Calbindin D28k-Immunoreactivity in Human Enteric Neurons
Abstract
:1. Introduction
2. Results
2.1. Wholemounts Stained for HU C/D (HU) and Calbindin (CALB)
2.2. Wholemount Quadruple Staining for Calbindin (CALB), Calretinin (CALR), Somatostatin (SOM) and Vasoactive Intestinal Peptide (VIP)
2.3. Wholemount Quadruple Staining for Morphological Analysis
2.4. Sections Stained for Calbindin (CALB) and Peripherin (PERI)
3. Discussion
3.1. General Distribution of CALB in the Human Enteric Plexus
3.2. CALB in Human Myenteric Neurons
3.3. CALB in Human Submucosal Neurons
3.4. CALB and Microbiome?
4. Materials and Methods
4.1. Tissue Handling
4.2. Immunohistochemistry
4.3. Image Acquisition, Quantification
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
Abbreviations
CALB | Calbindin |
CALR | Calretinin |
ESP | External Submucosal Plexus |
HU | Neuronal Protein HUC/D |
IPAN | Intrinsic Primary Afferent Neuron |
ISP | Internal Submucosal Plexus |
MP | Myenteric Plexus |
NF | Neurofilament |
PERI | Peripherin |
PBS | Phosphate Buffered Saline |
SOM | Somatostatin |
TBS | Tris-Buffered Saline |
VIP | Vasoactive Intestinal Peptide |
References
- Costa, M.; Brookes, S.J.; Steele, P.A.; Gibbins, I.; Burcher, E.; Kandiah, C.J. Neurochemical classification of myenteric neurons in the guinea-pig ileum. Neuroscience 1996, 75, 949–967. [Google Scholar] [CrossRef]
- Furness, J.B. The Enteric Nervous System; Blackwell: Oxford, UK, 2006; ISBN 13:978-1-4051-3376-0. [Google Scholar]
- Jabari, S.; de Oliveira, E.C.; Brehmer, A.; da Silveira, A.B. Chagasic megacolon: Enteric neurons and related structures. Histochem. Cell Biol. 2014, 142, 235–244. [Google Scholar] [CrossRef] [PubMed]
- Pompolo, S.; Furness, J.B. Ultrastructure and synaptic relationships of calbindin-reactive, Dogiel type II neurons, in myenteric ganglia of guinea-pig small intestine. J. Neurocytol. 1988, 17, 771–782. [Google Scholar] [CrossRef] [PubMed]
- Furness, J.B.; Trussell, D.C.; Pompolo, S.; Bornstein, J.C.; Smith, T.K. Calbindin neurons of the guinea-pig small intestine: Quantitative analysis of their numbers and projections. Cell Tissue Res. 1990, 260, 261–272. [Google Scholar] [CrossRef] [PubMed]
- Song, Z.M.; Brookes, S.J.; Costa, M. Identification of myenteric neurons which project to the mucosa of the guinea-pig small intestine. Neurosci. Lett. 1991, 129, 294–298. [Google Scholar] [CrossRef]
- Song, Z.M.; Brookes, S.J.; Costa, M. All calbindin-immunoreactive myenteric neurons project to the mucosa of the guinea-pig small intestine. Neurosci. Lett. 1994, 180, 219–222. [Google Scholar] [CrossRef]
- Walters, J.R.; Bishop, A.E.; Facer, P.; Lawson, E.M.; Rogers, J.H.; Polak, J.M. Calretinin and calbindin-D28k immunoreactivity in the human gastrointestinal tract. Gastroenterology 1993, 104, 1381–1389. [Google Scholar] [CrossRef]
- Brehmer, A. The value of neurofilament-immunohistochemistry for identifying enteric neuron types—Special reference to intrinsic primary afferent (sensory) neurons. In New Research on Neurofilament Proteins; Arlen, R.K., Ed.; Nova Science Publishers: New York, NY, USA, 2007; pp. 99–114. ISBN 978 1-60021-396-0. [Google Scholar]
- Brehmer, A.; Croner, R.; Dimmler, A.; Papadopoulos, T.; Schrödl, F.; Neuhuber, W. Immunohistochemical characterization of putative primary afferent (sensory) myenteric neurons in human small intestine. Auton. Neurosci. 2004, 112, 49–59. [Google Scholar] [CrossRef] [PubMed]
- Weidmann, S.; Schrödl, F.; Neuhuber, W.; Brehmer, A. Quantitative estimation of putative primary afferent neurons in the myenteric plexus of human small intestine. Histochem. Cell Biol. 2007, 128, 399–407. [Google Scholar] [CrossRef] [PubMed]
- Brehmer, A.; Rupprecht, H.; Neuhuber, W. Two submucosal nerve plexus in human intestines. Histochem. Cell Biol. 2010, 133, 149–161. [Google Scholar] [CrossRef] [PubMed]
- Kustermann, A.; Neuhuber, W.; Brehmer, A. Calretinin and somatostatin immunoreactivities label different human submucosal neuron populations. Anat. Rec. 2011, 294, 858–869. [Google Scholar] [CrossRef] [PubMed]
- Beyer, J.; Jabari, S.; Rau, T.T.; Neuhuber, W.; Brehmer, A. Substance P- and choline acetyltransferase immunoreactivities in somatostatin-containing, human submucosal neurons. Histochem. Cell Biol. 2013, 140, 157–167. [Google Scholar] [CrossRef] [PubMed]
- Beuscher, N.; Jabari, S.; Strehl, J.; Neuhuber, W.; Brehmer, A. What neurons hide behindcalretinin immunoreactivity in the human gut? Histochem. Cell Biol. 2014, 141, 393–405. [Google Scholar] [CrossRef] [PubMed]
- Ganns, D.; Schrödl, F.; Neuhuber, W.; Brehmer, A. Investigation of general and cytoskeletal markers to estimate numbers and proportions of neurons in the human intestine. Histol. Histopathol. 2006, 21, 41–51. [Google Scholar] [PubMed]
- Brehmer, A. Structure of enteric neurons. Adv. Anat. Embryol. Cell Biol. 2006, 186, 1–94. [Google Scholar] [PubMed]
- Dogiel, A.S. Ueber den Bau der Ganglien in den Geflechten des Darmes und der Gallenblase des Menschen und der Säugethiere. Arch. Anat. Phys. 1899, 130–158. [Google Scholar]
- Stach, W.; Krammer, H.J.; Brehmer, A. Structural organization of enteric nerve cells in large mammals including man. In Neurogastroenterology from the Basics to the Clinics; Krammer, H.J., Singer, M.V., Eds.; Kluwer: Dordrecht, The Netherlands, 2000; pp. 3–20. ISBN 0-7923-8757-0. [Google Scholar]
- Brehmer, A.; Blaser, B.; Seitz, G.; Schrödl, F.; Neuhuber, W. Pattern of lipofuscin pigmentation in nitrergic and non-nitrergic, neurofilament immunoreactive myenteric neuron types of human small intestine. Histochem. Cell Biol. 2004, 121, 13–20. [Google Scholar] [CrossRef] [PubMed]
- Timmermans, J.P.; Barbiers, M.; Scheuermann, D.W.; Stach, W.; Adriaensen, D.; Mayer, B.; De Groodt-Lasseel, M.H. Distribution pattern, neurochemical features and projections of nitrergic neurons in the pig small intestine. Ann. Anat. 1994, 176, 515–525. [Google Scholar] [CrossRef]
- Quinson, N.; Robbins, H.L.; Clark, M.J.; Furness, J.B. Calbindin immunoreactivity of enteric neurons in the guinea-pig ileum. Cell Tissue Res. 2001, 305, 3–9. [Google Scholar] [CrossRef] [PubMed]
- Sang, Q.; Young, H.M. The identification and chemical coding of cholinergic neurons in the small and large intestine of the mouse. Anat. Rec. 1998, 251, 185–199. [Google Scholar] [CrossRef]
- Sayegh, A.I.; Ritter, R.C. Morphology and distribution of nitric oxide synthase-, neurokinin-1 receptor-, calretinin-, calbindin-, and neurofilament-M-immunoreactive neurons in the myenteric and submucosal plexuses of the rat small intestine. Anat. Rec. A Discov. Mol. Cell. Evol. Biol. 2003, 271, 209–216. [Google Scholar] [CrossRef] [PubMed]
- Brown, D.R.; Timmermans, J.P. Lessons from the porcine enteric nervous system. Neurogastroenterol. Motil. 2004, 16 (Suppl. 1), 50–54. [Google Scholar] [CrossRef] [PubMed]
- Qu, Z.D.; Thacker, M.; Castelucci, P.; Bagyanszki, M.; Epstein, M.L.; Furness, J.B. Immunohistochemical analysis of neuron types in the mouse small intestine. Cell Tissue Res. 2008, 334, 147–161. [Google Scholar] [CrossRef] [PubMed]
- Kamm, K.; Hoppe, S.; Breves, G.; Schroder, B.; Schemann, M. Effects of the probiotic yeast Saccharomyces boulardii on the neurochemistry of myenteric neurones in pig jejunum. Neurogastroenterol. Motil. 2004, 16, 53–60. [Google Scholar] [CrossRef] [PubMed]
- McVey Neufeld, K.A.; Perez-Burgos, A.; Mao, Y.K.; Bienenstock, J.; Kunze, W.A. The gut microbiome restores intrinsic and extrinsic nerve function in germ-free mice accompanied by changes in calbindin. Neurogastroenterol. Motil. 2015, 27, 627–636. [Google Scholar] [CrossRef] [PubMed]
- Karin, M.; Jobin, C.; Balkwill, F. Chemotherapy, immunity and microbiota—A new triumvirate? Nat. Med. 2014, 20, 126–127. [Google Scholar] [CrossRef] [PubMed]
- Schnell, S.A.; Staines, W.A.; Wessendorf, M.W. Reduction of lipofuscin-like autofluorescence in fluorescently labeled tissue. J. Histochem. Cytochem. 1999, 47, 719–730. [Google Scholar] [CrossRef] [PubMed]
- Brehmer, A.; Lindig, T.M.; Schrödl, F.; Neuhuber, W.; Ditterich, D.; Rexer, M.; Rupprecht, H. Morphology of enkephalin-immunoreactive myenteric neurons in the human gut. Histochem. Cell Biol. 2005, 123, 131–138. [Google Scholar] [CrossRef] [PubMed]
Segment | Plexus | HU | HU CALB | % |
---|---|---|---|---|
n = Patients | CALB | |||
Duodenum n = 3 | MP | 539.0 ± 23.9 | 165.0 ± 11.8 | 30.6 |
ESP | 164.3 ± 20.1 | 119.3 ± 14.8 | 72.6 | |
ISP | 199.0 ± 35.4 | 164.3 ± 16.6 | 82.6 | |
Jejunum n = 3 | MP | 367,7 ± 36.1 | 92.3 ± 11.3 | 25.1 |
ESP | 138.3 ± 22.8 | 119.3 ± 16.8 | 86.3 | |
ISP | 182.7 ± 31.2 | 151.7 ± 20.3 | 83 | |
Ileum n = 3 | MP | 435.3 ± 36.5 | 159.7 ± 15.6 | 36.7 |
ESP | 128.0 ± 29.5 | 72.7 ± 15.0 | 56.8 | |
ISP | 185.7 ± 22.0 | 143.7 ± 18.7 | 77.4 | |
Σ Small intestine n = 9 | MP | 447.3 ± 39.9 | 139.0 ± 17.2 | 31.1 |
ESP | 143.5 ± 30.7 | 103.8 ± 18.1 | 72.3 | |
ISP | 189.1 ± 36.9 | 153.2 ± 22.8 | 81 | |
Ascending colon n = 5 | MP | 413.4 ± 38.9 | 101.4 ± 10.6 | 24.5 |
ESP | 120.2 ± 20.6 | 112.2 ± 16.1 | 93.3 | |
ISP | 220.0 ± 31.3 | 212.6 ± 19.7 | 96.6 | |
Transverse colon n = 4 | MP | 514.0 ± 36.6 | 156.7 ± 14.0 | 30.5 |
ESP | 202.5 ± 16.0 | 188.5 ± 16.9 | 93.1 | |
ISP | 203.7 ± 27.4 | 197.7 ± 19.7 | 97 | |
Descending colon n = 3 | MP | 430.3 ± 36.6 | 91.0 ± 21.0 | 21.1 |
ESP | 181.3 ± 29.9 | 164.3 ± 20.1 | 90.6 | |
ISP | 217.7 ± 16.4 | 201.3 ± 18.8 | 92.5 | |
Sigmoid colon n = 5 | MP | 418.8 ± 22.2 | 96.4 ± 16.9 | 23 |
ESP | 173.4 ± 19.6 | 163.8 ± 14.2 | 94.5 | |
ISP | 271.2 ± 24.4 | 253.8 ± 18.0 | 93.6 | |
Σ Large intestine n = 17 | MP | 441.6 ± 40.0 | 111.1 ± 24.2 | 25.2 |
ESP | 166.0 ± 33.5 | 154.5 ± 22.9 | 93.1 | |
ISP | 230.8 ± 30.7 | 219.2 ± 20.6 | 95 |
Segment n = Patients | Plexus | CALB | CALB Only | CALB VIP | CALB CALR | CALB | CALB SOM | CALB |
---|---|---|---|---|---|---|---|---|
Number | CALR | SOM | ||||||
Σ | VIP | CALR | ||||||
Duodenum n = 3 | MP | 136.7 ± 19.0 | 96.90% | 0.20% | 1.20% | 0.00% | 0.20% | 1.20% |
ESP | 68.0 ± 9.8 | 9.60% | 3.80% | 0.00% | 53.80% | 31.70% | 0.90% | |
ISP | 85.3 ± 14.6 | 0.60% | 6.40% | 12.20% | 41.70% | 39.10% | 0.00% | |
Jejunum n = 3 | MP | 166.3 ± 22.0 | 83.00% | 6.00% | 4.80% | 4.20% | 0.60% | 1.00% |
ESP | 79.3 ± 13.1 | 1.40% | 1.40% | 3.60% | 65.90% | 21.00% | 2.90% | |
ISP | 86.0 ± 12.0 | 0.00% | 0.60% | 5.10% | 67.10% | 17.70% | 9.50% | |
Ileum n = 3 | MP | 159.0 ± 18.8 | 79.90% | 6.50% | 7.30% | 0.60% | 3.60% | 1.00% |
ESP | 70.0 ± 12.4 | 1.40% | 0.00% | 7.10% | 81.40% | 9.50% | 0.50% | |
ISP | 95.3 ± 14.8 | 0.30% | 0.70% | 3.80% | 85.00% | 10.10% | 0.00% | |
Σ Small intestine n = 9 | MP | 154.0 ± 24.2 | 86.00% | 4.50% | 4.60% | 1.70% | 1.50% | 1.10% |
ESP | 72.4 ± 14.8 | 3.30% | 1.30% | 4.40% | 70.30% | 18.10% | 1.30% | |
ISP | 88.9 ± 16.0 | 0.30% | 2.20% | 6.30% | 69.00% | 19.70% | 2.50% | |
Ascending | MP | 152.8 ± 18.0 | 65.40% | 12.80% | 13.70% | 7.10% | 0.60% | 0.00% |
colon | ESP | 91.0 ± 16.8 | 1.30% | 11.00% | 5.90% | 77.80% | 3.70% | 0.00% |
n = 5 | ISP | 160.4 ± 22.2 | 2.00% | 14.50% | 2.20% | 72.10% | 8.70% | 0.20% |
Transverse colon n = 4 | MP | 189.0 ± 19.7 | 72.90% | 14.30% | 7.90% | 4.60% | 0.00% | 0.30% |
ESP | 161.2 ± 17.9 | 1.80% | 0.40% | 8.90% | 85.30% | 3.20% | 0.10% | |
ISP | 184.0 ± 20.0 | 1.80% | 0.30% | 3.10% | 87.50% | 4.20% | 2.40% | |
Descending colon n = 3 | MP | 65.0 ± 12.0 | 61.00% | 31.30% | 4.10% | 3.10% | 0.00% | 0.50% |
ESP | 76.3 ± 14.9 | 1.70% | 2.20% | 5.20% | 90.40% | 0.40% | 0.00% | |
ISP | 84.7 ± 14.0 | 10.60% | 4.70% | 3.50% | 79.10% | 2.00% | 0.00% | |
Sigmoid colon n = 5 | MP | 99.4 ± 8.6 | 84.30% | 2.40% | 10.90% | 1.60% | 0.40% | 0.40% |
ESP | 101.8 ± 17.6 | 4.70% | 15.70% | 5.10% | 72.30% | 2.20% | 0.00% | |
ISP | 140.6 ± 18.1 | 0.80% | 17.10% | 2.30% | 73.40% | 6.10% | 0.00% | |
Σ Large intestine n = 17 | MP | 130.1 ± 22.0 | 71.80% | 12.60% | 10.30% | 4.60% | 0.30% | 0.20% |
ESP | 108.6 ± 19.3 | 2.50% | 7.50% | 6.70% | 80.50% | 2.70% | 0.00% | |
ISP | 146.8 ± 24.3 | 2.50% | 10.00% | 2.70% | 77.70% | 6.00% | 0.80% |
Primary Antisera | |||
Antigen | Host | Dilution | Source |
Calbindin D28k | Rabbit | 1:1500 | CB-38; Swant; Switzerland |
HUC/D | Mouse | 1:50 | A21271; Thermo Fisher Scientific; Germany |
NF 200 | Mouse | 1:200 | N0142; Sigma, Germany |
Peripherin | Goat | 1:200 | sc-7604; Santa Cruz; Germany |
Calretinin | Mouse | 1:1000 | M7245; Dako, Germany |
Somatostatin (YC7) | Rat | 1:200 | sc-47706; Santa Cruz, Germany |
VIP | Guinea-pig | 1:500 | T-5030; Dianova, Germany |
Fluorescence Tags for Secondary Antisera | |||
Alexa Fluor 555 | Donkey anti-rabbit | 1:1000 | A31572; Thermo Fisher Scientific, Germany |
Alexa Fluor 488 | Donkey anti-mouse | 1:1000 | A21202; Thermo Fisher Scientific, Germany |
Alexa Fluor 488 | Donkey anti-goat | 1:1000 | A11055; Thermo Fisher Scientific, Germany |
Dy-Light 647 | Donkey anti-rat | 1:1000 | 712-605-153; Dianova, Germany |
Dy-Light 405 | Donkey anti-guinea pig | 1:200 | 706-475-148; Dianova, Germany |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zetzmann, K.; Strehl, J.; Geppert, C.; Kuerten, S.; Jabari, S.; Brehmer, A. Calbindin D28k-Immunoreactivity in Human Enteric Neurons. Int. J. Mol. Sci. 2018, 19, 194. https://doi.org/10.3390/ijms19010194
Zetzmann K, Strehl J, Geppert C, Kuerten S, Jabari S, Brehmer A. Calbindin D28k-Immunoreactivity in Human Enteric Neurons. International Journal of Molecular Sciences. 2018; 19(1):194. https://doi.org/10.3390/ijms19010194
Chicago/Turabian StyleZetzmann, Katharina, Johanna Strehl, Carol Geppert, Stefanie Kuerten, Samir Jabari, and Axel Brehmer. 2018. "Calbindin D28k-Immunoreactivity in Human Enteric Neurons" International Journal of Molecular Sciences 19, no. 1: 194. https://doi.org/10.3390/ijms19010194
APA StyleZetzmann, K., Strehl, J., Geppert, C., Kuerten, S., Jabari, S., & Brehmer, A. (2018). Calbindin D28k-Immunoreactivity in Human Enteric Neurons. International Journal of Molecular Sciences, 19(1), 194. https://doi.org/10.3390/ijms19010194