Human Chorionic Gonadotropin and Breast Cancer
Abstract
:1. Introduction
2. Results
2.1. Pregnancy and Breast Cancer
2.2. CGB Genes, Heterodimeric Human Chorionic Gonadotropin and Its Receptor in Breast Cancer
2.3. Heterodimeric HCG Induces Differentiation and Apoptosis
2.4. Ectopically Expressed β-HCG in Breast Cancer
2.5. Immunological Approaches Directed to β-HCG
3. Conclusions
Conflicts of Interest
References
- Torre, L.A.; Bray, F.; Siegel, R.L.; Ferlay, J.; Lortet-Tieulent, J.; Jemal, A. Global cancer statistics, 2012. CA Cancer J. Clin. 2015, 65, 87–108. [Google Scholar] [CrossRef] [PubMed]
- McGuire, W.L. Estrogen receptors in human breast cancer. J. Clin. Investig. 1973, 52, 73–77. [Google Scholar] [CrossRef] [PubMed]
- Key, T.; Appleby, P.; Barnes, I.; Reeves, G. Endogenous sex hormones and breast cancer in postmenopausal women: Reanalysis of nine prospective studies. J. Natl. Cancer Inst. 2002, 94, 606–616. [Google Scholar] [PubMed]
- Wang, M.; Wu, X.; Chai, F.; Zhang, Y.; Jiang, J. Plasma prolactin and breast cancer risk: A meta-analysis. Sci. Rep. 2016, 6, 25998. [Google Scholar] [CrossRef] [PubMed]
- Agrawal, B.; Reddish, M.A.; Krantz, M.J.; Longenecker, B.M. Does pregnancy immunize against breast cancer? Cancer Res. 1995, 55, 2257–2261. [Google Scholar] [PubMed]
- Eisenstein, M. Pregnancy: Delivery from breast cancer. Nature 2012, 485, S54. [Google Scholar] [CrossRef] [PubMed]
- MacMahon, B.; Cole, P.; Lin, T.M.; Lowe, C.R.; Mirra, A.P.; Ravnihar, B.; Salber, E.J.; Valaoras, V.G.; Yuasa, S. Age at first birth and breast cancer risk. Bull. World Health Organ. 1970, 43, 209–221. [Google Scholar] [PubMed]
- Kroman, N.; Mouridsen, H.T. Prognostic influence of pregnancy before, around, and after diagnosis of breast cancer. Breast 2003, 12, 516–521. [Google Scholar] [CrossRef]
- Black, M.M.; Hankey, B.F.; Barclay, T.H. Parity as a prognostic factor in young breast cancer patients. J. Natl. Cancer Inst. 1983, 70, 27–30. [Google Scholar] [PubMed]
- Mohle-Boetani, J.C.; Grosser, S.; Whittemore, A.S.; Malec, M.; Kampert, J.B.; Paffenbarger, R.S., Jr. Body size, reproductive factors, and breast cancer survival. Prev. Med. 1988, 17, 634–642. [Google Scholar] [CrossRef]
- Korzeniowski, S.; Dyba, T. Reproductive history and prognosis in patients with operable breast cancer. Cancer 1994, 74, 1591–1594. [Google Scholar] [CrossRef]
- Papatestas, A.E.; Mulvihill, M.; Josi, C.; Ioannovich, J.; Lesnick, G.; Aufses, A.H., Jr. Parity and prognosis in breast cancer. Cancer 1980, 45, 191–194. [Google Scholar] [CrossRef]
- Mason, B.H.; Holdaway, I.M.; Stewart, A.W.; Neave, L.M.; Kay, R.G. Season of tumour detection influences factors predicting survival of patients with breast cancer. Breast Cancer Res. Treat. 1990, 15, 27–37. [Google Scholar] [CrossRef] [PubMed]
- Palmer, M.K.; Lythgoe, J.P.; Smith, A. Prognostic factors in breast cancer. Br. J. Surg. 1982, 69, 697–698. [Google Scholar] [CrossRef] [PubMed]
- Greenberg, E.R.; Vessey, M.P.; McPherson, K.; Doll, R.; Yeates, D. Body size and survival in premenopausal breast cancer. Br. J. Cancer 1985, 51, 691–697. [Google Scholar] [CrossRef] [PubMed]
- Ewertz, M.; Gillanders, S.; Meyer, L.; Zedeler, K. Survival of breast cancer patients in relation to factors which affect the risk of developing breast cancer. Int. J. Cancer 1991, 49, 526–530. [Google Scholar] [CrossRef] [PubMed]
- Schouten, L.J.; Hupperets, P.S.; Jager, J.J.; Volovics, L.; Wils, J.A.; Verbeek, A.L.; Blijham, G.H. Prognostic significance of etiological risk factors in early breast cancer. Breast Cancer Res. Treat. 1997, 43, 217–223. [Google Scholar] [CrossRef]
- Kroman, N.; Wohlfahrt, J.; Andersen, K.W.; Mouridsen, H.T.; Westergaard, T.; Melbye, M. Parity, age at first childbirth and the prognosis of primary breast cancer. Br. J. Cancer 1998, 78, 1529–1533. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.Y.; Rubens, R.D.; Allen, D.S.; Millis, R.R.; Bulbrook, R.D.; Chaudary, M.A.; Hayward, J.L. Influence of reproductive history on age at diagnosis of breast cancer and prognosis. Int. J. Cancer 1985, 36, 427–432. [Google Scholar] [CrossRef]
- Alsaker, M.D.; Opdahl, S.; Romundstad, P.R.; Vatten, L.J. Association of time since last birth, age at first birth and parity with breast cancer survival among parous women: A register-based study from Norway. Int. J. Cancer 2013, 132, 174–181. [Google Scholar] [CrossRef] [PubMed]
- Sun, X.; Nichols, H.B.; Tse, C.K.; Bell, M.B.; Robinson, W.R.; Sherman, M.E.; Olshan, A.F.; Troester, M.A. Association of parity and time since last birth with breast cancer prognosis by intrinsic subtype. Cancer Epidemiol. Biomark. Prev. 2016, 25, 60–67. [Google Scholar] [CrossRef] [PubMed]
- Guinee, V.F.; Olsson, H.; Moller, T.; Hess, K.R.; Taylor, S.H.; Fahey, T.; Gladikov, J.V.; van den Blink, J.W.; Bonichon, F.; Dische, S.; et al. Effect of pregnancy on prognosis for young women with breast cancer. Lancet 1994, 343, 1587–1589. [Google Scholar] [CrossRef]
- McCready, J.; Arendt, L.M.; Glover, E.; Iyer, V.; Briendel, J.L.; Lyle, S.R.; Naber, S.P.; Jay, D.G.; Kuperwasser, C. Pregnancy-associated breast cancers are driven by differences in adipose stromal cells present during lactation. Breast Cancer Res. 2014, 16, R2. [Google Scholar] [CrossRef] [PubMed]
- Middleton, L.P.; Amin, M.; Gwyn, K.; Theriault, R.; Sahin, A. Breast carcinoma in pregnant women: Assessment of clinicopathologic and immunohistochemical features. Cancer 2003, 98, 1055–1060. [Google Scholar] [CrossRef] [PubMed]
- Anderson, B.O.; Petrek, J.A.; Byrd, D.R.; Senie, R.T.; Borgen, P.I. Pregnancy influences breast cancer stage at diagnosis in women 30 years of age and younger. Ann. Surg. Oncol. 1996, 3, 204–211. [Google Scholar] [CrossRef] [PubMed]
- Reed, W.; Hannisdal, E.; Skovlund, E.; Thoresen, S.; Lilleng, P.; Nesland, J.M. Pregnancy and breast cancer: A population-based study. Virchows Arch. 2003, 443, 44–50. [Google Scholar] [PubMed]
- Pilewskie, M.; Gorodinsky, P.; Fought, A.; Hansen, N.; Bethke, K.; Jeruss, J.; Scholtens, D.; Khan, S.A. Association between recency of last pregnancy and biologic subtype of breast cancer. Ann. Surg. Oncol. 2012, 19, 1167–1173. [Google Scholar] [CrossRef] [PubMed]
- Petrek, J.A.; Dukoff, R.; Rogatko, A. Prognosis of pregnancy-associated breast cancer. Cancer 1991, 67, 869–872. [Google Scholar] [CrossRef]
- Petrek, J.A. Breast cancer during pregnancy. Cancer 1994, 74, 518–527. [Google Scholar] [CrossRef] [PubMed]
- Beadle, B.M.; Woodward, W.A.; Middleton, L.P.; Tereffe, W.; Strom, E.A.; Litton, J.K.; Meric-Bernstam, F.; Theriault, R.L.; Buchholz, T.A.; Perkins, G.H. The impact of pregnancy on breast cancer outcomes in women < or = 35 years. Cancer 2009, 115, 1174–1184. [Google Scholar] [PubMed]
- Daling, J.R.; Malone, K.E.; Doody, D.R.; Anderson, B.O.; Porter, P.L. The relation of reproductive factors to mortality from breast cancer. Cancer Epidemiol. Biomark. Prev. 2002, 11, 235–241. [Google Scholar] [CrossRef]
- Reeves, G.K.; Patterson, J.; Vessey, M.P.; Yeates, D.; Jones, L. Hormonal and other factors in relation to survival among breast cancer patients. Int. J. Cancer 2000, 89, 293–299. [Google Scholar] [CrossRef]
- Rosenberg, L.; Thalib, L.; Adami, H.O.; Hall, P. Childbirth and breast cancer prognosis. Int. J. Cancer 2004, 111, 772–776. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.; Oh, M. Effects of interval between age at first pregnancy and age at diagnosis on breast cancer survival according to menopausal status: A register-based study in Korea. BMC Women’s Health 2014, 14, 113. [Google Scholar] [CrossRef] [PubMed]
- Barnett, G.C.; Shah, M.; Redman, K.; Easton, D.F.; Ponder, B.A.; Pharoah, P.D. Risk factors for the incidence of breast cancer: Do they affect survival from the disease? J. Clin. Oncol. 2008, 26, 3310–3316. [Google Scholar] [CrossRef] [PubMed]
- Anderson, K.N.; Schwab, R.B.; Martinez, M.E. Reproductive risk factors and breast cancer subtypes: A review of the literature. Breast Cancer Res. Treat. 2014, 144, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Layde, P.M.; Webster, L.A.; Baughman, A.L.; Wingo, P.A.; Rubin, G.L.; Ory, H.W. The independent associations of parity, age at first full term pregnancy, and duration of breastfeeding with the risk of breast cancer. Cancer and steroid hormone study group. J. Clin. Epidemiol. 1989, 42, 963–973. [Google Scholar] [CrossRef]
- Collaborative Group on Hormonal Factors in Breast Cancer. Breast cancer and breastfeeding: Collaborative reanalysis of individual data from 47 epidemiological studies in 30 countries, including 50,302 women with breast cancer and 96,973 women without the disease. Lancet 2002, 360, 187–195. [Google Scholar]
- Zhou, Y.; Chen, J.; Li, Q.; Huang, W.; Lan, H.; Jiang, H. Association between breastfeeding and breast cancer risk: Evidence from a meta-analysis. Breastfeed Med. 2015, 10, 175–182. [Google Scholar] [CrossRef] [PubMed]
- Lambertini, M.; Santoro, L.; Del Mastro, L.; Nguyen, B.; Livraghi, L.; Ugolini, D.; Peccatori, F.A.; Azim, H.A., Jr. Reproductive behaviors and risk of developing breast cancer according to tumor subtype: A systematic review and meta-analysis of epidemiological studies. Cancer Treat. Rev. 2016, 49, 65–76. [Google Scholar] [CrossRef] [PubMed]
- Islami, F.; Liu, Y.; Jemal, A.; Zhou, J.; Weiderpass, E.; Colditz, G.; Boffetta, P.; Weiss, M. Breastfeeding and breast cancer risk by receptor status—A systematic review and meta-analysis. Ann. Oncol. 2015, 26, 2398–2407. [Google Scholar] [CrossRef] [PubMed]
- Fournier, T.; Guibourdenche, J.; Evain-Brion, D. Review: HCGs: Different sources of production, different glycoforms and functions. Placenta 2015, 36, S60–S65. [Google Scholar] [CrossRef] [PubMed]
- Bellet, D.; Lazar, V.; Bieche, I.; Paradis, V.; Giovangrandi, Y.; Paterlini, P.; Lidereau, R.; Bedossa, P.; Bidart, J.M.; Vidaud, M. Malignant transformation of nontrophoblastic cells is associated with the expression of chorionic gonadotropin β genes normally transcribed in trophoblastic cells. Cancer Res. 1997, 57, 516–523. [Google Scholar] [PubMed]
- Nagirnaja, L.; Rull, K.; Uuskula, L.; Hallast, P.; Grigorova, M.; Laan, M. Genomics and genetics of gonadotropin β-subunit genes: Unique FSHB and duplicated LHB/CGB loci. Mol. Cell. Endocrinol. 2010, 329, 4–16. [Google Scholar] [CrossRef] [PubMed]
- Reimer, T.; Koczan, D.; Briese, V.; Friese, K.; Richter, D.; Thiesen, H.J.; Jeschke, U. Absolute quantification of human chorionic gonadotropin-β mRNA with TaqMan detection 4. Mol. Biotechnol. 2000, 14, 47–57. [Google Scholar] [CrossRef]
- Butler, S.A.; Iles, R.K. The free monomeric β subunit of human chorionic gonadotrophin (HCG β) and the recently identified homodimeric β-β subunit (HCG β β) both have autocrine growth effects. Tumour Biol. 2004, 25, 18–23. [Google Scholar] [CrossRef] [PubMed]
- Nand, K.N.; Gupta, J.C.; Panda, A.K.; Jain, S.K. Development of a recombinant HCG-specific single chain immunotoxin cytotoxic to HCG expressing cancer cells. Protein Expr. Purif. 2015, 106, 10–17. [Google Scholar] [CrossRef] [PubMed]
- Policastro, P.F.; Daniels-McQueen, S.; Carle, G.; Boime, I. A map of the HCG β-lh β gene cluster. J. Biol. Chem. 1986, 261, 5907–5916. [Google Scholar] [PubMed]
- Policastro, P.; Ovitt, C.E.; Hoshina, M.; Fukuoka, H.; Boothby, M.R.; Boime, I. The β subunit of human chorionic gonadotropin is encoded by multiple genes. J. Biol. Chem. 1983, 258, 11492–11499. [Google Scholar] [PubMed]
- Fiddes, J.C.; Talmadge, K. Structure, expression, and evolution of the genes for the human glycoprotein hormones. Recent Prog. Horm. Res. 1984, 40, 43–78. [Google Scholar] [PubMed]
- Miller-Lindholm, A.K.; LaBenz, C.J.; Ramey, J.; Bedows, E.; Ruddon, R.W. Human chorionic gonadotropin-β gene expression in first trimester placenta. Endocrinology 1997, 138, 5459–5465. [Google Scholar] [CrossRef]
- Rull, K.; Laan, M. Expression of β-subunit of HCG genes during normal and failed pregnancy. Hum. Reprod. 2005, 20, 3360–3368. [Google Scholar] [CrossRef] [PubMed]
- Kuijper, T.M.; Ruigrok-Ritstier, K.; Verhoef-Post, M.; Piersma, D.; Bruysters, M.W.; Berns, E.M.; Themmen, A.P. Lh receptor gene expression is essentially absent in breast tumor tissue: Implications for treatment. Mol. Cell. Endocrinol. 2009, 302, 58–64. [Google Scholar] [CrossRef] [PubMed]
- Meduri, G.; Charnaux, N.; Spyratos, F.; Hacene, K.; Loosfelt, H.; Milgrom, E. Luteinizing hormone receptor status and clinical, pathologic, and prognostic features in patients with breast carcinomas. Cancer 2003, 97, 1810–1816. [Google Scholar] [CrossRef] [PubMed]
- Hudelist, G.; Wuelfing, P.; Czerwenka, K.; Knofler, M.; Haider, S.; Fink-Retter, A.; Gschwantler-Kaulich, D.; Pfeiler, G.; Kubista, E.; Singer, C.F. Β-HCG/lh receptor (b-HCG/LH-R) expression is increased in invasive versus preinvasive breast cancer: Implications for breast carcinogenesis? J. Cancer Res. Clin. Oncol. 2009, 135, 191–195. [Google Scholar] [CrossRef] [PubMed]
- Casarini, L.; Pignatti, E.; Simoni, M. Effects of polymorphisms in gonadotropin and gonadotropin receptor genes on reproductive function. Rev. Endocr. Metab. Disord. 2011, 12, 303–321. [Google Scholar] [CrossRef] [PubMed]
- Casarini, L.; Santi, D.; Marino, M. Impact of gene polymorphisms of gonadotropins and their receptors on human reproductive success. Reproduction 2015, 150, R175–R184. [Google Scholar] [CrossRef] [PubMed]
- Piersma, D.; Berns, E.M.; Verhoef-Post, M.; Uitterlinden, A.G.; Braakman, I.; Pols, H.A.; Themmen, A.P. A common polymorphism renders the luteinizing hormone receptor protein more active by improving signal peptide function and predicts adverse outcome in breast cancer patients. J. Clin. Endocrinol. Metab. 2006, 91, 1470–1476. [Google Scholar] [CrossRef] [PubMed]
- Powell, B.L.; Piersma, D.; Kevenaar, M.E.; van Staveren, I.L.; Themmen, A.P.; Iacopetta, B.J.; Berns, E.M. Luteinizing hormone signaling and breast cancer: Polymorphisms and age of onset. J. Clin. Endocrinol. Metab. 2003, 88, 1653–1657. [Google Scholar] [CrossRef] [PubMed]
- Giovangrandi, Y.; Parfait, B.; Asheuer, M.; Olivi, M.; Lidereau, R.; Vidaud, M.; Bieche, I. Analysis of the human CGB/LHB gene cluster in breast tumors by real-time quantitative RT-PCR assays. Cancer Lett. 2001, 168, 93–100. [Google Scholar] [CrossRef]
- Hotakainen, K.; Lintula, S.; Jarvinen, R.; Paju, A.; Stenman, J.; Rintala, E.; Stenman, U.H. Overexpression of human chorionic gonadotropin β genes 3, 5 and 8 in tumor tissue and urinary cells of bladder cancer patients. Tumour Biol. J. Int. Soc. Oncodevelopmental Biol. Med. 2007, 28, 52–56. [Google Scholar] [CrossRef] [PubMed]
- Cole, L.A.; Butler, S. Hyperglycosylated HCG, HCGβ and hyperglycosylated HCGβ: Interchangeable cancer promoters. Mol. Cell. Endocrinol. 2012, 349, 232–238. [Google Scholar] [CrossRef] [PubMed]
- Sutton, J.M. Charge variants in serum and urine HCG. Clin. Chim. Acta Int. J. Clin. Chem. 2004, 341, 199–203. [Google Scholar] [CrossRef]
- Cole, L.A. Biological functions of HCG and HCG-related molecules. Reprod. Biol. Endocrinol. 2010, 8, 102. [Google Scholar] [CrossRef]
- Cole, L.A. Hyperglycosylated HCG, a review. Placenta 2010, 31, 653–664. [Google Scholar] [CrossRef] [PubMed]
- Evans, J.; Salamonsen, L.A.; Menkhorst, E.; Dimitriadis, E. Dynamic changes in hyperglycosylated human chorionic gonadotrophin throughout the first trimester of pregnancy and its role in early placentation. Hum. Reprod. 2015, 30, 1029–1038. [Google Scholar] [CrossRef] [PubMed]
- Cole, L.A.; Khanlian, S.A.; Riley, J.M.; Butler, S.A. Hyperglycosylated HCG in gestational implantation and in choriocarcinoma and testicular germ cell malignancy tumorigenesis. J. Reprod. Med. 2006, 51, 919–929. [Google Scholar] [PubMed]
- Valmu, L.; Alfthan, H.; Hotakainen, K.; Birken, S.; Stenman, U.H. Site-specific glycan analysis of human chorionic gonadotropin β-subunit from malignancies and pregnancy by liquid chromatography—Electrospray mass spectrometry. Glycobiology 2006, 16, 1207–1218. [Google Scholar] [CrossRef] [PubMed]
- Gillott, D.J.; Iles, R.K.; Chard, T. The effects of β-human chorionic gonadotrophin on the in vitro growth of bladder cancer cell lines. Br. J. Cancer 1996, 73, 323–326. [Google Scholar] [CrossRef] [PubMed]
- Butler, S.A.; Ikram, M.S.; Mathieu, S.; Iles, R.K. The increase in bladder carcinoma cell population induced by the free β subunit of human chorionic gonadotrophin is a result of an anti-apoptosis effect and not cell proliferation. Br. J. Cancer 2000, 82, 1553–1556. [Google Scholar] [PubMed]
- Butler, S.A.; Iles, R.K. Ectopic human chorionic gonadotropin β secretion by epithelial tumors and human chorionic gonadotropin β-induced apoptosis in Kaposi’s sarcoma: Is there a connection? Clin. Cancer Res. 2003, 9, 4666–4673. [Google Scholar] [PubMed]
- Russo, I.H.; Koszalka, M.; Russo, J. Human chorionic gonadotropin and rat mammary cancer prevention. J. Natl. Cancer Inst. 1990, 82, 1286–1289. [Google Scholar] [CrossRef] [PubMed]
- Srivastava, P.; Russo, J.; Russo, I.H. Inhibition of rat mammary tumorigenesis by human chorionic gonadotropin associated with increased expression of inhibin. Mol. Carcinog. 1999, 26, 10–19. [Google Scholar] [CrossRef]
- Srivastava, P.; Russo, J.; Russo, I.H. Chorionic gonadotropin inhibits rat mammary carcinogenesis through activation of programmed cell death. Carcinogenesis 1997, 18, 1799–1808. [Google Scholar] [CrossRef] [PubMed]
- Russo, I.H.; Russo, J. Pregnancy-induced changes in breast cancer risk. J. Mammary Gland Biol. Neoplasia 2011, 16, 221–233. [Google Scholar] [CrossRef] [PubMed]
- Toniolo, P.; Grankvist, K.; Wulff, M.; Chen, T.; Johansson, R.; Schock, H.; Lenner, P.; Hallmans, G.; Lehtinen, M.; Kaaks, R.; et al. Human chorionic gonadotropin in pregnancy and maternal risk of breast cancer. Cancer Res. 2010, 70, 6779–6786. [Google Scholar] [CrossRef] [PubMed]
- Lukanova, A.; Andersson, R.; Wulff, M.; Zeleniuch-Jacquotte, A.; Grankvist, K.; Dossus, L.; Afanasyeva, Y.; Johansson, R.; Arslan, A.A.; Lenner, P.; et al. Human chorionic gonadotropin and α-fetoprotein concentrations in pregnancy and maternal risk of breast cancer: A nested case-control study. Am. J. Epidemiol. 2008, 168, 1284–1291. [Google Scholar] [CrossRef] [PubMed]
- Fortner, R.T.; Schock, H.; Kaaks, R.; Lehtinen, M.; Pukkala, E.; Lakso, H.A.; Tanner, M.; Kallio, R.; Joensuu, H.; Korpela, J.; et al. Human chorionic gonadotropin does not correlate with risk for maternal breast cancer: Results from the Finnish maternity cohort. Cancer Res. 2017, 77, 134–141. [Google Scholar] [CrossRef]
- Janssens, J.P.; Russo, J.; Russo, I.; Michiels, L.; Donders, G.; Verjans, M.; Riphagen, I.; Van den Bossche, T.; Deleu, M.; Sieprath, P. Human chorionic gonadotropin (HCG) and prevention of breast cancer. Mol. Cell. Endocrinol. 2007, 269, 93–98. [Google Scholar] [CrossRef] [PubMed]
- Bernstein, L.; Hanisch, R.; Sullivan-Halley, J.; Ross, R.K. Treatment with human chorionic gonadotropin and risk of breast cancer. Cancer Epidemiol. Biomark. Prev. 1995, 4, 437–440. [Google Scholar]
- Russo, I.H.; Russo, J. Primary prevention of breast cancer by hormone-induced differentiation. Recent Res. Cancer Res. 2007, 174, 111–130. [Google Scholar]
- Liao, X.H.; Wang, Y.; Wang, N.; Yan, T.B.; Xing, W.J.; Zheng, L.; Zhao, D.W.; Li, Y.Q.; Liu, L.Y.; Sun, X.G.; et al. Human chorionic gonadotropin decreases human breast cancer cell proliferation and promotes differentiation. IUBMB Life 2014, 66, 352–360. [Google Scholar] [CrossRef] [PubMed]
- Rao Ch, V.; Li, X.; Manna, S.K.; Lei, Z.M.; Aggarwal, B.B. Human chorionic gonadotropin decreases proliferation and invasion of breast cancer MCF-7 cells by inhibiting NF-κB and AP-1 activation. J. Biol. Chem. 2004, 279, 25503–25510. [Google Scholar] [PubMed]
- Yuri, T.; Kinoshita, Y.; Emoto, Y.; Yoshizawa, K.; Tsubura, A. Human chorionic gonadotropin suppresses human breast cancer cell growth directly via p53-mediated mitochondrial apoptotic pathway and indirectly via ovarian steroid secretion. Anticancer Res. 2014, 34, 1347–1354. [Google Scholar] [PubMed]
- Guo, S.; Russo, I.H.; Lareef, M.H.; Russo, J. Effect of human chorionic gonadotropin in the gene expression profile of MCF-7 cells. Int. J. Oncol. 2004, 24, 399–407. [Google Scholar] [CrossRef] [PubMed]
- Srivastava, P.; Russo, J.; Mgbonyebi, O.P.; Russo, I.H. Growth inhibition and activation of apoptotic gene expression by human chorionic gonadotropin in human breast epithelial cells. Anticancer Res. 1998, 18, 4003–4010. [Google Scholar] [PubMed]
- Lopez, D.; Sekharam, M.; Coppola, D.; Carter, W.B. Purified human chorionic gonadotropin induces apoptosis in breast cancer. Mol. Cancer Ther. 2008, 7, 2837–2844. [Google Scholar] [CrossRef] [PubMed]
- Wurzel, R.S.; Yamase, H.T.; Nieh, P.T. Ectopic production of human chorionic gonadotropin by poorly differentiated transitional cell tumors of the urinary tract. J. Urol. 1987, 137, 502–504. [Google Scholar] [CrossRef]
- Sheaff, M.T.; Martin, J.E.; Badenoch, D.F.; Baithun, S.I. β HCG as a prognostic marker in adenocarcinoma of the prostate. J. Clin. Pathol. 1996, 49, 329–332. [Google Scholar] [CrossRef] [PubMed]
- Lundin, M.; Nordling, S.; Carpelan-Holmstrom, M.; Louhimo, J.; Alfthan, H.; Stenman, U.H.; Haglund, C. A comparison of serum and tissue HCG β as prognostic markers in colorectal cancer. Anticancer Res. 2000, 20, 4949–4951. [Google Scholar] [PubMed]
- Lenhard, M.; Tsvilina, A.; Schumacher, L.; Kupka, M.; Ditsch, N.; Mayr, D.; Friese, K.; Jeschke, U. Human chorionic gonadotropin and its relation to grade, stage and patient survival in ovarian cancer. BMC Cancer 2012, 12, 2. [Google Scholar] [CrossRef] [PubMed]
- Hotakainen, K.; Ljungberg, B.; Paju, A.; Rasmuson, T.; Alfthan, H.; Stenman, U.H. The free β-subunit of human chorionic gonadotropin as a prognostic factor in renal cell carcinoma. Br. J. Cancer 2002, 86, 185–189. [Google Scholar] [CrossRef] [PubMed]
- Crawford, R.A.; Iles, R.K.; Carter, P.G.; Caldwell, C.J.; Shepherd, J.H.; Chard, T. The prognostic significance of β human chorionic gonadotrophin and its metabolites in women with cervical carcinoma. J. Clin. Pathol. 1998, 51, 685–688. [Google Scholar] [CrossRef] [PubMed]
- Douglas, J.; Sharp, A.; Chau, C.; Head, J.; Drake, T.; Wheater, M.; Geldart, T.; Mead, G.; Crabb, S.J. Serum total HCGβ level is an independent prognostic factor in transitional cell carcinoma of the urothelial tract. Br. J. Cancer 2014, 110, 1759–1766. [Google Scholar] [CrossRef] [PubMed]
- Butler, S.A.; Laidler, P.; Porter, J.R.; Kicman, A.T.; Chard, T.; Cowan, D.A.; Iles, R.K. The β-subunit of human chorionic gonadotrophin exists as a homodimer. J. Mol. Endocrinol. 1999, 22, 185–192. [Google Scholar] [CrossRef] [PubMed]
- Lapthorn, A.J.; Harris, D.C.; Littlejohn, A.; Lustbader, J.W.; Canfield, R.E.; Machin, K.J.; Morgan, F.J.; Isaacs, N.W. Crystal structure of human chorionic gonadotropin. Nature 1994, 369, 455–461. [Google Scholar] [CrossRef] [PubMed]
- Koistinen, H.; Hautala, L.; Koli, K.; Stenman, U.H. Absence of TGF-β receptor activation by highly purified HCG preparations. Mol. Endocrinol. 2015, 29, 1787–1791. [Google Scholar] [CrossRef] [PubMed]
- Jankowska, A.; Gunderson, S.I.; Andrusiewicz, M.; Burczynska, B.; Szczerba, A.; Jarmolowski, A.; Nowak-Markwitz, E.; Warchol, J.B. Reduction of human chorionic gonadotropin β subunit expression by modified U1 snRNA caused apoptosis in cervical cancer cells. Mol. Cancer 2008, 7, 26. [Google Scholar] [CrossRef] [PubMed]
- Edwards, D.R.; Murphy, G.; Reynolds, J.J.; Whitham, S.E.; Docherty, A.J.; Angel, P.; Heath, J.K. Transforming growth factor β modulates the expression of collagenase and metalloproteinase inhibitor. EMBO J. 1987, 6, 1899–1904. [Google Scholar] [PubMed]
- Hamada, A.L.; Nakabayashi, K.; Sato, A.; Kiyoshi, K.; Takamatsu, Y.; Laoag-Fernandez, J.B.; Ohara, N.; Maruo, T. Transfection of antisense chorionic gonadotropin β gene into choriocarcinoma cells suppresses the cell proliferation and induces apoptosis. J. Clin. Endocrinol. Metab. 2005, 90, 4873–4879. [Google Scholar] [CrossRef] [PubMed]
- Wu, W.; Walker, A.M. Human chorionic gonadotropin β (HCGβ) down-regulates E-cadherin and promotes human prostate carcinoma cell migration and invasion. Cancer 2006, 106, 68–78. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Li, C.; Du, L.; Zhou, Y.; Wu, W. Human chorionic gonadotropin β induces migration and invasion via activating ERK1/2 and MMP-2 in human prostate cancer DU145 cells. PLoS ONE 2013, 8, e54592. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Du, L.; Li, C.; Wu, W. Human chorionic gonadotropin β induces cell motility via ERK1/2 and MMP-2 activation in human glioblastoma U87MG cells. J. Neurooncol. 2013, 111, 237–244. [Google Scholar] [CrossRef] [PubMed]
- Khare, P.; Bose, A.; Singh, P.; Singh, S.; Javed, S.; Jain, S.K.; Singh, O.; Pal, R. Gonadotropin and tumorigenesis: Direct and indirect effects on inflammatory and immunosuppressive mediators and invasion. Mol. Carcinog. 2017, 56, 359–370. [Google Scholar] [CrossRef] [PubMed]
- Hoon, D.S.; Sarantou, T.; Doi, F.; Chi, D.D.; Kuo, C.; Conrad, A.J.; Schmid, P.; Turner, R.; Guiliano, A. Detection of metastatic breast cancer by β-HCG polymerase chain reaction. Int. J. Cancer 1996, 69, 369–374. [Google Scholar] [CrossRef]
- Taback, B.; Chan, A.D.; Kuo, C.T.; Bostick, P.J.; Wang, H.J.; Giuliano, A.E.; Hoon, D.S. Detection of occult metastatic breast cancer cells in blood by a multimolecular marker assay: Correlation with clinical stage of disease. Cancer Res. 2001, 61, 8845–8850. [Google Scholar] [PubMed]
- Span, P.N.; Manders, P.; Heuvel, J.J.; Thomas, C.M.; Bosch, R.R.; Beex, L.V.; Sweep, C.G. Molecular beacon reverse transcription-PCR of human chorionic gonadotropin-β-3, -5, and -8 mRNAs has prognostic value in breast cancer. Clin. Chem. 2003, 49, 1074–1080. [Google Scholar] [CrossRef] [PubMed]
- Kuorelahti, A.; Rulli, S.; Huhtaniemi, I.; Poutanen, M. Human chorionic gonadotropin (HCG) up-regulates Wnt5b and Wnt7b in the mammary gland, and HCGβ transgenic female mice present with mammary gland tumors exhibiting characteristics of the Wnt/β-catenin pathway activation. Endocrinology 2007, 148, 3694–3703. [Google Scholar] [CrossRef] [PubMed]
- Yi, H.; Rong, Y.; Yankai, Z.; Wentao, L.; Hongxia, Z.; Jie, W.; Rongyue, C.; Taiming, L.; Jingjing, L. Improved efficacy of DNA vaccination against breast cancer by boosting with the repeat β-HCG C-terminal peptide carried by mycobacterial heat-shock protein HSP65. Vaccine 2006, 24, 2575–2584. [Google Scholar] [CrossRef] [PubMed]
- Moulton, H.M.; Yoshihara, P.H.; Mason, D.H.; Iversen, P.L.; Triozzi, P.L. Active specific immunotherapy with a β-human chorionic gonadotropin peptide vaccine in patients with metastatic colorectal cancer: Antibody response is associated with improved survival. Clin. Cancer Res. 2002, 8, 2044–2051. [Google Scholar] [PubMed]
- He, L.Z.; Ramakrishna, V.; Connolly, J.E.; Wang, X.T.; Smith, P.A.; Jones, C.L.; Valkova-Valchanova, M.; Arunakumari, A.; Treml, J.F.; Goldstein, J.; et al. A novel human cancer vaccine elicits cellular responses to the tumor-associated antigen, human chorionic gonadotropin β. Clin. Cancer Res. 2004, 10, 1920–1927. [Google Scholar] [CrossRef]
- Morse, M.A.; Chapman, R.; Powderly, J.; Blackwell, K.; Keler, T.; Green, J.; Riggs, R.; He, L.Z.; Ramakrishna, V.; Vitale, L.; et al. Phase I study utilizing a novel antigen-presenting cell-targeted vaccine with Toll-like receptor stimulation to induce immunity to self-antigens in cancer patients. Clin. Cancer Res. 2011, 17, 4844–4853. [Google Scholar] [CrossRef] [PubMed]
- Vyas, H.K.; Pal, R.; Vishwakarma, R.; Lohiya, N.K.; Talwar, G.P. Selective killing of leukemia and lymphoma cells ectopically expressing HCGβ by a conjugate of curcumin with an antibody against HCGβ subunit. Oncology 2009, 76, 101–111. [Google Scholar] [CrossRef] [PubMed]
Proapoptotic Effects of HCG | Antiapoptotic Effects of HCG |
---|---|
Downregulation of: | Downregulation of: |
• Estrogen receptor α ↓ | • TGFβ ↓ |
• NF-κB ↓ | • E-cadherin ↓ |
• AP-1 ↓ | Upregulation of: |
• PCNA ↓ | • ERK1/2 ↑ |
• Ki67 ↓ | • MMP-2 ↑ |
Upregulation of: | |
• Inhibin ↑ | |
• β-casein ↑ | |
• Cytokeratin-18 ↑ | |
• E-cadherin ↑ | |
• p53 ↑ | |
• Caspase-9, -3 ↑ | |
• TRPM2 ↑ | |
• ICE ↑ | |
• TGFβ↑ | |
• BAX ↑ | |
• P21WAF1 ↑ |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schüler-Toprak, S.; Treeck, O.; Ortmann, O. Human Chorionic Gonadotropin and Breast Cancer. Int. J. Mol. Sci. 2017, 18, 1587. https://doi.org/10.3390/ijms18071587
Schüler-Toprak S, Treeck O, Ortmann O. Human Chorionic Gonadotropin and Breast Cancer. International Journal of Molecular Sciences. 2017; 18(7):1587. https://doi.org/10.3390/ijms18071587
Chicago/Turabian StyleSchüler-Toprak, Susanne, Oliver Treeck, and Olaf Ortmann. 2017. "Human Chorionic Gonadotropin and Breast Cancer" International Journal of Molecular Sciences 18, no. 7: 1587. https://doi.org/10.3390/ijms18071587
APA StyleSchüler-Toprak, S., Treeck, O., & Ortmann, O. (2017). Human Chorionic Gonadotropin and Breast Cancer. International Journal of Molecular Sciences, 18(7), 1587. https://doi.org/10.3390/ijms18071587