Serum Metabolomic Profiles for Human Pancreatic Cancer Discrimination
Abstract
:1. Introduction
2. Results
- -
- Model 1—to discriminate all diseases (M and B) from controls (C).
- -
- Model 2—to discriminate malignant (M) from benign (B) disease.
- -
- Model 3—to discriminate benign disease (B) from controls (C).
- -
- Model 4—to discriminate pancreatic cancer (PC) from other malignant diseases (BTC and IPMC).
3. Discussion
4. Materials and Methods
4.1. Patient Selection and Serum Collection
4.2. Sample Preparation
4.3. Measurement Conditions and Processing of Raw Data
4.4. Stability Analysis of Metabolomic Profiles
4.5. Data Analysis to Discriminate Disease Groups
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
Abbreviations
C | Control |
M | Malignancy |
B | Benign |
HC | Healthy control |
PC | Pancreatic cancer |
BTC | Biliary tract cancer |
IPMC | Intraductal papillary mucinous carcinoma |
CP | Chronic pancreatitis |
IPMA | Intraductal papillary mucinous adenoma |
BDS | Bile duct stone |
AA | Ampullary adenoma |
SPN | Solid pseudopapillary neoplasm |
ADM | Adenomyomatosis |
AIP | Autoimmune pancreatitis |
AP | Acute pancreatitis |
MPD | Malfusion of pancreaticobiliary ducts |
BBS | Benign biliary stricture |
PDS | Pancreatic ductal stricture |
PPC | Pancreatic pseudocyst |
CoV | Coefficient of variation |
PC | Principal component |
PCA | Principal component analysis |
MLR | Multiple logistic regression |
CV | Cross validation |
EUS-FNA | Endoscopic ultrasound-guided fine needle aspiration |
TIC | Total ion electrophoresis |
CE-MS | Capillary electrophoresis-mass spectrometry |
ROC | Receiver operating characteristic |
AUC | Area under receiver operating characteristic curve |
References
- Jemal, A.; Siegel, R.; Ward, E.; Hao, Y.; Xu, J.; Murray, T.; Thun, M.J. Cancer statistics, 2008. CA Cancer J. Clin. 2008, 58, 71–96. [Google Scholar] [CrossRef] [PubMed]
- Rosty, C.; Goggins, M. Early detection of pancreatic carcinoma. Hematol. Oncol. Clin. N. Am. 2002, 16, 37–52. [Google Scholar] [CrossRef]
- Canto, M.I.; Hruban, R.H.; Fishman, E.K.; Kamel, I.R.; Schulick, R.; Zhang, Z.; Topazian, M.; Takahashi, N.; Fletcher, J.; Petersen, G.; et al. Frequent detection of pancreatic lesions in asymptomatic high-risk individuals. Gastroenterology 2012, 142, 796–804, quiz e714–e795. [Google Scholar] [CrossRef] [PubMed]
- Shrikhande, S.V.; Barreto, S.G.; Goel, M.; Arya, S. Multimodality imaging of pancreatic ductal adenocarcinoma: A review of the literature. HPB Hepato Pancreato Biliary 2012, 14, 658–668. [Google Scholar] [CrossRef] [PubMed]
- Malik, N.K.; May, K.S.; Chandrasekhar, R.; Wee, W.; Flaherty, L.; Iyer, R.; Gibbs, J.; Kuvshinoff, B.; Wilding, G.; Warren, G.; et al. Treatment of locally advanced unresectable pancreatic cancer: A 10-year experience. J. Gastrointest. Oncol. 2012, 3, 326–334. [Google Scholar] [PubMed]
- Miyabayashi, K.; Ijichi, H.; Mohri, D.; Tada, M.; Yamamoto, K.; Asaoka, Y.; Ikenoue, T.; Tateishi, K.; Nakai, Y.; Isayama, H.; et al. Erlotinib prolongs survival in pancreatic cancer by blocking gemcitabine-induced MAPK signals. Cancer Res. 2013, 73, 2221–2234. [Google Scholar] [CrossRef] [PubMed]
- Patel, T. Worldwide trends in mortality from biliary tract malignancies. BMC Cancer 2002, 2, 10. [Google Scholar] [CrossRef]
- Patel, T. Increasing incidence and mortality of primary intrahepatic cholangiocarcinoma in the United States. Hepatology 2001, 33, 1353–1357. [Google Scholar] [CrossRef] [PubMed]
- Tsutsumi, K.; Kawamoto, H.; Hirao, K.; Sakakihara, I.; Yamamoto, N.; Noma, Y.; Fujii, M.; Kato, H.; Ogawa, T.; Ishida, E.; et al. Monitoring of CA19–9 and SPAN-1 can facilitate the earlier confirmation of progressing pancreatic cancer during chemotherapy. Pancreatology 2012, 12, 409–416. [Google Scholar] [CrossRef] [PubMed]
- Luo, G.; Liu, C.; Guo, M.; Cheng, H.; Lu, Y.; Jin, K.; Liu, L.; Long, J.; Xu, J.; Lu, R.; et al. Potential biomarkers in Lewis negative patients with pancreatic cancer. Ann. Surg. 2017, 265, 800–805. [Google Scholar] [CrossRef] [PubMed]
- Kiriyama, S.; Hayakawa, T.; Kondo, T.; Shibata, T.; Kitagawa, M.; Ono, H.; Sakai, Y. Usefulness of a new tumor marker, SPAN-1, for the diagnosis of pancreatic cancer. Cancer 1990, 65, 1557–1561. [Google Scholar] [CrossRef]
- Ducreux, M.; Cuhna, A.S.; Caramella, C.; Hollebecque, A.; Burtin, P.; Goere, D.; Seufferlein, T.; Haustermans, K.; Van Laethem, J.L.; Conroy, T.; et al. Cancer of the pancreas: Esmo clinical practice guidelines for diagnosis, treatment and follow-up. Ann. Oncol. 2015, 26 (Suppl. S5), v56–v68. [Google Scholar] [CrossRef] [PubMed]
- Itoi, T.; Sofuni, A.; Itokawa, F.; Irisawa, A.; Khor, C.J.; Rerknimitr, R. Current status of diagnostic endoscopic ultrasonography in the evaluation of pancreatic mass lesions. Dig. Endosc. 2011, 23 (Suppl. S1), 17–21. [Google Scholar] [CrossRef] [PubMed]
- Holmes, E.; Wilson, I.D.; Nicholson, J.K. Metabolic phenotyping in health and disease. Cell 2008, 134, 714–717. [Google Scholar] [CrossRef] [PubMed]
- Matthews, H.; Hanison, J.; Nirmalan, N. “Omics”-informed drug and biomarker discovery: Opportunities, challenges and future perspectives. Proteomes 2016, 4, 28. [Google Scholar] [CrossRef] [PubMed]
- McConnell, Y.J.; Farshidfar, F.; Weljie, A.M.; Kopciuk, K.A.; Dixon, E.; Ball, C.G.; Sutherland, F.R.; Vogel, H.J.; Bathe, O.F. Distinguishing benign from malignant pancreatic and periampullary lesions using combined use of (1)H-NMR spectroscopy and gas chromatography-mass spectrometry. Metabolites 2017, 7, 3. [Google Scholar] [CrossRef] [PubMed]
- Di Gangi, I.M.; Mazza, T.; Fontana, A.; Copetti, M.; Fusilli, C.; Ippolito, A.; Mattivi, F.; Latiano, A.; Andriulli, A.; Vrhovsek, U.; et al. Metabolomic profile in pancreatic cancer patients: A consensus-based approach to identify highly discriminating metabolites. Oncotarget 2016, 7, 5815–5829. [Google Scholar] [PubMed]
- OuYang, D.; Xu, J.; Huang, H.; Chen, Z. Metabolomic profiling of serum from human pancreatic cancer patients using (1)H-NMR spectroscopy and principal component analysis. Appl. Biochem. Biotechnol. 2011, 165, 148–154. [Google Scholar] [CrossRef] [PubMed]
- Akita, H.; Ritchie, S.A.; Takemasa, I.; Eguchi, H.; Pastural, E.; Jin, W.; Yamazaki, Y.; Goodenowe, D.B.; Nagano, H.; Monden, M. Serum metabolite profiling for the detection of pancreatic cancer: Results of a large independent validation study. Pancreas 2016, 45, 1418–1423. [Google Scholar] [CrossRef] [PubMed]
- Wen, H.; Yoo, S.S.; Kang, J.; Kim, H.G.; Park, J.S.; Jeong, S.; Lee, J.I.; Kwon, H.N.; Kang, S.; Lee, D.H.; et al. A new NMR-based metabolomics approach for the diagnosis of biliary tract cancer. J. Hepatol. 2010, 52, 228–233. [Google Scholar] [CrossRef] [PubMed]
- Bathe, O.F.; Shaykhutdinov, R.; Kopciuk, K.; Weljie, A.M.; McKay, A.; Sutherland, F.R.; Dixon, E.; Dunse, N.; Sotiropoulos, D.; Vogel, H.J. Feasibility of identifying pancreatic cancer based on serum metabolomics. Cancer Epidemiol. Biomark. Prev. 2011, 20, 140–147. [Google Scholar] [CrossRef] [PubMed]
- Nishiumi, S.; Shinohara, M.; Ikeda, A.; Yoshie, T.; Hatano, N.; Kakuyama, S.; Mizuno, S.; Sanuki, T.; Kutsumi, H.; Fukusaki, E. Serum metabolomics as a novel diagnostic approach for pancreatic cancer. Metabolomics 2010, 6, 518–528. [Google Scholar] [CrossRef]
- Fang, F.; He, X.; Deng, H.; Chen, Q.; Lu, J.; Spraul, M.; Yu, Y. Discrimination of metabolic profiles of pancreatic cancer from chronic pancreatitis by high-resolution magic angle spinning 1H nuclear magnetic resonance and principal components analysis. Cancer Sci. 2007, 98, 1678–1682. [Google Scholar] [CrossRef] [PubMed]
- Urayama, S.; Zou, W.; Brooks, K.; Tolstikov, V. Comprehensive mass spectrometry based metabolic profiling of blood plasma reveals potent discriminatory classifiers of pancreatic cancer. Rapid Commun. Mass Spectrom. 2010, 24, 613–620. [Google Scholar] [CrossRef] [PubMed]
- Tesiram, Y.A.; Lerner, M.; Stewart, C.; Njoku, C.; Brackett, D.J. Utility of nuclear magnetic resonance spectroscopy for pancreatic cancer studies. Pancreas 2012, 41, 474–480. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Wang, Y.; Gu, X.; Zhou, J.; Yan, C. Metabolomic profiling of human plasma in pancreatic cancer using pressurized capillary electrochromatography. Electrophoresis 2011, 32, 340–347. [Google Scholar] [CrossRef] [PubMed]
- Xie, G.; Lu, L.; Qiu, Y.; Ni, Q.; Zhang, W.; Gao, Y.T.; Risch, H.A.; Yu, H.; Jia, W. Plasma metabolite biomarkers for the detection of pancreatic cancer. J. Proteome Res. 2015, 14, 1195–1202. [Google Scholar] [CrossRef] [PubMed]
- Ritchie, S.A.; Akita, H.; Takemasa, I.; Eguchi, H.; Pastural, E.; Nagano, H.; Monden, M.; Doki, Y.; Mori, M.; Jin, W.; et al. Metabolic system alterations in pancreatic cancer patient serum: Potential for early detection. BMC Cancer 2013, 13, 416. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Jin, H.; Guo, X.; Yang, Z.; Zhao, L.; Tang, S.; Mo, P.; Wu, K.; Nie, Y.; Pan, Y.; et al. Distinguishing pancreatic cancer from chronic pancreatitis and healthy individuals by (1)H nuclear magnetic resonance-based metabonomic profiles. Clin. Biochem. 2012, 45, 1064–1069. [Google Scholar] [CrossRef] [PubMed]
- Steinberg, W. The clinical utility of the CA19–9 tumor-associated antigen. Am. J. Gastroenterol. 1990, 85, 350–355. [Google Scholar] [PubMed]
- Ni, X.G.; Bai, X.F.; Mao, Y.L.; Shao, Y.F.; Wu, J.X.; Shan, Y.; Wang, C.F.; Wang, J.; Tian, Y.T.; Liu, Q.; et al. The clinical value of serum CEA, CA19–9, AND CA242 in the diagnosis and prognosis of pancreatic cancer. Eur. J. Surg. Oncol. 2005, 31, 164–169. [Google Scholar] [CrossRef] [PubMed]
- Goonetilleke, K.S.; Siriwardena, A.K. Systematic review of carbohydrate antigen (CA19–9) as a biochemical marker in the diagnosis of pancreatic cancer. Eur. J. Surg. Oncol. 2007, 33, 266–270. [Google Scholar] [CrossRef] [PubMed]
- Hirayama, A.; Sugimoto, M.; Suzuki, A.; Hatakeyama, Y.; Enomoto, A.; Harada, S.; Soga, T.; Tomita, M.; Takebayashi, T. Effects of processing and storage conditions on charged metabolomic profiles in blood. Electrophoresis 2015, 36, 2148–2155. [Google Scholar] [CrossRef] [PubMed]
- Soga, T.; Baran, R.; Suematsu, M.; Ueno, Y.; Ikeda, S.; Sakurakawa, T.; Kakazu, Y.; Ishikawa, T.; Robert, M.; Nishioka, T.; et al. Differential metabolomics reveals ophthalmic acid as an oxidative stress biomarker indicating hepatic glutathione consumption. J. Biol. Chem. 2006, 281, 16768–16776. [Google Scholar] [CrossRef] [PubMed]
- Soga, T.; Sugimoto, M.; Honma, M.; Mori, M.; Igarashi, K.; Kashikura, K.; Ikeda, S.; Hirayama, A.; Yamamoto, T.; Yoshida, H.; et al. Serum metabolomics reveals gamma-glutamyl dipeptides as biomarkers for discrimination among different forms of liver disease. J. Hepatol. 2011, 55, 896–905. [Google Scholar] [CrossRef] [PubMed]
- Tsuruoka, M.; Hara, J.; Hirayama, A.; Sugimoto, M.; Soga, T.; Shankle, W.R.; Tomita, M. Capillary electrophoresis-mass spectrometry-based metabolome analysis of serum and saliva from neurodegenerative dementia patients. Electrophoresis 2013, 34, 2865–2872. [Google Scholar] [CrossRef] [PubMed]
- Sugimoto, M.; Wong, D.T.; Hirayama, A.; Soga, T.; Tomita, M. Capillary electrophoresis mass spectrometry-based saliva metabolomics identified oral, breast and pancreatic cancer-specific profiles. Metabolomics 2010, 6, 78–95. [Google Scholar] [CrossRef] [PubMed]
- Sugimoto, M.; Kawakami, M.; Robert, M.; Soga, T.; Tomita, M. Bioinformatics tools for mass spectroscopy-based metabolomic data processing and analysis. Curr. Bioinform. 2012, 7, 96–108. [Google Scholar] [CrossRef] [PubMed]
- Storey, J.D.; Tibshirani, R. Statistical significance for genomewide studies. Proc. Natl. Acad. Sci. USA 2003, 100, 9440–9445. [Google Scholar] [CrossRef] [PubMed]
- Witten, I.H.; Frank, E. Data Mining: Practical Machine Learning Tools and Techniques; Morgan Kaufmann: San Francisco, CA, USA, 2005. [Google Scholar]
- The R Project for Statistical Computing. Availiable online: http://www.r-project.org/.
Group | n | Age 1 | Gender 2 | Stage | |
---|---|---|---|---|---|
C | Healthy control | 46 | 20–70 (31.5) | 19/27 | |
M | Pancreatic cancer | 27 | 51–83 (69.1) | 13/14 | (0/0/4/8/15) 3 |
Biliary tract cancer | 10 | 54–80 (70.0) | 7/3 | (1/1/2/1/5) | |
Intraductal papillary mucinous carcinoma | 2 | 70–80 (75.0) | 1/1 | (2/0/0/0/0) 4 | |
B | Chronic pancreatitis | 6 | 29–86 (63.9) | 41/14 | |
Intraductal papillary mucinous adenoma | 3 | ||||
Bile duct stone | 17 | ||||
Ampullary adenoma | 15 | ||||
Solid pseudopapillary neoplasm | 1 | ||||
Adenomyomatosis | 2 | ||||
Autoimmune pancreatitis | 1 | ||||
Acute pancreatitis | 1 | ||||
Malfusion of pancreaticobiliary ducts | 1 | ||||
Benign biliary stricture | 4 | ||||
Pancreatic ductal stricture | 1 | ||||
Pancreatic pseudocyst | 3 |
Model | Parameter | 95% CI | Odds Ratio | 95% CI | p-Value | ||
---|---|---|---|---|---|---|---|
Model 1 | |||||||
(Intercept) | 5.24 | −0.379 | 11.5 | - | - | - | 0.078 |
Glu | 0.0803 | 0.0495 | 0.124 | 1.08 | 1.05 | 1.13 | <0.0001 |
His | −0.130 | −0.216 | −0.065 | 0.878 | 0.806 | 0.937 | 0.00050 |
Gln | 0.0101 | 0.00267 | 0.0186 | 1.01 | 1.00 | 1.02 | 0.012 |
Trimethylamine N-oxide | 0.0705 | 0.00519 | 0.133 | 1.07 | 1.01 | 1.14 | 0.022 |
Ser | −0.066 | −0.114 | −0.029 | 0.936 | 0.893 | 0.971 | 0.0019 |
Model 2 | |||||||
(Intercept) | 2.51 | 1.07 | 4.16 | - | - | - | 0.0013 |
Creatine | −0.0387 | −0.0636 | −0.0179 | 0.962 | 0.938 | 0.982 | 0.00080 |
Guanidinoacetate | −0.496 | −0.944 | −0.0973 | 0.609 | 0.389 | 0.907 | 0.020 |
Model 3 | |||||||
(Intercept) | 2.58 | −6.23 | 11.5 | - | - | - | 0.56 |
Glu | 0.0910 | 0.0526 | 0.149 | 1.10 | 1.05 | 1.16 | 0.00010 |
Cystine | −0.238 | −0.471 | −0.0658 | 0.788 | 0.624 | 0.936 | 0.018 |
Gln | 0.0198 | 0.008 | 0.0370 | 1.02 | 1.01 | 1.04 | 0.0068 |
Arg | 0.0531 | 0.0176 | 0.103 | 1.05 | 1.02 | 1.11 | 0.012 |
Trp | −0.106 | −0.229 | −0.0164 | 0.900 | 0.795 | 0.984 | 0.044 |
Ser | −0.0981 | −0.177 | −0.044 | 0.907 | 0.838 | 0.957 | 0.0029 |
Model 4 | |||||||
(Intercept) | 7.19 | 2.98 | 13.4 | - | - | - | 0.0051 |
Thr | −0.0334 | −0.0686 | −0.006 | 0.967 | 0.934 | 0.994 | 0.031 |
Isocitrate | −0.523 | −1.16 | −0.0265 | 0.593 | 0.312 | 0.974 | 0.061 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Itoi, T.; Sugimoto, M.; Umeda, J.; Sofuni, A.; Tsuchiya, T.; Tsuji, S.; Tanaka, R.; Tonozuka, R.; Honjo, M.; Moriyasu, F.; et al. Serum Metabolomic Profiles for Human Pancreatic Cancer Discrimination. Int. J. Mol. Sci. 2017, 18, 767. https://doi.org/10.3390/ijms18040767
Itoi T, Sugimoto M, Umeda J, Sofuni A, Tsuchiya T, Tsuji S, Tanaka R, Tonozuka R, Honjo M, Moriyasu F, et al. Serum Metabolomic Profiles for Human Pancreatic Cancer Discrimination. International Journal of Molecular Sciences. 2017; 18(4):767. https://doi.org/10.3390/ijms18040767
Chicago/Turabian StyleItoi, Takao, Masahiro Sugimoto, Junko Umeda, Atsushi Sofuni, Takayoshi Tsuchiya, Shujiro Tsuji, Reina Tanaka, Ryosuke Tonozuka, Mitsuyoshi Honjo, Fuminori Moriyasu, and et al. 2017. "Serum Metabolomic Profiles for Human Pancreatic Cancer Discrimination" International Journal of Molecular Sciences 18, no. 4: 767. https://doi.org/10.3390/ijms18040767
APA StyleItoi, T., Sugimoto, M., Umeda, J., Sofuni, A., Tsuchiya, T., Tsuji, S., Tanaka, R., Tonozuka, R., Honjo, M., Moriyasu, F., Kasuya, K., Nagakawa, Y., Abe, Y., Takano, K., Kawachi, S., Shimazu, M., Soga, T., Tomita, M., & Sunamura, M. (2017). Serum Metabolomic Profiles for Human Pancreatic Cancer Discrimination. International Journal of Molecular Sciences, 18(4), 767. https://doi.org/10.3390/ijms18040767