A Novel Bio-Psychosocial-Behavioral Treatment Model in Schizophrenia
Abstract
:1. Introduction
2. Unmet Needs in the Current Antipsychotic Medications for Schizophrenia
2.1. Treatments for Negative and Cognitive Symptoms
2.2. Targeting Non-Dopaminergic Mechanisms
2.3. Multiple Interlocking Models Integrating Dopaminergic and Non-Dopaminergic Mechanisms
3. Schizophrenia from the Viewpoint of a Neural Circuitry
3.1. Alterations in the Circuitry of Dorsolateral Prefrontal Cortex
3.2. Alterations in the Circuitry of Auditory Cortex
3.3. Alterations in the Visual Circuitry
3.4. Novel Therapeutics from the Viewpoint of a Neural Circuitry
4. Reconceptualizing Schizophrenia from a Neurodevelopmental Perspective
5. A Novel Bio-Psychosocial-Behavioral Treatment Model in Schizophrenia
6. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Lewis, D.A.; Lieberman, J.A. Catching up on schizophrenia: Natural history and neurobiology. Neuron 2000, 28, 325–334. [Google Scholar] [CrossRef]
- Insel, T.R. Rethinking schizophrenia. Nature 2010, 468, 187–193. [Google Scholar] [CrossRef] [PubMed]
- Collins, P.Y.; Patel, V.; Joestl, S.S.; March, D.; Insel, T.R.; Daar, A.S.; Scientific Advisory Board and the Executive Committee of the Grand Challenges on Global Mental Health. Grand challenges in global mental health. Nature 2011, 475, 27–30. [Google Scholar] [CrossRef] [PubMed]
- Collins, P.Y.; Insel, T.R.; Chockalingam, A.; Daar, A.; Maddox, Y. Grand Challenges in Global Mental Health: Integration in research, policy and practice. PLoS Med. 2013, 4, e1001434. [Google Scholar] [CrossRef] [PubMed]
- Insel, T.R. Assessing the economic costs of serious mental illness. Am. J. Psychiatry 2008, 165, 663–665. [Google Scholar] [CrossRef] [PubMed]
- Insel, T.R. Next-generation treatments for mental disorders. Sci. Transl. Med. 2012, 4, 155psc19. [Google Scholar] [CrossRef] [PubMed]
- Kessler, R.C.; Delmer, O.; Frank, R.G.; Olfson, M.; Pincus, H.A.; Walters, E.E.; Wang, P.; Wells, K.B.; Zaslavsky, A.M. Prevalence and treatment of mental disorders, 1990 to 2003. N. Eng. J. Med. 2005, 352, 2515–2523. [Google Scholar] [CrossRef] [PubMed]
- Insel, T.R.; Quirion, R.Q. Psychiatry as a clinical neuroscience discipline. JAMA 2005, 294, 2221–2224. [Google Scholar] [CrossRef] [PubMed]
- Cohen, J.D.; Insel, T.R. Cognitive neuroscience and schizophrenia: Translational research in need of a translator. Biol. Psychiatry 2008, 64, 2–3. [Google Scholar] [CrossRef] [PubMed]
- Tandon, R.; Rankupalli, B.; Suryadevara, U.; Thornton, J. Psychiatry is a clinical neuroscience, but how do we move the field? Asian J. Psychiatry 2015, 105, 135–137. [Google Scholar] [CrossRef] [PubMed]
- Insel, T.R.; Cuthbert, B.N. Endophenotypes: Bridging genomic complexity and disorder heterogeneity. Biol. Psychiatry 2009, 66, 988–989. [Google Scholar] [CrossRef] [PubMed]
- Van Os, J.; Kapur, S. Schizophrenia. Lancet 2009, 374, 635–645. [Google Scholar] [CrossRef]
- Heckers, S.; Barch, D.M.; Bustillo, J.; Gaebel, W.; Gur, R.; Malaspina, D.; Owen, M.J.; Schultz, S.; Tandon, R.; Tsuang, M.; et al. Structure of the psychotic disorders classification in DSM-5. Schizophr. Res. 2013, 150, 11–14. [Google Scholar] [CrossRef] [PubMed]
- Barch, D.M.; Bustillo, J.; Gaebel, W.; Gur, R.; Hecker, S.; Malaspina, D.; Owen, M.J.; Schultz, S.; Tandon, R.; Tsuang, M.; et al. Logic and justification for dimensional assessment of symptoms and related clinical phenomena in psychosis: Relevance to DSM-5. Schizophr. Res. 2013, 150, 15–20. [Google Scholar] [CrossRef] [PubMed]
- Insel, T.R. Translating scientific opportunity into public health impact: A strategic plan for research on mental illness. Arch. Gen. Psychiatry 2009, 66, 128–133. [Google Scholar] [CrossRef] [PubMed]
- Tandon, R.; Nasrallah, H.A.; Keshavan, M.S. Schizophrenia, “just the facts” 5. Treatment and prevention: Past, present and future. Schizophr. Res. 2010, 122, 1–23. [Google Scholar] [CrossRef] [PubMed]
- Tandon, R.; Gaebel, W.; Barch, D.M.; Bustillo, J.; Gur, R.E.; Heckers, S.; Malaspina, D.; Own, M.J.; Schultz, S.; Tsuang, M. Definition and description of schizophrenia in the DSM-5. Schizophr. Res. 2013, 150, 3–10. [Google Scholar] [CrossRef] [PubMed]
- Carpenter, W.T.; Koenig, J.I. The evolution of drug development in schizophrenia: Past issues and future opportunities. Neuropsychopharmacology 2008, 33, 2061–2079. [Google Scholar] [CrossRef] [PubMed]
- Lewis, D.A.; Sweet, R.A. Schizophrenia from a neural circuitry perspective: Advancing toward rational pharmacological therapies. J. Clin. Investig. 2009, 119, 706–716. [Google Scholar] [CrossRef] [PubMed]
- Farde, L.; Wiesel, F.A.; Stone-Elander, S.; Halldin, C.; Nordstrom, A.L.; Hall, H.; Sedvall, G. D2 dopamine receptors in neuroleptic-naive schizophrenia patients. A positron emission tomography study with [11C]raclopride. Arch. Gen. Psychiatry 1990, 47, 213–219. [Google Scholar] [CrossRef] [PubMed]
- Corripio, I.; Escarti, M.J.; Portella, M.J.; Perez, V.; Grasa, E.; Sauras, R.B.; Alonso, A.; Safont, G.; Camacho, M.V.; Duenas, R.; et al. Density of striatal D2 receptors in untreated first-episode psychosis: An l123-IBZM SPECT study. Eur. Neuropsychopharmacol. 2011, 21, 861–866. [Google Scholar] [CrossRef] [PubMed]
- Laruelle, M.; Abi-Dargham, A.; Gil, R.; Kegeles, L.; Innis, R. Increased dopamine transmission in schizophrenia: Relationship to illness phase. Biol. Psychiatry 1999, 46, 56–72. [Google Scholar] [CrossRef]
- Seeman, P. All roads to schizophrenia lead to dopamine supersensitivity and elevated dopamine D2high receptors. CNS Neurosci. Ther. 2011, 17, 118–132. [Google Scholar] [CrossRef] [PubMed]
- Seeman, M.V.; Seeman, P. Is schizophrenia a dopamine supersensitivity psychotic reaction? Prog. Neuropsychopharmacol. Biol. Psychiatry 2014, 48, 155–160. [Google Scholar] [CrossRef] [PubMed]
- Keshavan, M.S.; Lawler, A.N.; Nasrallah, H.A.; Tandon, R. New drug developments in psychosis: Challenges, opportunities and strategies. Prog. Neurobiol. 2016. [Google Scholar] [CrossRef] [PubMed]
- Kirpatrick, B.; Fenton, W.S.; Carpenter, W.T., Jr.; Marder, S.R. The NIMH-MATRICS consensus statement on negative symptoms. Schizophr. Bull. 2006, 32, 214–219. [Google Scholar] [CrossRef] [PubMed]
- Ibrahim, M.H.; Tamminga, A.C. Treating impaired cognition in schizophrenia. Curr. Pharm. Biotechnol. 2012, 13, 1587–1594. [Google Scholar] [CrossRef] [PubMed]
- Rowe, A.R.; Mercer, L.; Caetti, V.; Sendt, K.V.; Giaroli, G.; Shergill, S.S.; Trancy, D.K. Dementia praecox redux: A systematic review of the nicotine receptor as a target for cognitive symptoms of schizophrenia. J. Psychopharmacol. 2015, 29, 197–211. [Google Scholar] [CrossRef] [PubMed]
- Umbright, D.; Alberati, D.; Matin-Facklam, M.; Borroni, E.; Youssef, E.A.; Ostland, M.; Wallace, T.L.; Knoflach, F.; Dorflinger, E.; Wettstein, J.G. Effect of bitopertin, a glycine reuptake inhibitor, on negative symptoms of schizophrenia: A randomized, double-blind, proof-of-concept study. JAMA Psychiatry 2014, 71, 637–646. [Google Scholar] [CrossRef] [PubMed]
- Stauffer, P.; Millen, B.A.; Andersen, S.; Kinon, B.J.; LaGrandeur, L.; Lindenmayer, J.; Gomez, J.C. Pomaglumetad methionil: No significant difference as an adjunctive treatment for patients with prominent negative symptoms of schizophrenia compared to placebo. Schizophr. Res. 2013, 150, 434–441. [Google Scholar] [CrossRef] [PubMed]
- Jones, C.K.; Byun, N.; Bubser, M. Muscarinic and nicotinic acetylcholine receptor agonists and allosteric modulators for the treatment of schizophrenia. Neuropsychopharmacology 2012, 37, 16–42. [Google Scholar] [CrossRef] [PubMed]
- Raedler, T.; Bymaster, F.; Tandon, R.; Copolov, D.; Dean, B. Towards a muscarinic hypothesis of schizophrenia. Mol. Psychiatry 2007, 12, 232–246. [Google Scholar] [CrossRef] [PubMed]
- Chaudhry, I.B.; Hallak, J.; Husain, N.; Minhas, F.; Stiring, J.; Richardson, P.; Dursun, S.; Dunn, G.; Deakin, B. Minocyline benefits negative symptoms in early schizophrenia: A randomized double-blind placebo-controlled clinical trial in patients on standard treatment. J. Psychopharmacol. 2012, 26, 1185–1193. [Google Scholar] [CrossRef] [PubMed]
- Modaberrina, A.; Rezaei, F.; Salehi, B.; Jafarinia, M.; Ashrafi, M.; Tabrizi, M.; Hosseini, S.M.; Tajdini, M.; Ghaleiha, A.; Akhondzadeh, S. Intranasal oxytocin as an hypothesis of schizophrenia and its implication for treatment. Neuropsychopharmacology 2012, 37, 4–15. [Google Scholar]
- Usall, J.; Huerta-Ramos, E.; Iniesta, R.; Cobo, J.; Araya, S.; Roca, M.; Serrano-Blanco, A.; Teba, F.; Ochoa, S. Raloxifene as an adjunctive treatment for postmenopausal women with schizophrenia: A double-blind, randomized, placebo-controlled trial. J. Clin. Psychiatry 2011, 72, 1552–1557. [Google Scholar] [CrossRef] [PubMed]
- Marx, C.; Bradford, D.; Hamer, R.; Naylor, J.; Allen, T.; Liberman, J.; Strauss, J.; Kilts, J. Pregnenolone as a novel therapeutic candidate in schizophrenia: Emerging preclinical and clinical evidence. Neuroscience 2008, 191, 78–90. [Google Scholar] [CrossRef] [PubMed]
- Dunlop, J.; Brandon, N.J. Schizophrenia drug discovery and development in an evolving era: Are new drug targets fulfilling expectation? J. Psychopharmacol. 2015, 29, 230–238. [Google Scholar] [CrossRef] [PubMed]
- Wonodi, I.; Schwarcz, R. Cortical kynurenine pathway metabolism: A novel target for cognitive enhancement in schizophrenia. Schizophr. Bull. 2010, 36, 211–218. [Google Scholar] [CrossRef] [PubMed]
- Ellenbroek, B.A.; Prinssen, E.P. Can 5-HT3 antagonists contribute toward the treatment of schizophrenia. Behav. Pharmacol. 2015, 26, 33–44. [Google Scholar] [CrossRef] [PubMed]
- Patil, S.T.; Zhang, L.; Marteny, F.; Lowe, S.L.; Jackson, K.A.; Andreev, B.V.; Avedisova, A.S.; Bardenstein, L.M.; Gurovich, I.Y.; Morozova, M.A. Activation of mGlu2/3 receptors as a new approach to treat schizophrenia: A randomized phase 2 clinical trial. Nat. Med. 2007, 13, 1102–1107. [Google Scholar] [CrossRef] [PubMed]
- Byrnes, K.R.; Stoica, B.; Loane, D.J.; Riccio, A.; Davis, M.I.; Faden, A.I. Metabotropic glutamate receptor 5 activation inhibits microglial associated inflammation and neurotoxicity. Glia 2009, 57, 550–560. [Google Scholar] [CrossRef] [PubMed]
- Montgomery, S.A.; Green, M.C. The use of cholecystokinin in schizophrenia: A review. Psychol. Med. 1988, 18, 593–603. [Google Scholar] [CrossRef] [PubMed]
- Muller-Vahl, K.R.; Emrich, H.M. Cannabis and schizophrenia: Towards a cannabinoid hypothesis of schizophrenia. Expert Rev. Neurother. 2008, 8, 1037–1048. [Google Scholar] [CrossRef] [PubMed]
- Caceda, R.; Kinkead, B.; Nemeroff, C.B. Neurotension: Role in psychiatric and neurological diseases. Peptides 2006, 27, 2385–2404. [Google Scholar] [CrossRef] [PubMed]
- Na, K.S.; Jung, H.Y.; Kim, Y.K. The role of pro-inflammatory cytokines in the neuroinflammation and neurogenesis of schizophrenia. Prog. Neuropsychopharmacol. Biol. Psychiatry 2014, 48, 277–286. [Google Scholar] [CrossRef] [PubMed]
- Kenk, M.; Selvanathan, T.; Rao, N.; Suridjan, L.; Rusjan, P.; Remington, G.; Meyer, J.H.; Wilson, A.A.; Houle, S.; Mizrahi, R. Imaging neuroinflammation in gray and white matter in schizophrenia: An in vivo PET study with [18F]-FEPPA. Schizophr. Bull. 2015, 41, 85–93. [Google Scholar] [CrossRef] [PubMed]
- Slattery, J.; Kumar, N.; Delhey, L.; Berk, M.; Dean, O.; Spielholz, C.; Frye, R. Clinical trials of N-acetylcysteine in psychiatry and neurology: A systematic review. Neurosci. Biobehav. Rev. 2015, 55, 294–321. [Google Scholar]
- Steullet, P.; Cabungcal, J.; Monin, A.; Dwir, D.; O’Donnell, P.; Cuenod, M.; Do, K. Redox dysregulation, neuroinflammation and NMDA receptor hypofunction: A “central hub” in schizophrenia pathophysiology? Schizophr. Res. 2016, 176, 41–51. [Google Scholar] [CrossRef] [PubMed]
- Insel, T.R.; Freund, M. Shedding light on brain circuits. Biol. Psychiatry 2012, 71, 1028–1029. [Google Scholar] [CrossRef] [PubMed]
- Barch, D.M.; Smith, E. The cognitive neuroscience of working memory: Relevance to CNTRICS and schizophrenia. Biol. Psychiatry 2008, 64, 11–17. [Google Scholar] [CrossRef] [PubMed]
- Barch, D.M. What can research on schizophrenia tell us about the cognitive neuroscience of working memory? Neuroscience 2006, 139, 73–84. [Google Scholar] [CrossRef] [PubMed]
- Tan, H.Y.; Callicott, J.H.; Weinberger, D.R. Dysfunctional and compensatory prefrontal cortical systems, genes and the pathogenesis of schizophrenia. Cereb. Cortex 2007, 17 (Suppl. S1), i171–i181. [Google Scholar] [CrossRef] [PubMed]
- McGlashan, T.H.; Hoffman, R.E. Schizophrenia as a disorder of developmentally reduced synaptic connectivity. Arch. Gen. Psychiatry 2000, 57, 637–648. [Google Scholar] [CrossRef] [PubMed]
- Mirnics, K.; Middleton, F.A.; Marquez, A.; Lewis, D.A.; Levitt, P. Molecular characterization of schizophrenia viewed by microarray analysis of gene expression in prefrontal cortex. Neuron 2000, 28, 53–67. [Google Scholar] [CrossRef]
- Kristiansen, L.V.; Beneyto, M.; Haroutunian, V.; Meador-Woodruff, J.H. Changes in NMDA receptor subunits and interacting PSD proteins in dorsolateral prefrontal and anterior cingulated cortex indicated abnormal regional expression in schizophrenia. Mol. Psychiatry 2006, 11, 737–747. [Google Scholar] [CrossRef] [PubMed]
- Akbarian, S.; Sucher, N.J.; Bradley, D.; Tafazzoli, A.; Trinh, D.; Hetrick, W.P.; Potkin, S.G.; Sandman, C.A.; Bunney, W.E., Jr.; Jones, E.G. Selective alterations in gene expression of NMDA receptor subunits in prefrontal cortex of schizophrenics. J. Neurosci. 1996, 16, 19–30. [Google Scholar] [PubMed]
- Hashimoto, T.; Arion, D.; Unger, D.; Maldonado-Aviles, J.G.; Morris, H.M.; Volk, D.W.; Mimics, K.; Lewis, D.A. Alterations in GABA-related transcriptome in the dorsolateral prefrontal cortex of subjects with schizophrenia. Mol. Psychiatry 2008, 13, 147–161. [Google Scholar] [CrossRef] [PubMed]
- Hashimoto, T.; Volk, D.W.; Eggan, S.M.; Mimics, K.; Pierri, J.N.; Sun, Z.; Sampson, A.R.; Lewis, D.A. Gene expression deficits in a subclass of GABA neurons in the prefrontal cortex of subjects with schizophrenia. J. Neurosci. 2003, 23, 6315–6326. [Google Scholar] [PubMed]
- Woo, T.U.; Miller, J.L.; Lewis, D.A. Schizophrenia and the parvalbumin-containing class of cortical local circuit neurons. Am. J. Psychiatry 1997, 154, 1013–1015. [Google Scholar] [PubMed]
- Woo, T.U.; Whitehead, R.E.; Melchitzky, D.S.; Lew, D.A. A subclass of prefrontal γ-aminobytyric acid axon terminals are selectively altered in schizophrenia. Proc. Natl. Acad. Sci. USA 1998, 95, 5341–5346. [Google Scholar] [CrossRef] [PubMed]
- Lewis, D.A.; Hashimoto, T.; Volk, D.W. Corical inhibitory neurons and schizophrenia. Nat. Rev. Neurosci. 2005, 6, 312–324. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez-Burgos, G.; Lewis, D.A. GABA interneurons and the mechanisms of network oscillations: Implications for understanding cortical dysfunction in schizophrenia. Schizophr. Bull. 2008, 34, 944–961. [Google Scholar] [CrossRef] [PubMed]
- Goldman-Rakic, P.S.; Castner, S.A.; Svensson, T.H.; Siever, L.J.; Williams, G.V. Targeting the dopamine D1 receptor in schizophrenia: Insights for cognitive dysfunction. Psychopharmacology 2004, 174, 3–16. [Google Scholar] [CrossRef] [PubMed]
- Akil, M.; Pierri, J.N.; Whitehead, R.E.; Edgar, C.L.; Mohila, C.; Sampson, A.R.; Lewis, D.A. Lamina-specific alterations in the dopamine innervations of the prefrontal cortex in schizophrenic subjects. Am. J. Psychiatry 1999, 156, 1580–1589. [Google Scholar] [CrossRef] [PubMed]
- Sesack, S.R.; Carr, D.B. Selective prefrontal cortex inputs to dopamine cells: Implications for schizophrenia. Physiol. Behav. 2002, 77, 513–517. [Google Scholar] [CrossRef]
- Tunbridge, E.M.; Bannerman, D.M.; Sharp, T.; Harrison, P.J. Catechol-o-metyltransferase inhibition improves set-shifting performance and elevates stimulated dopamine release in the rat prefrontal cortex. J. Neurosci. 2004, 23, 5331–5335. [Google Scholar] [CrossRef] [PubMed]
- Moghaddam, B. Targeting metabotropic glutamate receptors for treatment of the cognitive symptoms of schizophrenia. Psychopharmacology 2004, 174, 39–44. [Google Scholar] [CrossRef] [PubMed]
- Salisbury, D.F.; Kuroki, N.; Kasai, K.; Shenton, M.E.; McCarley, R.W. Progressive and interrated functional and structural evidence of post-onset brain reduction in schizophrenia. Arch. Gen. Psychiatry 2007, 64, 521–529. [Google Scholar] [CrossRef] [PubMed]
- Javitt, D.C.; Steinschneider, M.; Schroeder, C.E.; Arezzo, J.C. Role of cortical N-methyl-d-aspartate receptors in auditory sensory memory and mismatch negativity generation: Implications for schizophrenia. Proc. Natl. Acad. Sci. USA 1996, 93, 11962–11967. [Google Scholar] [CrossRef] [PubMed]
- Gagne, A.M.; Hebert, M.; Maziade, M. Revisting visual dyfunctions in schizophrenia from the cortical cells: A manifestation of defective neurodevelopment. Prog. Neuropsychopharmacol. Biol. Psychiatry 2015, 62, 29–34. [Google Scholar] [CrossRef] [PubMed]
- Yoon, J.H.; Sheremata, S.L.; Rokem, A.; Silver, M.A. Windows to the soul: Vision science as a tool for studying biological mechanism of information processing deficits in schizophrenia. Front. Psychol. 2013, 4, 681. [Google Scholar] [CrossRef] [PubMed]
- Hill, J.J.; Hashimoto, T.; Lewis, D.A. Molecular mechanisms contributing to dendritic spine alterations in the prefrontal cortex of subjects with schizophrenia. Mol. Psychiatry 2006, 11, 557–566. [Google Scholar] [CrossRef] [PubMed]
- Penzes, P.; Jones, K.A. Dentritic spine dynamics: A key role for kalirin-7. Trends Neurosci. 2008, 31, 419–427. [Google Scholar] [CrossRef] [PubMed]
- Bale, T.L.; Baram, T.Z.; Brown, A.S.; Goldstein, J.M.; Insel, T.R.; McCarthy, M.M.; Nemeroff, C.B.; Reyes, T.M.; Simerly, R.B.; Susser, E.S.; et al. Early life programming and neurodevelopmental disorders. Biol. Psychiatry 2010, 68, 314–319. [Google Scholar] [CrossRef] [PubMed]
- Khashan, A.S.; Abel, K.M.; McNamee, R.; Pedersen, M.G.; Webb, R.T.; Baker, P.N.; Kenny, L.C.; Mortensen, P.B. Higher risk of offspring schizophrenia following antenatal maternal exposure to severe adverse life events. Arch. Gen. Psychiatry 2008, 65, 146–152. [Google Scholar] [CrossRef] [PubMed]
- Buka, S.L.; Tsuang, M.T.; Torry, E.F.; Klebanoff, M.A.; Berstein, D.; Yolken, R.H. Maternal infections and subsequent psychosis among offspring. Arch. Gen. Psychiatry 2001, 58, 1032–1037. [Google Scholar] [CrossRef] [PubMed]
- Buka, S.L.; Tsuang, M.T.; Torry, E.F.; Klebanoff, M.A.; Wagner, R.L.; Yolken, R.H. Maternal cytokine levels during pregnancy and adult psychosis. Brain Behav. Immun. 2001, 15, 411–420. [Google Scholar] [CrossRef] [PubMed]
- Cannon, T.D.; Rosso, I.M.; Holister, J.M.; Bearden, C.E.; Sanchez, L.E.; Hadley, T. A prospective cohort study of genetic and perinatal influences in the etiology of schizophrenia. Schizophr. Bull. 2000, 26, 351–356. [Google Scholar] [CrossRef] [PubMed]
- Cannon, T.D.; van Erp, T.G.; Rosso, I.M.; Huttunen, M.; Lonnqvist, J.; Pirkola, T.; Salonen, O.; Poutanen, V.P.; Standerskjold-Nordenstam, C.G. Fetal hypoxia and structural brain abnormalities in schizophrenia. Arch. Gen. Psychiatry 2002, 59, 35–41. [Google Scholar] [CrossRef] [PubMed]
- Hoek, H.W.; Brown, A.S.; Susser, E. The Dutch famine and schizophrenia spectrum disorders. Soc. Psychiatry Psychiatr. Epidemiol. 1998, 33, 373–379. [Google Scholar] [CrossRef] [PubMed]
- Susser, E.; St. Clair, D.; He, L. Latent effects of prenatal malnutrition on adult health: The example of schizophrenia. Ann. N. Y. Acad. Sci. 2008, 1136, 185–192. [Google Scholar] [CrossRef] [PubMed]
- Zorberg, G.L.; Buka, S.L.; Tuang, M.T. Hypoxic-ischemic-related fetal/neonatal complications and risk of schizophrenia and other nonaffective psychoses: A 19-year longitudinal study. Am. J. Psychiatry 2000, 157, 196–202. [Google Scholar] [CrossRef] [PubMed]
- Brown, A.S.; Deicken, R.F.; Vinogradov, S.; Kremen, W.S.; Poole, J.H.; Penner, J.D. Prenatal infection and cavum septum pellucidum in adult schizophrenia. Schizophr. Res. 2009, 108, 285–287. [Google Scholar] [CrossRef] [PubMed]
- Pishva, E.; Kenis, G.; van den Hove, D.; Lech, K.P.; Boks, M.P.M.; van Os, J.; Rutten, B.P. The epigenome and postnatal environmental influences in psychotic disorders. Soc. Psychiatry Psychiatr. Epidemiol. 2014, 49, 337–348. [Google Scholar] [CrossRef] [PubMed]
- Niwa, M.; Jaaro-Peled, H.; Tankou, S.; Seshadri, S.; Hikida, T.; Matsumoto, Y.; Cascella, N.G.; Kano, S.; Ozaki, N.; Nabeshima, T.; et al. Adolescent stress-induced epigenetic control of dopaminergic neurons via glucocorticoids. Science 2013, 339, 335–339. [Google Scholar] [CrossRef] [PubMed]
- Strauss, J. Reconceptualizing schizophrenia. Schizophr. Bull. 2014, 40, S97–S100. [Google Scholar] [CrossRef] [PubMed]
- Case, B.J.; Oliveri, M.E.; Insel, T. A neurodevelopmental prespective on the Research Domain Criteria (RDoC) framework. Biol. Psychiatry 2014, 76, 350–353. [Google Scholar] [CrossRef] [PubMed]
- Cuthbert, B.N.; Insel, T.R. Toward new approaches to psychotic disorders: The NIMH Research Domain Criteria Project. Schizophr. Bull. 2010, 36, 1061–1062. [Google Scholar] [CrossRef] [PubMed]
- Tandon, R. DSM-5 dimensions of schizophrenia enable measurement-based care to individualize pharmacological treatment. Asian J. Psychiatry 2016, 24, A1–A2. [Google Scholar] [CrossRef] [PubMed]
- Nestler, E.J.; Hyman, S.E. Animal models of neuropsychiatric disorders. Nat. Neurosci. 2010, 13, 1161–1169. [Google Scholar] [CrossRef] [PubMed]
- McMahon, F.J.; Insel, T.R. Pharmacogenomics and personalized medicine in neuropsychiatry. Neuron 2012, 74, 773–776. [Google Scholar] [CrossRef] [PubMed]
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, Y.-K.; Choi, J.; Park, S.-C. A Novel Bio-Psychosocial-Behavioral Treatment Model in Schizophrenia. Int. J. Mol. Sci. 2017, 18, 734. https://doi.org/10.3390/ijms18040734
Kim Y-K, Choi J, Park S-C. A Novel Bio-Psychosocial-Behavioral Treatment Model in Schizophrenia. International Journal of Molecular Sciences. 2017; 18(4):734. https://doi.org/10.3390/ijms18040734
Chicago/Turabian StyleKim, Yong-Ku, Joonho Choi, and Seon-Cheol Park. 2017. "A Novel Bio-Psychosocial-Behavioral Treatment Model in Schizophrenia" International Journal of Molecular Sciences 18, no. 4: 734. https://doi.org/10.3390/ijms18040734
APA StyleKim, Y. -K., Choi, J., & Park, S. -C. (2017). A Novel Bio-Psychosocial-Behavioral Treatment Model in Schizophrenia. International Journal of Molecular Sciences, 18(4), 734. https://doi.org/10.3390/ijms18040734