases virus load in the central nervous system of rhesus macaques infected perinatally with simian immunodeficiency virus. J. Infect. Dis. 1995, 172, 59–69. [Google Scholar] [CrossRef] [PubMed]
- Van Rompay, K.K.; Brignolo, L.L.; Meyer, D.J.; Jerome, C.; Tarara, R.; Spinner, A.; Hamilton, M.; Hirst, L.L.; Bennett, D.R.; Canfield, D.R.; et al. Biological effects of short-term or prolonged administration of 9-[2-(phosphonomethoxy)propyl]adenine (tenofovir) to newborn and infant rhesus macaques. Antimicrob. Agents Chemother. 2004, 48, 1469–1487. [Google Scholar] [CrossRef] [PubMed]
- Divi, R.L.; Einem, T.L.; Fletcher, S.L.; Shockley, M.E.; Kuo, M.M.; St Claire, M.C.; Cook, A.; Nagashima, K.; Harbaugh, S.W.; Harbaugh, J.W.; et al. Progressive mitochondrial compromise in brains and livers of primates exposed in utero to nucleoside reverse transcriptase inhibitors (NRTIs). Toxicol. Sci. 2010, 118, 191–201. [Google Scholar] [CrossRef] [PubMed]
- Akay, C.; Cooper, M.; Odeleye, A.; Jensen, B.K.; White, M.G.; Vassoler, F.; Gannon, P.J.; Mankowski, J.; Dorsey, J.L.; Buch, A.M.; et al. Antiretroviral drugs induce oxidative stress and neuronal damage in the central nervous system. J. Neurovirol. 2014, 20, 39–53. [Google Scholar] [CrossRef] [PubMed]
- Bieniasz, P.D.; Cullen, B.R. Multiple blocks to human immunodeficiency virus type 1 replication in rodent cells. J. Virol. 2000, 74, 9868–9877. [Google Scholar] [CrossRef] [PubMed]
- Fitting, S.; Booze, R.M.; Mactutus, C.F. Neonatal intrahippocampal injection of the HIV-1 proteins gp120 and Tat: Differential effects on behavior and the relationship to stereological hippocampal measures. Brain Res. 2008, 1232, 139–154. [Google Scholar] [CrossRef] [PubMed]
- Fitting, S.; Booze, R.M.; Mactutus, C.F. Neonatal hippocampal Tat injections: Developmental effects on prepulse inhibition (PPI) of the auditory startle response. Int. J. Dev. Neurosci. 2006, 24, 275–283. [Google Scholar] [CrossRef] [PubMed]
- Reid, W.; Sadowska, M.; Denaro, F.; Rao, S.; Foulke, J., Jr.; Hayes, N.; Jones, O.; Doodnauth, D.; Davis, H.; Sill, A.; et al. An HIV-1 transgenic rat that develops HIV-related pathology and immunologic dysfunction. Proc. Natl. Acad. Sci. USA 2001, 98, 9271–9276. [Google Scholar] [CrossRef] [PubMed]
- Pistell, P.J.; Gupta, S.; Knight, A.G.; Domingue, M.; Uranga, R.M.; Ingram, D.K.; Kheterpal, I.; Ruiz, C.; Keller, J.N.; Bruce-Keller, A.J. Metabolic and neurologic consequences of chronic lopinavir/ritonavir administration to C57BL/6 mice. Antivir. Res. 2010, 88, 334–342. [Google Scholar] [CrossRef] [PubMed]
- Dasuri, K.; Pepping, J.K.; Fernandez-Kim, S.O.; Gupta, S.; Keller, J.N.; Scherer, P.E.; Bruce-Keller, A.J. Elevated adiponectin prevents HIV protease inhibitor toxicity and preserves cerebrovascular homeostasis in mice. Biochim. Biophys. Acta 2016, 1862, 1228–1235. [Google Scholar] [CrossRef] [PubMed]
- Lewinski, M.K.; Bisgrove, D.; Shinn, P.; Chen, H.; Hoffmann, C.; Hannenhalli, S.; Verdin, E.; Berry, C.C.; Ecker, J.R.; Bushman, F.D. Genome-wide analysis of chromosomal features repressing human immunodeficiency virus transcription. J. Virol. 2005, 79, 6610–6619. [Google Scholar] [CrossRef] [PubMed]
- Desplats, P.; Dumaop, W.; Cronin, P.; Gianella, S.; Woods, S.; Letendre, S.; Smith, D.; Masliah, E.; Grant, I. Epigenetic alterations in the brain associated with HIV-1 infection and methamphetamine dependence. PLoS ONE 2014, 9, e102555. [Google Scholar] [CrossRef] [PubMed]
- Nyce, J.; Leonard, S.; Canupp, D.; Schulz, S.; Wong, S. Epigenetic mechanisms of drug resistance: Drug-induced DNA hypermethylation and drug resistance. Proc. Natl. Acad. Sci. USA 1993, 90, 2960–2964. [Google Scholar] [CrossRef] [PubMed]
- Senda, S.; Blanche, S.; Costagliola, D.; Cibert, C.; Nigon, F.; Firtion, G.; Floch, C.; Parat, S.; Viegas-Pequignot, E. Altered heterochromatin organization after perinatal exposure to zidovudine. Antivir. Ther. 2007, 12, 179–187. [Google Scholar] [PubMed]
- Williams, P.L.; Crain, M.J.; Yildirim, C.; Hazra, R.; van Dyke, R.B.; Rich, K.; Read, J.S.; Stuard, E.; Rathore, M.; Mendez, H.A.; et al. Congenital anomalies and in utero antiretroviral exposure in human immunodeficiency virus-exposed uninfected infants. JAMA Pediatr. 2015, 169, 48–55. [Google Scholar] [CrossRef] [PubMed]
- Lipshultz, S.E.; Williams, P.L.; Zeldow, B.; Wilkinson, J.D.; Rich, K.C.; van Dyke, R.B.; Seage, G.R., 3rd.; Dooley, L.B.; Kaltman, J.R.; Siberry, G.K.; et al. Cardiac effects of in-utero exposure to antiretroviral therapy in HIV-uninfected children born to HIV-infected mothers. AIDS 2015, 29, 91–100. [Google Scholar] [CrossRef] [PubMed]
- Laughton, B.; Cornell, M.; Grove, D.; Kidd, M.; Springer, P.E.; Dobbels, E.; van Rensburg, A.J.; Violari, A.; Babiker, A.G.; Madhi, S.A.; et al. Early antiretroviral therapy improves neurodevelopmental outcomes in infants. AIDS 2012, 26, 1685–1690. [Google Scholar] [CrossRef] [PubMed]
- Prechtl, H.F. Qualitative changes of spontaneous movements in fetus and preterm infant are a marker of neurological dysfunction. Early Hum. Dev. 1990, 23, 151–158. [Google Scholar] [CrossRef]
- Einspieler, C.; Prechtl, H.F.; Ferrari, F.; Cioni, G.; Bos, A.F. The qualitative assessment of general movements in preterm, term and young infants—Review of the methodology. Early Hum. Dev. 1997, 50, 47–60. [Google Scholar] [CrossRef]
- Herskind, A.; Greisen, G.; Nielsen, J.B. Early identification and intervention in cerebral palsy. Dev. Med. Child Neurol. 2015, 57, 29–36. [Google Scholar] [CrossRef] [PubMed]
- Wong, H.S.; Santhakumaran, S.; Cowan, F.M.; Modi, N. Medicines for Neonates Investigator, G. Developmental Assessments in Preterm Children: A Meta-analysis. Pediatrics 2016, 138, e20160251. [Google Scholar] [CrossRef] [PubMed]
Reference | Country, Publication Year | Study Type | Scale | Antiretroviral Drugs Received by the Recruited Pregnant Women in the Study | Neurodevelopment Assessment Age (Months) | In Utero ART-Exposed Children | In Utero ART-Unexposed Children | p-Value | ||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Sample Size | Score Mean | Score Standard Deviation | Sample Size | Score Mean | Score Standard Deviation | |||||||
[26] | USA, 1999 | Prospective cohort | BSID-II | AZT | 30 | 64 | 101.2 | 16.6 | 73 | 101 | 21.1 | 0.84 |
[27] | Canada, 2006 | Cross-sectional study | BSID-II | AZT, 3TC, NVP, NFV | 18 to 36 | 39 | 93.4 | 14.1 | 24 | 96.6 | 13.5 | Not reported a |
[28] | Colombia, 2009 | Prospective cohort | BSID-II | AZT, 3TC, NVP, LPV/r, NFV | 3, 6, 9, 12, 18 and 24 | 7 | 96 | 15.9 | 6 | 103 | 9.2 | 0.90 |
[29] | USA, 2010 | Prospective cohort | BSID-II | AZT | 6, 12, 18, 24, 30 and 36 | 1694 | 92.9 | 16.9 | 146 | 97.9 | 20.3 | 0.82 |
[32] | USA and Puerto Rico, 2013 | Prospective cohort | BSID-III | AZT, 3TC, TDF, ATV, LPV/r, NFV | 9 to 15 | 309 | 102.2 | 22.9 | 62 | 101.8 | 16.5 | 0.82 |
[25] | Zambia, 2014 | Cross-sectional study | FSDQ | AZT, LPV/r, NVP | 15 to 36 | 97 | 101.2 | 13 | 103 | 96.5 | 11 | Not reported b |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Coelho, A.V.C.; Tricarico, P.M.; Celsi, F.; Crovella, S. Antiretroviral Treatment in HIV-1-Positive Mothers: Neurological Implications in Virus-Free Children. Int. J. Mol. Sci. 2017, 18, 423. https://doi.org/10.3390/ijms18020423
Coelho AVC, Tricarico PM, Celsi F, Crovella S. Antiretroviral Treatment in HIV-1-Positive Mothers: Neurological Implications in Virus-Free Children. International Journal of Molecular Sciences. 2017; 18(2):423. https://doi.org/10.3390/ijms18020423
Chicago/Turabian StyleCoelho, Antonio Victor Campos, Paola Maura Tricarico, Fulvio Celsi, and Sergio Crovella. 2017. "Antiretroviral Treatment in HIV-1-Positive Mothers: Neurological Implications in Virus-Free Children" International Journal of Molecular Sciences 18, no. 2: 423. https://doi.org/10.3390/ijms18020423
APA StyleCoelho, A. V. C., Tricarico, P. M., Celsi, F., & Crovella, S. (2017). Antiretroviral Treatment in HIV-1-Positive Mothers: Neurological Implications in Virus-Free Children. International Journal of Molecular Sciences, 18(2), 423. https://doi.org/10.3390/ijms18020423