Guided Evolution of Recombinant Bombyx mori Acetylcholinesterase II by Homology Modeling to Change Pesticide Sensitivity
Abstract
:1. Introduction
2. Results
2.1. Simulation of 3D-Structure and Docking
2.2. Plasmid Construction and Transformation
2.3. Determination of the Gene Copy Number of Bmace2 by q-PCR
2.4. Analysis of Enzyme Activity and Inhibition by Physostigmine
2.5. Analysis of Pesticide Sensitivity
2.6. Simulation of Molecular Dynamics
3. Discussion
4. Materials and Methods
4.1. 3D-Structure Homology Modeling and Docking
4.2. Mutated rBmAChE II Plasmid Construction and Transformation
4.3. Screening of Bmace Copy Number by q-PCR
4.4. Protein Expression
4.5. Enzyme Activity and Inhibition by Physostigmine
4.6. Analysis of Pesticide Sensitivity
4.7. Molecular Dynamic Simulation
Author Contributions
Funding
Conflicts of Interest
Abbreviations
AChE | acetylcholinesterase |
rBmAChE II | recombinant Bombyx mori type II acetylcholinesterase |
OP | organophosphorus |
CB | Carbamate |
P. pastoris | Pichia pastoris |
BMGY | buffered glycerol-complex medium |
BMMY | buffered methanol-complex medium |
MD | minimal dextrose medium |
YPD | yeast peptone dextrose |
bmace | Bombyx mori acetylcholinesterase gene |
DTNB | 5,5′-dithiobis-(2-nitrobenzoic acid) |
ATChI | acetylthiocholine iodide |
COM | center of mass |
MD | molecular dynamic |
SMD | steered molecular dynamic |
References
- Cléry-Barraud, C.; Ordentlich, A.; Grosfeld, H.; Shafferman, A.; Masson, P. Pressure and heat inactivation of recombinant human acetylcholinesterase. Eur. J. Biochem. 2002, 269, 4297–4307. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fukuto, T.R. Mechanism of action of organophosphorus and carbamate insecticides. Environ. Health Perspect. 1990, 87, 245–254. [Google Scholar] [CrossRef] [PubMed]
- Konrad, H.; Gabrio, T. Rapid enzymatic-colorimetric method for detecting organophosphorous insecticide residues in milk. Die Nahr. 1976, 20, 395–398. [Google Scholar] [CrossRef]
- Raghu, P.; Kumara Swamy, B.E.; Reddy, T.M.; Chandrashekar, B.N.; Reddaiah, K. Sol-gel immobilized biosensor for the detection of organophosphorous pesticides: A voltammetric method. Bioelectrochemistry 2012, 83, 19–24. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.Y.; Zhai, C.; Sun, X. Acetylcholinesterase biosensor design based on the gold nanoparticles and multi-wall carbon nanotubes modified electrode for amperometric detection of organophosphate pesticides. Int. Agric. Eng. J. 2011, 20, 47–51. [Google Scholar]
- Cheng, W.; Murphy, S.D. Kinetic analysis of species difference in acetylcholinesterase sensitivity to organophosphate insecticides. Toxicol. Appl. Pharmacol. 1982, 66, 409–419. [Google Scholar]
- Villatte, F.; Marcel, V.; Estrada-Mondaca, S.; Fournier, D. Engineering sensitive acetylcholinesterase for detection of organophosphate and carbamate insecticides. Biosens. Bioelectron. 1998, 13, 157–164. [Google Scholar] [CrossRef]
- Chen, H.J.; Liao, Z.; Hui, X.M.; Li, G.Q.; Li, F.; Han, Z.J. Ace2, rather than ace1, is the major acetylcholinesterase in the silkworm, Bombyx mori. Insect Sci. 2010, 16, 297–303. [Google Scholar] [CrossRef]
- Li, B.; Wang, Y.H.; Wang, J.M.; Shen, W.D. Cloning and Expression Analysis of Acetylcholinesterase Gene (Bm-ace1, Bm-ace2) from Domesticated Silkworm, Bombyx mori. Adv. Mater. Res. 2011, 175–176, 13–18. [Google Scholar]
- Legay, C.; Bon, S.; Vernier, P.; Coussen, F.; Massoulié, J. Cloning and expression of a rat acetylcholinesterase subunit: Generation of multiple molecular forms and complementarity with a Torpedo collagenic subunit. J. Neurochem. 1993, 60, 337–346. [Google Scholar] [CrossRef] [PubMed]
- Sussman, J.L.; Harel, M.; Frolow, F.; Oefner, C.; Goldman, A.; Toker, L.; Silman, I. Atomic structure of acetylcholinesterase from Torpedo californica: A prototypic acetylcholine-binding protein. Science 1991, 253, 872–879. [Google Scholar] [CrossRef] [PubMed]
- Antosiewicz, J.; Wlodek, S.T.; McCammon, J.A. Acetylcholinesterase: Role of the enzyme’s charge distribution in steering charged ligands toward the active site. Biopolymers 1996, 39, 85–94. [Google Scholar] [CrossRef]
- Ambure, P.; Kar, S.; Roy, K. Pharmacophore mapping-based virtual screening followed by molecular docking studies in search of potential acetylcholinesterase inhibitors as anti-Alzheimer’s agents. BioSystems 2014, 116, 10–20. [Google Scholar] [CrossRef] [PubMed]
- Boublik, Y.; Saint-Aguet, P.; Lougarre, A.; Arnaud, M.; Villatte, F.; Estrada-Mondaca, S.; Fournier, D. Acetylcholinesterase engineering for detection of insecticide residues. Protein Eng. 2002, 15, 43. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.M.; Wang, B.B.; Xie, Y.; Sun, S.S.; Gu, Z.Y.; Ma, L.; Li, F.C.; Zhao, Y.F.; Yang, B.; Shen, W.D.; et al. Functional study on the mutations in the silkworm (Bombyx mori) acetylcholinesterase type 1 gene (ace1) and its recombinant proteins. Mol. Biol. Rep. 2014, 41, 429. [Google Scholar] [CrossRef] [PubMed]
- Tan, F.R.; Wang, L.G.; Wang, J.B.; Wu, X.; Zhu, H.; Jiang, L.G.; Tao, S.R.; Zhao, K.; Yang, Y.; Tang, X.M. Enhanced pesticide sensitivity of novel housefly actylcholinesterases: A new tool for the detection of residual pesticide contamination. Bioprocess Biosyst. Eng. 2011, 34, 305–314. [Google Scholar] [CrossRef] [PubMed]
- Damayanthi, D.I. Comparative binding mode of organophosphates, pyrethroids against modelled structures of acetylcholinesterase and alpha amylase in Blattella germanica. J. Entomol. Zool. Stud. 2015, 3, 233–238. [Google Scholar]
- Mutunga, J.M.; Anderson, T.D.; Jackson, B.T.; Hartsel, J.A.; Paulson, S.L.; Carlier, P.R.; Bloomquist, J.R. Toxicity of highly selective carbamates towards the malaria mosquito, Anopheles gambiae. Am. J. Trop. Med. Hyg. 2008, 79, 357. [Google Scholar]
- Tholander, F.; Kull, F.; Ohlson, E.; Shafqat, J.; Thunnissen, M.M.G.M.; Haeggström, J.Z. Leukotriene A4 hydrolase, insights into the molecular evolution by homology modeling and mutational analysis of enzyme from Saccharomyces cerevisiae. J. Biol. Chem. 2005, 280, 33477–33486. [Google Scholar] [CrossRef] [PubMed]
- Kua, J.; Zhang, Y.K.; Eslami, A.C.; Butler, J.R.; Mccammon, J.A. Studying the roles of W86, E202, and Y337 in binding of acetylcholine to acetylcholinesterase using a combined molecular dynamics and multiple docking approach. Protein Sci. 2003, 12, 2675–2684. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kharlamova, A.D.; Lushchekina, S.V.; Petrov, K.A.; Kots, E.D.; Nachon, F.; Villard-Wandhammer, M.; Zueva, I.V.; Krejci, E.; Reznik, V.S.; Zobov, V.V.; et al. Slow-binding inhibition of acetylcholinesterase by an alkylammonium derivative of 6-methyluracil: Mechanism and possible advantages for myasthenia gravis treatment. Biochem. J. 2016, 473, 1225–1236. [Google Scholar] [CrossRef] [PubMed]
- Pezzementi, L.; Johnson, K.; Tsigelny, I.; Cotney, J.; Manning, E.; Barker, A.; Merritt, S. Amino acids defining the acyl pocket of an invertebrate cholinesterase. Comp. Biochem. Physiol. Part B 2003, 136, 813–832. [Google Scholar] [CrossRef]
- Katalinić, M.; Kovarik, Z. Reactivation of Tabun-inhibited Acetylcholinesterase Investigated by Two Oximes and Mutagenesis. Croatica Chem. Acta 2012, 85, 209–212. [Google Scholar] [CrossRef]
- Chandar, N.B.; Ghosh, S.; Lo, R.; Banjo, S.; Ganguly, B. In silico studies on the role of mutant Y337A to reactivate tabun inhibited mAChE with K048. Chem.-Biol. Interact. 2015, 242, 299–306. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.C.; Shen, J.H.; Luo, X.M.; Silman, I.; Sussman, J.L.; Chen, K.X.; Jiang, H.L. How does huperzine A enter and leave the binding gorge of acetylcholinesterase? Steered molecular dynamics simulations. J. Am. Chem. Soc. 2003, 125, 11340–11349. [Google Scholar] [CrossRef] [PubMed]
- Nolte, H.J.; Rosenberry, T.L.; Neumann, E. Effective charge on acetylcholinesterase active sites determined from the ionic strength dependence of association rate constants with cationic ligands. Biochemistry 1980, 19, 3705–3711. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dvir, H.; Silman, I.; Harel, M.; Rosenberry, T.L.; Sussman, J.L. Acetylcholinesterase: from 3D structure to function. Chem.-Biol. Interact. 2010, 187, 10–22. [Google Scholar] [CrossRef] [PubMed]
- Bartolucci, C.; Haller, L.A.; Jordis, U.; Fels, G.; Lamba, D. Probing Torpedo californica Acetylcholinesterase Catalytic Gorge with Two Novel Bis-functional Galanthamine Derivatives. J. Med. Chem. 2010, 53, 745–751. [Google Scholar] [CrossRef] [PubMed]
- Marques, S.M.; Brezovský, J.; Damborský, J. Role of Tunnels and Gates in Enzymatic Catalysis; Pan Stanford Publishing: Singapore, 2016; pp. 421–463. [Google Scholar]
- Dougherty, D.A.; Stauffer, D.A. Acetylcholine binding by a synthetic receptor: Implications for biological recognition. Science 1990, 250, 1558–1560. [Google Scholar] [CrossRef] [PubMed]
- Tan, R.C.; Truong, T.N.; McCammon, J.A.; Sussman, J.L. Acetylcholinesterase: Electrostatic steering increases the rate of ligand binding. Biochemistry 1993, 32, 401–403. [Google Scholar] [CrossRef] [PubMed]
- Botti, S.A.; Felder, C.E.; Lifson, S.; Sussman, J.L.; Silman, I. A Modular Treatment of Molecular Traffic Through the Active Site of Cholinesterase. Biophys. J. 1999, 77, 2430–2450. [Google Scholar] [CrossRef] [Green Version]
- Aiki, Y.; Kozaki, T.; Mizuno, H.; Kono, Y. Amino acid substitution in Ace paralogous acetylcholinesterase accompanied by organophosphate resistance in the spider mite Tetranychus kanzawai. Pestic. Biochem. Physiol. 2005, 82, 154–161. [Google Scholar] [CrossRef]
- Patel, R.; Sanders, R.; Brown, L.; Baker, S.; Tsigelny, I.; Pezzementi, L. A tryptophan in the bottleneck of the catalytic gorge of an invertebrate acetylcholinesterase confers relative resistance to carbamate and organophosphate inhibitors. Cell Biochem. Biophys. 2006, 46, 253–264. [Google Scholar] [CrossRef]
- Zhou, H.X.; Wlodek, S.T.; McCammon, J.A. Conformation gating as a mechanism for enzyme specificity. Proc. Natl. Acad. Sci. USA 1998, 95, 9280–9283. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mccammon, J.A.; Northrup, S.H. Gated binding of ligands to proteins. Nature 1981, 293, 316–317. [Google Scholar] [CrossRef] [PubMed]
- Niu, C.Y.; Xu, Y.C.; Xu, Y.; Luo, X.M.; Duan, W.H.; Silman, I.; Sussman, J.L.; Zhu, W.L.; Chen, K.X.; Shen, J.H.; et al. Dynamic mechanism of E2020 binding to acetylcholinesterase: A steered molecular dynamics simulation. J. Phys. Chem. B 2005, 109, 23730–23738. [Google Scholar] [CrossRef] [PubMed]
- Ariel, N.; Ordentlich, A.; Barak, D.; Bino, T.; Velan, B.; Shafferman, A. The ‘aromatic patch’ of three proximal residues in the human acetylcholinesterase active centre allows for versatile interaction modes with inhibitors. Biochem. J. 1998, 335, 95–102. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kwon, D.H.; Choi, J.Y.; Je, Y.H.; Lee, S.H. The overexpression of acetylcholinesterase compensates for the reduced catalytic activity caused by resistance-conferring mutations in Tetranychus urticae. Insect Biochem. Mol. Biol. 2012, 42, 212–219. [Google Scholar] [CrossRef] [PubMed]
- Ellman, G.L.; Courtney, K.D.; Andres, V., Jr.; Featherstone, R.M. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem. Pharmacol. 1961, 7, 88–90. [Google Scholar] [CrossRef]
No. | GAP Ct | Bmace Ct | 2−ΔΔCt |
---|---|---|---|
Y-33 | 19.46 | 19.46 | 1.002 |
G-15 | 19.60 | 19.70 | 0.933 |
F-16 | 18.63 | 18.67 | 0.975 |
W-10 | 19.09 | 19.18 | 0.939 |
Gene | Primer |
---|---|
Y398G | 5′-GGGTACCggtTTCTTGTTGTACGACTTCTTGGACTAC-3′ 5′-ACAAGAAaccGGTACCCTCGTCTTGGTTAGAACC-3′ |
Y398F | 5′-GGGTACCttcTTCTTGTTGTACGACTTCTTGGACTAC-3′ 5′-ACAAGAAgaaGGTACCCTCGTCTTGGTTAGAACC-3′ |
Y398W | 5′-GGGTACCtggTTCTTGTTGTACGACTTCTTGGACTAC-3′ 5′-ACAAGAAccaGGTACCCTCGTCTTGGTTAGAACC-3′ |
bmace-qPCR | 5′-GCTATCAAGAACGCTACGAAT-3′ |
GAPDH-qPCR | 5′-AACTCTGTATTGCATAGAAGC-3′ 5′-CGTCGGTATTAACGGTTTCG-3′ 5′-GCTTGTAAGCCTTGTGGGT-3′ |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cai, J.; Wang, B.; Li, J.; Chen, Z.; Rao, M.; Muyldermans, S.; Hua, X.; Xie, X.; Wang, H.; Yang, J.; et al. Guided Evolution of Recombinant Bombyx mori Acetylcholinesterase II by Homology Modeling to Change Pesticide Sensitivity. Int. J. Mol. Sci. 2018, 19, 3366. https://doi.org/10.3390/ijms19113366
Cai J, Wang B, Li J, Chen Z, Rao M, Muyldermans S, Hua X, Xie X, Wang H, Yang J, et al. Guided Evolution of Recombinant Bombyx mori Acetylcholinesterase II by Homology Modeling to Change Pesticide Sensitivity. International Journal of Molecular Sciences. 2018; 19(11):3366. https://doi.org/10.3390/ijms19113366
Chicago/Turabian StyleCai, Jun, Bingfeng Wang, Jiadong Li, Zijian Chen, Meifang Rao, Serge Muyldermans, Xiude Hua, Xi Xie, Hong Wang, Jinyi Yang, and et al. 2018. "Guided Evolution of Recombinant Bombyx mori Acetylcholinesterase II by Homology Modeling to Change Pesticide Sensitivity" International Journal of Molecular Sciences 19, no. 11: 3366. https://doi.org/10.3390/ijms19113366
APA StyleCai, J., Wang, B., Li, J., Chen, Z., Rao, M., Muyldermans, S., Hua, X., Xie, X., Wang, H., Yang, J., Xu, Z., Shen, Y., & Sun, Y. (2018). Guided Evolution of Recombinant Bombyx mori Acetylcholinesterase II by Homology Modeling to Change Pesticide Sensitivity. International Journal of Molecular Sciences, 19(11), 3366. https://doi.org/10.3390/ijms19113366