Health-Promoting Effects of Thymus herba-barona, Thymus pseudolanuginosus, and Thymus caespititius Decoctions
Abstract
:1. Introduction
2. Results and Discussion
2.1. Phenolic Compounds in Thymus Aqueous Extracts
2.2. Antioxidant Capacity
2.3. Anti-Inflammatory Activity
2.4. Antibacterial Activity
3. Materials and Methods
3.1. Chemicals
3.2. Plant Materials
3.3. Extraction of Phenolic Compounds
3.4. Identification and Quantification of Phenolic Compounds
3.5. Bioactivity Tests
3.5.1. DPPH● Scavenging Test
3.5.2. Reducing Power Test
3.5.3. β-Carotene Bleaching Carotene
3.5.4. NO● Scavenging Test
3.5.5. Inhibition of 5-Lipoxygenase
3.5.6. Antimicrobial Activity
3.6. Statistical Analysis
4. Conclusions
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Pereira, O.R.; Cardoso, S.M. Overview on Mentha and Thymus Polyphenols. Curr. Anal. Chem. 2012, 9, 1–15. [Google Scholar] [CrossRef]
- Horwath, A.B.; Grayer, R.J.; Keith-Lucas, D.M.; Simmonds, M.S.J. Chemical characterisation of wild populations of Thymus from different climatic regions in southeast Spain. Biochem. Syst. Ecol. 2008, 36, 117–133. [Google Scholar] [CrossRef]
- Nieto, G.; Huvaere, K.; Skibsted, L.H. Antioxidant activity of rosemary and thyme by-products and synergism with added antioxidant in a liposome system. Eur. Food Res. Technol. 2011, 233, 11–18. [Google Scholar] [CrossRef]
- Fernandes, Â.S.F.; Barros, L.; Carvalho, A.M.; Ferreira, R.; Isabel, C.F. Lipophilic and hydrophilic antioxidants, lipid peroxidation inhibition and radical scavenging activity of two Lamiaceae food plants. Eur. J. Lipid Sci. Technol. 2010, 112, 1115–1121. [Google Scholar] [CrossRef]
- Li, A.N.; Li, S.; Zhang, Y.J.; Xu, X.R.; Chen, Y.M.; Li, H. Bin Resources and biological activities of natural polyphenols. Nutrients 2014, 6, 6020–6047. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Pandey, A.K. Chemistry and biological activities of flavonoids: An overview. Sci. World J. 2013. [Google Scholar] [CrossRef] [PubMed]
- Bisht, R.; Bhattacharya, S.; Jaliwala, Y.A. COX and LOX inhibitory potential of Abroma augusta and Desmodium gangeticum. J. Phytopharm. 2014, 3, 168–175. [Google Scholar]
- Ozkan, G.; Kamiloglu, S.; Ozdal, T.; Boyacioglu, D. Potential Use of Turkish Medicinal Plants in the treatment of various diseases. Molecules 2016, 3, 257. [Google Scholar] [CrossRef] [PubMed]
- Hossain, M.B.; Rai, D.K.; Brunton, N.P.; Martin-Diana, A.B.; Barry-Ryan, C. Characterization of phenolic composition in Lamiaceae spices by LC-ESI-MS/MS. J. Agric. Food Chem. 2010, 58, 10576–10581. [Google Scholar] [CrossRef] [PubMed]
- Özgen, U.; Mavi, Z.; Terzi, A.; Yιldιrιm, M.; Coşkun, M.; Houghton, P.J. Antioxidant Properties of Some Medicinal Lamiaceae (Labiatae) Species. Pharm. Biol. 2006, 44, 107–112. [Google Scholar] [CrossRef]
- Zhang, Y.-J.; Gan, R.-Y.; Li, S.; Zhou, Y.; Li, A.-N.; Xu, D.-P.; Li, H.-B. Antioxidant Phytochemicals for the Prevention and Treatment of Chronic Diseases. Molecules 2015, 20, 21138–21156. [Google Scholar] [CrossRef] [PubMed]
- Kuli, T.; Dragovi, V.; Milo, M. Antioxidant Activity of Aqueous Tea Infusions Prepared from Oregano, Thyme and Wild Thyme. Food Technol. Biotechnol. 2006, 44, 485–492. [Google Scholar]
- Shan, B.; Cai, Y.Z.; Sun, M.; Corke, H. Antioxidant capacity of 26 spice extracts and characterization of their phenolic constituents. J. Agric. Food Chem. 2005, 53, 7749–7759. [Google Scholar] [CrossRef] [PubMed]
- Proestos, C.P.; Horianopoulos, N.C.; Ychas, G.E.N.; Omaitis, M.K. RP-HPLC Analysis of the Phenolic Compounds of Plant Extracts. Investigation of Their Antioxidant Capacity and Antimicrobial Activity. J. Agric. Food Chem. 2005, 53, 1190–1195. [Google Scholar] [CrossRef] [PubMed]
- Kindl, M.; Blažeković, B.; Bucar, F.; Vladimir-Knežević, S. Antioxidant and anticholinesterase potential of six thymus species. Evid. Based Complement. Altern. Med. 2015. [Google Scholar] [CrossRef] [PubMed]
- Miron, T.L.; Plaza, M.; Bahrim, G.; Ibáñez, E.; Herrero, M. Chemical composition of bioactive pressurized extracts of Romanian aromatic plants. J. Chromatogr. A 2011, 1218, 4918–4927. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Özgen, U.; Mavi, A.; Terzi, Z.; Kazaz, C.; Ali, A.; Kaya, Y.; Seçen, H. Relationship Between Chemical Structure and Antioxidant Activity of Luteolin and Its Glycosides Isolated from Thymus sipyleus subsp. sipyleus var. sipyleus. Rec. Nat. Prod. 2011, 1, 12–21. [Google Scholar] [CrossRef]
- Barros, L.; Heleno, S.A.; Carvalho, A.M.; Ferreira, I.C.F.R. Lamiaceae often used in Portuguese folk medicine as a source of powerful antioxidants: Vitamins and phenolics. LWT Food Sci. Technol. 2010, 43, 544–550. [Google Scholar] [CrossRef]
- Büyükbalci, A.; El, S.N. Determination of in vitro antidiabetic effects, antioxidant activities and phenol contents of some herbal teas. Plant Foods Hum. Nutr. 2008, 63, 27–33. [Google Scholar] [CrossRef] [PubMed]
- Abd, M.A.; Kader, E.; Mohamed, N.Z. Evaluation of Protective and Antioxidant Activity of Thyme (Thymus Vulgaris) Extract on Paracetamol-Induced Toxicity in Rats. Aust. J. Basic Appl. Sci. 2012, 6, 467–474. [Google Scholar]
- Mahboubi, A.; Kamalinejad, M.; Ayatollahi, A.M.; Babaeian, M. Total phenolic content and antibacterial activity of five plants of labiatae against four foodborne and some other bacteria. Iran. J. Pharm. Res. 2014, 13, 559–566. [Google Scholar] [PubMed]
- Benbelaid, F.; Khadir, A.; Abdoune, M.A.; Bendahou, M. Phytochemical screening and in vitro antimicrobial activity of Thymus lanceolatus from Algeria. Asian Pacific J. Trop. Dis. 2013, 3, 454–459. [Google Scholar] [CrossRef]
- Chohan, M.; Naughton, D.P.; Jones, L.; Opara, E.I. An investigation of the relationship between the anti-inflammatory activity, polyphenolic content, and antioxidant activities of cooked and in vitro digested culinary herbs. Oxid. Med. Cell. Longev. 2012. [Google Scholar] [CrossRef] [PubMed]
- Miguel, G.; Simões, M.; Figueiredo, A.C.; Barroso, J.G.; Pedro, L.G.; Carvalho, L. Composition and antioxidant activities of the essential oils of Thymus caespititius, Thymus camphoratus and Thymus mastichina. Food Chem. 2004, 86, 183–188. [Google Scholar] [CrossRef]
- Bown, D. The Royal Horticultural Society New Encyclopedia of Herbs and Their Uses; Dorling Kindersley: London, UK, 2002; pp. 266–286. [Google Scholar]
- Zheng, W.; Wang, S.Y. Antioxidant Activity and Phenolic Compounds in Selected Herbs. J. Agric. Food Chem. 2001, 49. [Google Scholar] [CrossRef]
- Nagy, T.O.; Solar, S.; Sontag, G.; Koenig, J. Identification of phenolic components in dried spices and influence of irradiation. Food Chem. 2011, 128, 530–534. [Google Scholar] [CrossRef] [PubMed]
- Pereira, O.R.; Peres, A.M.; Silva, A.M.S.; Domingues, M.R.M.; Cardoso, S. M. Simultaneous characterization and quantification of phenolic compounds in Thymus x citriodorus using a validated HPLC-UV and ESI-MS combined method. Food Res. Int. 2013, 54, 1773–1780. [Google Scholar] [CrossRef]
- Iauk, L.; Acquaviva, R.; Mastrojeni, S.; Amodeo, A.; Pugliese, M.; Ragusa, M.; Loizzo, M.R.; Menichini, F.; Tundis, R. Antibacterial, antioxidant and hypoglycaemic effects of Thymus capitatus (L.) Hoffmanns. et Link leaves’ fractions. J. Enzyme Inhib. Med. Chem. 2015, 30, 360–365. [Google Scholar] [CrossRef] [PubMed]
- Nickavar, B.; Esbati, N. Evaluation of the Antioxidant Capacity and Phenolic Content of Three Thymus Species. J. Acupunct. Meridian Stud. 2012, 5, 119–125. [Google Scholar] [CrossRef] [PubMed]
- Debnath, T.; Kim, D.H.; Lim, B.O. Natural products as a source of anti-inflammatory agents associated with inflammatory bowel disease. Molecules 2013, 18, 7253–7270. [Google Scholar] [CrossRef] [PubMed]
- Atta-ur-Rahman, F.R.S. (Ed.) The Anti-inflammatory Potential of Flavonoids: Mechanistic Aspects. In Studies in Natural Products Chemistry; Elsevier: Amsterdam, The Netherlands, 2016; Volume 48, pp. 65–99. [Google Scholar]
- Pelletier, J. Therapeutic role of dual inhibitors of 5-LOX and COX, selective and non-selective non-steroidal anti-inflammatory drugs. Ann. Rheum. Dis. 2003, 62, 501–509. [Google Scholar] [CrossRef]
- World Health Organization. Antimicrobial Resistance: Global Report on Surveillance; World Health Organization: Geneva, Switzerland, 2014. [Google Scholar]
- Nielsen, T.R.H.; Kuete, V.; Jäger, A.K.; Meyer, J.J.M.; Lall, N. Antimicrobial activity of selected South African medicinal plants. BMC Complement. Altern. Med. 2012, 12, 74. [Google Scholar] [CrossRef] [PubMed]
- Figueiredo, A.; Barroso, J.; Pedro, L.; Salgueiro, L.; Miguel, M.; Faleiro, M. Portuguese Thymbra and Thymus Species Volatiles: Chemical Composition and Biological Activities. Curr. Pharm. Des. 2008, 14, 3120–3140. [Google Scholar] [CrossRef] [PubMed]
- Fournomiti, M.; Kimbaris, A.; Mantzourani, I.; Plessas, S.; Theodoridou, I.; Papaemmanouil, V.; Kapsiotis, I.; Panopoulou, M.; Stavropoulou, E.; Bezirtzoglou, E.E.; et al. Antimicrobial activity of essential oils of cultivated oregano (Origanum vulgare), sage (Salvia officinalis), and thyme (Thymus vulgaris) against clinical isolates of Escherichia coli, Klebsiella oxytoca, and Klebsiella pneumoniae. Microb. Ecol. Health Dis. 2015, 1, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Martins, N.; Barros, L.; Santos-Buelga, C.; Silva, S.; Henriques, M.; Ferreira, I.C.F.R. Decoction, infusion and hydroalcoholic extract of cultivated thyme: Antioxidant and antibacterial activities, and phenolic characterisation. Food Chem. 2015, 167, 131–137. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ferreira, F.M.; Dinis, L.T.; Azedo, P.; Galhano, C.I.C.; Simões, A.; Cardoso, S.M.; Domingues, M.R.M.; Pereira, O.R.; Palmeira, C.M.; Peixoto, F.P. Antioxidant capacity and toxicological evaluation of Pterospartum tridentatum flower extracts. CYTA J. Food 2012, 10, 92–102. [Google Scholar] [CrossRef]
- Pereira, O.R.; Silva, A.M.S.; Domingues, M.R.M.; Cardoso, S.M. Identification of phenolic constituents of Cytisus multiflorus. Food Chem. 2012, 131, 652–659. [Google Scholar] [CrossRef]
- Catarino, M.D.; Silva, A.M.S.; Saraiva, S.C.; Sobral, A.J.F.N.; Cardoso, S.M. Characterization of phenolic constituents and evaluation of antioxidant properties of leaves and stems of Eriocephalus africanus. Arab. J. Chem. 2017, in press. [Google Scholar] [CrossRef]
- Juntachote, E. B. Antioxidative properties and stability of ethanolic extracts of Holy basil and Galangal. Food Chem. 2005, 92, 193–202. [Google Scholar] [CrossRef]
- Bor, J.Y.; Chen, H.Y.; Yen, G.C. Evaluation of Antioxidant Activity and Inhibitory Effect on Nitric Oxide Production of Some Common Vegetables. J. Agric. Food Chem. 2006, 54, 1680–1686. [Google Scholar] [CrossRef] [PubMed]
- Tappel, A.L.; Lundberg, W.O.; Boyer, P.D. Effect of temperature and antioxidants upon the lipoxidase-catalyzed oxidation of sodium linoleate. Arch. Biochem. Biophys. 1953, 42, 293–304. [Google Scholar] [CrossRef]
- Andrews, J.M.; Andrews, J.M. Determination of minimum inhibitory concentrations. J. Antimicrob. Chemother. 2001, 48, 5–16. [Google Scholar] [CrossRef] [PubMed]
- Shami, A.-M.M.; Philip, K.; Muniandy, S. Synergy of antibacterial and antioxidant activities from crude extracts and peptides of selected plant mixture. BMC Complement. Altern. Med. 2013, 13, 360. [Google Scholar] [CrossRef] [PubMed]
- Ruiz, S.P.; Anjos, M.M.D.; Carrara, V.S.; deLima, J.N.; Cortez, D.A.G.; Nakamura, T.U.; Nakamura, C.V.; de Abreu Filho, B.A. Evaluation of the antibacterial activity of piperaceae extracts and nisin on alicyclobacillus acidoterrestris. J. Food Sci. 2013, 78, M1772–M1777. [Google Scholar] [CrossRef] [PubMed]
Plant Extract | Yield (%) | TPC | DPPH● | RP | β-Carotene | NO● | 5-LOX |
---|---|---|---|---|---|---|---|
T. herba-barona | 15.3 ± 1.80 a | 273 ± 16.6 a,c | 11.6 ± 0.90 a | 35.1± 4.50 a | >26.70 a | 286 ± 32.6 a | 841 ± 138 a |
T. pseudolanuginosus | 16.8 ± 0.90 a | 293 ± 30.5 a | 10.9 ± 0.70 a | 32.2± 8.20 a | 2.40 ± 0.20 b | 299 ± 23.4 a | 814 ± 87.2 a |
T. caespititius | 19.9 ± 2.40 a | 236 ± 26.6 b,c | 13.8 ± 0.60 a | 39.3 ± 2.70 a | 6.10 ± 0.20 c | 230 ± 21.5 b | 591 ± 166 a |
AA | 6.70 ± 0.70 b | − | 228 ± 20.7 b | 7.80 ± 1.00 b | |||
BHA | − | 16.0 ± 2.00 b | 0.40 ± 0.02 d |
Fraction | RT (min) | λmax (nm) | Compound | [M-H]− | Main Fragments ESI-MSn | (mg/g Extract) | ||
---|---|---|---|---|---|---|---|---|
T. h-b | T. pseud | T. caesp | ||||||
1 | 1.3 | 270 | Quinic acid A | 191 | MS2 [191]: 111, 173 | D | D | D |
2 | 1.6 | 278 | Syringic acid-O-hex B | 359 | MS2 [359]: 197, 179, 161, 153, 135 | D | D | D |
3 | 1.8 | 281 | Danshensu B | 197 | MS2 [197]: 179 | D | D | D |
292, 323 | 4-O-CQA B | 353 | MS2 [353]: 173, 179, 191 | − | D | D | ||
4 | 2.2 | 286, 322 | t-5-O-CQA A | 353 | MS2 [353]: 191 , 179, 161, 135, 119 | D | 6.4 ± 0.4 | D |
5 | 2.4 | 271, 333 | Apigenin di-C-glc B | 593 | MS2 [539]: 473, 353, 383, 503, 575, 297 | D | D | 4.0 ± 0.2 |
6 | 3.3 | 289, 321 | Caffeic acid A | 179 | MS2 [179]: 135, 151, 161, 107, 97 | 4.3 ± 0.1 | D | D |
7 | 3.4 | 287, 318 | SA F der B | 375 | MS2 [375]: 313, 269, 179, 135, MS3 [313]: 269, 161 | D | D | D |
277 | RA der B | 377 | MS2 [377]: 359; MS3 [359]: 161, 179, 197, 223, 133 | − | − | D | ||
8 | 3.7 | 283 | Eriodictyol-O-glc A | 449 | MS2 [449]: 287, 269, 259, 267 | 1.9 ± 0.01 | − | − |
9 | 4.1 | 281, 342 | Quercetin-O-glcA B | 477 | MS2 [477]: 301, 343, 397 | 2.3 ± 0.1 | 3.4 ± 0.04 | 1.1 ± 0.08 |
10 | 4.6 | 341 | Luteolin-C-glc A | 447 | MS2 [447]: 357, 285, 327 | 5.1 ± 0.1 | 2.9 ± 0.02 | − |
11 | 5.1 | 282 | RA sulfate B | 439 | MS2 [439]: 259, 421, 225, 371, 359, 197; MS3 [259]: 161 | − | − | D |
12 | 5.6 | 253, 287, 312 | SA I B | 537 | MS2 [537]: 339, 493; MS3 [339]: 295, 229, 293 | − | D | D |
13 | 5.7 | 289, 318 | SA F der B | 519 | MS2 [519]: 475, 313; MS3 [475]: 313, 269, 179, 431 | D | − | − |
14 | 6.2 | 254, 266, 345 | Luteolin-O-rut B | 593 | MS2 [593]: 285 | − | − | 2.2 ± 0.1 |
15 | 6.8 | 281, 331 | Luteolin-O-glcA (isom 1) B | 461 | MS2 [461]: 285, 175; MS3 [285]: 267, 239, 241, 213, 185 | 4.4 ± 0.02 | 54.1 ± 0.6 | 17.3 ± 1.1 |
16 | 7.0 | 255, 265, 345 | Luteolin-O-glcA (isom 2) B | 461 | MS2 [461]: 285; MS3 [285]: 241, 199, 175, 151, 267 | 10.5 ± 0.2 | 7.1 ± 0.2 | 6.8 ± 0.4 |
17 | 7.3 | 261, 331 | Apigenin-O-glc (isom 1) A | 431 | MS2 [431]: 269 | − | 0.9 ± 0.15 | − |
18 | 8.0 | 285, 333 | SA C der B | 553 | MS2 [553]: 491, 399, 179, 429, 473; MS3 [491]: 473 | − | D | − |
19 | 8.3 | 254, 283, 344 | SA B (isom1) B | 717 | MS2 [717]: 519, 475, 339; MS3 [519]: 475, 339 | − | − | 6.9 ± 0.5 |
289, 318 | Dedihydro-SA B (isom 1) B | 715 | MS2 [715]: 313, 627, 671, 269; MS2 [313]: 179, 135 | 10.8 ± 0.1 | − | − | ||
20 | 8.5 | 289, 337 | Chrysoeriol-O-glc B | 461 | MS2 [461]: 299, 284; MS3 [299]: 284 | D | D | − |
21 | 9.0 | 228, 282, 331 | Apigenin-O-glc (isom 2) B | 431 | MS2 [431]: 269; MS3 [269]: 225, 149, 117, 183, 167, 199 | D | − | − |
22 | 9.0 | 252, 267, 342 | Chrysoeriol-O-rut B | 607 | MS2 [607]: 299, 284 ; MS3 [299]: 284 | − | − | D |
23 | 9.1 | 267, 333 | Apigenin-O-glcA B | 445 | MS2 [445]: 269, 175 | 2.1 ± 0.03 | 8.3 ± 0.05 | 1.97 ± 0.1 |
24 | 9.6 | 287, 325 | RA A | 359 | MS2 [359]: 161, 179, 197, 223 | 55.8 ± 2.8 | 40.2 ± 0.9 | 43.2 ± 3.2 |
25 | 9.8 | 287, 311 | 3′-O-(8″-Z-Caffeoyl) RA (isom 1) B | 537 | MS2 [537]: 493, 515, 375, 357, 339, 313, 197 | D | D | D |
26 | 9.0 | 289, 319 | Dedihydro- SA B (isom 2) B | 715 | MS2 [715]: 313, 671, 627, 269 | D | − | − |
27 | 10.1 | 288, 326 | SA B (isom 2) B | 717 | MS2 [717]: 519, 357, 555 MS3 [519]: 357, 475, 295 | D | D | D |
287, 324 | SA K B | 555 | MS2 [555]: 493, 357, 393, 313; MS3 [493]: 359, 313, 161 | D | 10.5 ± 0.1 | − | ||
28 | 10.7 | 290, 323 | 3′-O-(8″-Z-Caffeoyl) RA (isom 2) B | 537 | MS2 [537]: 493, 359; MS3 [493]: 359, 313, 295, 161 | 12.0 ± 0.2 | D | D |
29 | 12.2 | 288, 322 | Caffeoyl RA (isom 1) B | 537 | MS2 [537]: 375, 493, 359, 519 | 10.5 ± 0.06 | D | D |
30 | 12.5 | 287, 328 | Caffeoyl RA (isom 2) B | 537 | MS2 [537]: 439, 519, 357, 493, 323, 197 | 4.2 ± 0.1 | − | − |
31 | 12.8 | 288, 323 | Caffeoyl RA (isom 3) B | 537 | MS2 [537]: 519, 359, 357, 339, 235, 493; MS3 [519]: 357 | − | D | − |
32 | 13.3 | 287, 323 | 3′-O-(8″-Z-Caffeoyl) RA (isom 3) B | 537 | MS2 [537]: 493, 375, 359; MS3 [493]: 359, 197 | D | D | D |
Phenolic compounds groups | Caffeic acid and derivatives | 97.6 ± 2.6 a | 57.1 ± 1.3 b | 50.0 ± 3.8 c | ||||
Flavones | 22.0 ± 0.3 a | 73.3 ± 1.0 b | 32.2 ± 2.0 c | |||||
Flavonols | 2.3 ± 0.1 a | 3.6 ± 0.04 b | 1.1 ± 0.1 c | |||||
Flavanones | 1.9 ± 0.01 | − | − | |||||
Total | 123.9 ± 2.8 a | 134.0 ± 2.4 b | 83.4 ± 5.8 c |
Bacteria | T. herba-barona | T. pseudolanuginosus | T. caespititius | Nisin | ||||
---|---|---|---|---|---|---|---|---|
MBC | MIC | MBC | MIC | MBC | MIC | MBC | MIC | |
Salmonella typhimurium | 5.0 | 5.0 | >6.5 | 6.5 | >7.0 | 7.0 | 0.5 | 0.5 |
Staphylococcus epidermidis | 5.0 | 5.0 | 6.5 | 6.5 | 7.0 | 3.5 | <0.03 | <0.03 |
Staphylococcus aureus | 0.6 | 0.6 | 1.6 | 1.6 | 3.5 | 3.5 | 0.25 | 0.25 |
Escherichia coli | >5.0 | 5.0 | >6.5 | 6.5 | 7.0 | 7.0 | 0.5 | 0.5 |
Pseudomonas aeruginosa | >5.0 | 5.0 | >6.5 | 6.5 | >7.0 | 7.0 | 1.0 | 0.5 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Afonso, A.F.; Pereira, O.R.; Neto, R.T.; Silva, A.M.S.; Cardoso, S.M. Health-Promoting Effects of Thymus herba-barona, Thymus pseudolanuginosus, and Thymus caespititius Decoctions. Int. J. Mol. Sci. 2017, 18, 1879. https://doi.org/10.3390/ijms18091879
Afonso AF, Pereira OR, Neto RT, Silva AMS, Cardoso SM. Health-Promoting Effects of Thymus herba-barona, Thymus pseudolanuginosus, and Thymus caespititius Decoctions. International Journal of Molecular Sciences. 2017; 18(9):1879. https://doi.org/10.3390/ijms18091879
Chicago/Turabian StyleAfonso, Andrea F., Olívia R. Pereira, Rodrigo T. Neto, Artur M. S. Silva, and Susana M. Cardoso. 2017. "Health-Promoting Effects of Thymus herba-barona, Thymus pseudolanuginosus, and Thymus caespititius Decoctions" International Journal of Molecular Sciences 18, no. 9: 1879. https://doi.org/10.3390/ijms18091879
APA StyleAfonso, A. F., Pereira, O. R., Neto, R. T., Silva, A. M. S., & Cardoso, S. M. (2017). Health-Promoting Effects of Thymus herba-barona, Thymus pseudolanuginosus, and Thymus caespititius Decoctions. International Journal of Molecular Sciences, 18(9), 1879. https://doi.org/10.3390/ijms18091879