iTRAQ-Based Analysis of Proteins Co-Regulated by Brassinosteroids and Gibberellins in Rice Embryos during Seed Germination
Abstract
:1. Introduction
2. Results
2.1. Generation of the Nip (sd1) Near-Isogenic Line (NIL)
2.2. Seed Germination Assays with Either Brassinosteroid (BR) or Gibberellin (GA) Biosynthesis Blocked
2.3. Expression Changes in Embryo Proteins in Response to BR or GA Deficiency during Seed Germination
2.4. Bioinformaticf Analysis of Common Responsive Proteins Co-Regulated by BR and GA
2.5. Validation of Several Representative Genes by qRT-PCR
2.6. Generation and Germination Analysis of grp Mutant
3. Discussion
4. Materials and Methods
4.1. Plant Materials
4.2. Plant Growth and Seed Germination Assay
4.3. Protein Extraction
4.4. iTRAQ Labelling and Liquid Chromatography-Electrospray Ionisation-Tandem Mass Spectroscopy (LC-ESI-MS/MS)
4.5. Proteomic Data Analysis
4.6. Bioinformatic Analysis
4.7. Quantitative Real-Time Polymerase Chain Reaction (qRT-PCR) Analysis
4.8. Plasmid Construction and Rice Transformation
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Vert, G.; Chory, J. Crosstalk in cellular signaling: Background noise or the real thing? Dev. Cell 2011, 21, 985–991. [Google Scholar] [CrossRef] [PubMed]
- Lau, O.S.; Deng, X.W. Plant hormone signaling lightens up: Integrators of light and hormones. Curr. Opin. Plant Biol. 2010, 13, 571–577. [Google Scholar] [CrossRef] [PubMed]
- Santner, A.; Calderon-Villalobos, L.I.; Estelle, M. Plant hormones are versatile chemical regulators of plant growth. Nat. Chem. Biol. 2009, 5, 301–307. [Google Scholar] [CrossRef] [PubMed]
- Santner, A.; Estelle, M. Recent advances and emerging trends in plant hormone signalling. Nature 2009, 459, 1071–1078. [Google Scholar] [CrossRef] [PubMed]
- Vanstraelen, M.; Benkova, E. Hormonal interactions in the regulation of plant development. Annu. Rev. Cell Dev. Biol. 2012, 28, 463–487. [Google Scholar] [CrossRef] [PubMed]
- Depuydt, S.; Hardtke, C.S. Hormone signalling crosstalk in plant growth regulation. Curr. Biol. 2011, 21, R365–R373. [Google Scholar] [CrossRef] [PubMed]
- Howe, G.A.; Major, I.T.; Koo, A.J. Modularity in jasmonate signaling for multistress resilience. Annu. Rev. Plant Biol. 2018, 69, 387–415. [Google Scholar] [CrossRef] [PubMed]
- Verma, V.; Ravindran, P.; Kumar, P.P. Plant hormone-mediated regulation of stress responses. BMC Plant Biol. 2016, 16, 86. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.F.; He, J.X. Mechanisms of signaling crosstalk between brassinosteroids and gibberellins. Plant Signal. Behav. 2013, 8, e24686. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, K.; Nakamura, Y.; Asami, T.; Yoshida, S.; Matsuo, T.; Okamoto, S. Physiological roles of brassinosteroids in early growth of Arabidopsis: Brassinosteroids have a synergistic relationship with gibberellin as well as auxin in light-grown hypocotyl elongation. J. Plant Growth Regul. 2003, 22, 259–271. [Google Scholar] [CrossRef]
- Shimada, A.; Ueguchi-Tanaka, M.; Sakamoto, T.; Fujioka, S.; Takatsuto, S.; Yoshida, S.; Sazuka, T.; Ashikari, M.; Matsuoka, M. The rice SPINDLY gene functions as a negative regulator of gibberellin signaling by controlling the suppressive function of the DELLA protein, SLR1, and modulating brassinosteroid synthesis. Plant J. 2006, 48, 390–402. [Google Scholar] [CrossRef] [PubMed]
- Bai, M.Y.; Shang, J.X.; Oh, E.; Fan, M.; Bai, Y.; Zentella, R.; Sun, T.P.; Wang, Z.Y. Brassinosteroid, gibberellin and phytochrome impinge on a common transcription module in Arabidopsis. Nat. Cell Biol. 2012, 14, 810–817. [Google Scholar] [CrossRef] [PubMed]
- Gallego-Bartolome, J.; Minguet, E.G.; Grau-Enguix, F.; Abbas, M.; Locascio, A.; Thomas, S.G.; Alabadi, D.; Blazquez, M.A. Molecular mechanism for the interaction between gibberellin and brassinosteroid signaling pathways in Arabidopsis. Proc. Natl. Acad. Sci. USA 2012, 109, 13446–13451. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.F.; Wang, C.; Jiang, L.; Li, S.; Sun, S.S.; He, J.X. An interaction between BZR1 and DELLAs mediates direct signaling crosstalk between brassinosteroids and gibberellins in Arabidopsis. Sci Signal. 2012, 5, ra72. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Fan, X.Y.; Cao, D.M.; Tang, W.; He, K.; Zhu, J.Y.; He, J.X.; Bai, M.Y.; Zhu, S.; Oh, E.; et al. Integration of brassinosteroid signal transduction with the transcription network for plant growth regulation in Arabidopsis. Dev. Cell 2010, 19, 765–777. [Google Scholar] [CrossRef] [PubMed]
- Yu, X.; Li, L.; Zola, J.; Aluru, M.; Ye, H.; Foudree, A.; Guo, H.; Anderson, S.; Aluru, S.; Liu, P.; et al. A brassinosteroid transcriptional network revealed by genome-wide identification of BESI target genes in Arabidopsis thaliana. Plant J. 2011, 65, 634–646. [Google Scholar] [CrossRef] [PubMed]
- Sun, T.P. The molecular mechanism and evolution of the GA–GID1–DELLA signaling module in plants. Curr. Biol. 2011, 21, R338–R345. [Google Scholar] [CrossRef] [PubMed]
- Gao, X.H.; Xiao, S.L.; Yao, Q.F.; Wang, Y.J.; Fu, X.D. An updated GA signaling ‘relief of repression’ regulatory model. Mol. Plant 2011, 4, 601–606. [Google Scholar] [CrossRef] [PubMed]
- Tong, H.; Xiao, Y.; Liu, D.; Gao, S.; Liu, L.; Yin, Y.; Jin, Y.; Qian, Q.; Chu, C. Brassinosteroid regulates cell elongation by modulating gibberellin metabolism in rice. Plant Cell 2014, 26, 4376–4393. [Google Scholar] [CrossRef] [PubMed]
- Unterholzner, S.J.; Rozhon, W.; Papacek, M. Brassinosteroids are master regulators of gibberellin biosynthesis in Arabidopsis. Plant Cell 2015, 27, 2261–2272. [Google Scholar] [CrossRef] [PubMed]
- Allen, H.R.; Ptashnyk, M. Mathematical modelling and analysis of the brassinosteroid and gibberellin signalling pathways and their interactions. J. Theor. Biol. 2017, 432, 109–131. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.; Jing, Y.; Jiang, Z.; Lin, R. The chromatin-remodeling factor PICKLE integrates brassinosteroid and gibberellin signaling during skotomorphogenic growth in Arabidopsis. Plant Cell 2014, 26, 2472–2485. [Google Scholar] [CrossRef] [PubMed]
- Shahnejat-Bushehri, S.; Tarkowska, D.; Sakuraba, Y.; Balazadeh, S. Arabidopsis NAC transcription factor JUB1 regulates GA/BR metabolism and signalling. Nat. Plants 2016, 2, 16013. [Google Scholar] [CrossRef] [PubMed]
- Shahnejat-Bushehri, S.; Allu, A.D.; Mehterov, N.; Thirumalaikumar, V.P.; Alseekh, S.; Fernie, A.R.; Mueller-Roeber, B.; Balazadeh, S. Arabidopsis NAC transcription factor JUNGBRUNNEN1 exerts conserved control over gibberellin and brassinosteroid metabolism and signaling genes in tomato. Front. Plant Sci. 2017, 8, 214. [Google Scholar] [CrossRef] [PubMed]
- Tang, Y.; Liu, H.; Guo, S.; Wang, B.; Li, Z.; Chong, K.; Xu, Y. OsmiR396d affects gibberellin and brassinosteroid signaling to regulate plant architecture in rice. Plant Physiol. 2018, 176, 946–959. [Google Scholar] [CrossRef] [PubMed]
- Gao, J.; Chen, H.; Yang, H.; He, Y.; Tian, Z.; Li, J. A brassinosteroid responsive miRNA-target module regulates gibberellin biosynthesis and plant development. New Phytol. 2018, 220, 488–501. [Google Scholar] [CrossRef] [PubMed]
- Best, N.B.; Hartwig, T. nana plant2 encodes a maize ortholog of the Arabidopsis brassinosteroid biosynthesis gene Dwarf1, identifying developmental interactions between brassinosteroids and gibberellins. Plant Physiol. 2016, 171, 2633–2647. [Google Scholar] [PubMed]
- Wojtyla, Ł.; Lechowska, K.; Kubala, S.; Garnczarska, M. Different modes of hydrogen peroxide action during seed germination. Front. Plant Sci. 2016, 7, 66. [Google Scholar] [CrossRef] [PubMed]
- Vishal, B.; Kumar, P.P. Regulation of seed germination and abiotic stresses by gibberellins and abscisic acid. Front. Plant Sci. 2018, 9, 838. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.G.; Pandey, S.; Huang, J.; Alonso, J.M.; Ecker, J.R.; Assmann, S.M.; Jones, A.M. GCR1 can act independently of heterotrimeric G-protein in response to brassinosteroids and gibberellins in Arabidopsis seed germination. Plant Physiol. 2004, 135, 907–915. [Google Scholar] [CrossRef] [PubMed]
- Steber, C.M.; McCourt, P. A role for brassinosteroids in germination in Arabidopsis. Plant Physiol. 2001, 125, 763–769. [Google Scholar] [CrossRef] [PubMed]
- Shu, K.; Liu, X.D.; Xie, Q.; He, Z.H. Two Faces of One Seed: Hormonal Regulation of Dormancy and Germination. Mol. Plant 2016, 9, 34–45. [Google Scholar] [CrossRef] [PubMed]
- Wei, T.; He, Z.; Tan, X.; Liu, X.; Yuan, X.; Luo, Y.; Hu, S. An integrated RNA-Seq and network study reveals a complex regulation process of rice embryo during seed germination. Biochem. Biophys. Res. Commun. 2015, 464, 176–181. [Google Scholar] [CrossRef] [PubMed]
- Han, C.; Zhen, S.; Zhu, G.; Bian, Y.; Yan, Y. Comparative metabolome analysis of wheat embryo and endosperm reveals the dynamic changes of metabolites during seed germination. Plant Physiol. Biochem. 2017, 115, 320–327. [Google Scholar] [CrossRef] [PubMed]
- Domzalska, L.; Kedracka-Krok, S.; Jankowska, U.; Grzyb, M.; Sobczak, M.; Rybczynski, J.J.; Mikula, A. Proteomic analysis of stipe explants reveals differentially expressed proteins involved in early direct somatic embryogenesis of the tree fern Cyathea delgadii Sternb. Plant Sci. 2017, 258, 61–76. [Google Scholar] [CrossRef] [PubMed]
- Evans, C.; Noirel, J.; Ow, S.Y.; Salim, M.; Pereira-Medrano, A.G.; Couto, N.; Pandhal, J.; Smith, D.; Pham, T.K.; Karunakaran, E.; et al. An insight into iTRAQ: Where do we stand now? Anal. Bioanal. Chem. 2012, 404, 1011–1127. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.X.; Luo, Y.M.; Ye, Z.Q.; Cao, X.; Liang, J.N.; Wang, Q.; Wu, Y.; Wu, J.H.; Wang, H.Y.; Zhang, M.; et al. iTRAQ-based proteomics analysis of autophagy-mediated immune responses against the vascular fungal pathogen Verticillium dahliae in Arabidopsis. Autophagy 2018, 14, 598–618. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Islam, F.; Li, L.; Long, M.; Yang, C.; Jin, X.; Ali, B.; Mao, B. Complementary RNA-sequencing based transcriptomics and iTRAQ proteomics reveal the mechanism of the alleviation of quinclorac stress by salicylic acid in Oryza sativa ssp. japonica. Int. J. Mol. Sci. 2017, 18, 1975. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Chen, J.; Hou, F.; Feng, Y.; Zhang, R. iTRAQ-based quantitative proteomic analysis reveals the lateral meristem developmental mechanism for branched spike development in tetraploid wheat (Triticum turgidum L.). BMC Genom. 2018, 19, 228. [Google Scholar] [CrossRef] [PubMed]
- Bu, T.T.; Shen, J.; Chao, Q.; Shen, Z.; Yan, Z.; Zheng, H.Y.; Wang, B.C. Dynamic N-glycoproteome analysis of maize seedling leaves during de-etiolation using Concanavalin A lectin affinity chromatography and a nano-LC-MS/MS-based iTRAQ approach. Plant Cell Rep. 2017, 36, 1943–1958. [Google Scholar] [CrossRef] [PubMed]
- Han, C.; Yang, P. Studies on the molecular mechanisms of seed germination. Proteomics 2015, 15, 1671–1679. [Google Scholar] [CrossRef] [PubMed]
- Cho, K.; Lee, H.J.; Jo, Y.M.; Lim, S.H.; Rakwal, R.; Lee, J.Y.; Kim, Y.M. RNA interference-mediated simultaneous suppression of seed storage proteins in rice grains. Front. Plant Sci. 2016, 7, 1624. [Google Scholar] [CrossRef] [PubMed]
- Xu, E.; Chen, M.; He, H.; Zhan, C.; Cheng, Y.; Zhang, H.; Wang, Z. Proteomic analysis reveals proteins involved in seed imbibition under salt stress in rice. Front. Plant Sci. 2016, 7, 2006. [Google Scholar] [CrossRef] [PubMed]
- Fujino, K.; Sekiguchi, H.; Matsuda, Y.; Sugimoto, K.; Ono, K.; Yano, M. Molecular identification of a major quantitative trait locus, qLTG3-1, controlling low-temperature germinability in rice. Proc. Natl. Acad. Sci. USA 2008, 105, 12623–12628. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fujino, K.; Obara, M.; Sato, K. Diversification of the plant-specific hybrid glycine-rich protein (HyGRP) genes in cereals. Front. Plant Sci. 2014, 5, 489. [Google Scholar] [CrossRef] [PubMed]
- Leroux, C.; Bouton, S.; Kiefer-Meyer, M.C.; Fabrice, T.N.; Mareck, A.; Guénin, S.; Fournet, F.; Ringli, C.; Pelloux, J.; Driouich, A.; et al. PECTIN METHYLESTERASE48 is involved in Arabidopsis pollen grain germination. Plant Physiol. 2015, 167, 367–380. [Google Scholar] [CrossRef] [PubMed]
- Zúñiga-Sánchez, E.; Soriano, D.; Martínez-Barajas, E.; Orozco-Segovia, A.; Gamboa-deBuen, A. BIIDXI, the At4g32460 DUF642 gene, is involved in pectin methyl esterase regulation during Arabidopsis thaliana seed germination and plant development. BMC Plant Biol. 2014, 14, 338. [Google Scholar] [CrossRef] [PubMed]
- Rao, V.; Petla, B.P.; Verma, P.; Salvi, P.; Kamble, N.U.; Ghosh, S.; Kaur, H.; Saxena, S.C.; Majee, M. Arabidopsis SKP1-like protein13 (ASK13) positively regulates seed germination and seedling growth under abiotic stress. J. Exp. Bot. 2018, 69, 3899–3915. [Google Scholar] [CrossRef] [PubMed]
- Liu, A.; Yu, Y.; Duan, X.; Sun, X.; Duanmu, H.; Zhu, Y. GsSKP21, a Glycine soja S-phase kinase-associated protein, mediates the regulation of plant alkaline tolerance and ABA sensitivity. Plant Mol. Biol. 2015, 87, 111–124. [Google Scholar] [CrossRef] [PubMed]
- Fait, A.; Nesi, A.N.; Angelovici, R.; Lehmann, M.; Pham, P.A.; Song, L.; Haslam, R.P.; Napier, J.A.; Galili, G.; Fernie, A.R. Targeted enhancement of glutamate-to-γ-aminobutyrate conversion in Arabidopsis seeds affects carbon-nitrogen balance and storage reserves in a development-dependent manner. Plant Physiol. 2011, 157, 1026–1042. [Google Scholar] [CrossRef] [PubMed]
- Matsuyama, A.; Yoshimura, K.; Shimizu, C.; Murano, Y.; Takeuchi, H.; Ishimoto, M. Characterization of glutamate decarboxylase mediating gamma-amino butyric acid increase in the early germination stage of soybean (Glycine max [L.] Merr). J. Biosci. Bioeng. 2009, 107, 538–543. [Google Scholar] [CrossRef] [PubMed]
- Yang, R.; Hui, Q.; Gu, Z. Effects of ABA and CaCl2 on GABA accumulation in fava bean germinating under hypoxia-NaCl stress. Biosci. Biotechnol. Biochem. 2016, 80, 540–546. [Google Scholar] [CrossRef] [PubMed]
- Ling, Y.; Chen, T.; Jing, Y.; Fan, L.; Wan, Y.; Lin, J. γ-Aminobutyric acid (GABA) homeostasis regulates pollen germination and polarized growth in Picea wilsonii. Planta 2013, 238, 831–843. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, H.; Greenway, H.; Matsumura, H.; Tsutsumi, N.; Nakazono, M. Rice alcohol dehydrogenase 1 promotes survival and has a major impact on carbohydrate metabolism in the embryo and endosperm when seeds are germinated in partially oxygenated water. Ann. Bot. 2014, 113, 851–859. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miro, B.; Longkumer, T.; Entila, F.D.; Kohli, A.; Ismail, A.M. Rice seed germination underwater: Morpho-physiological responses and the bases of differential expression of alcoholic fermentation enzymes. Front. Plant Sci. 2017, 8, 1857. [Google Scholar] [CrossRef] [PubMed]
- Zhou, S.F.; Sun, L.; Valdés, A.E.; Engström, P.; Song, Z.T.; Lu, S.J.; Liu, J.X. Membrane-associated transcription factor peptidase, site-2 protease, antagonizes ABA signaling in Arabidopsis. New Phytol. 2015, 208, 188–197. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guo, Y.; Song, Y.; Zheng, H.; Zhang, Y.; Guo, J.; Sui, N. NADP-malate dehydrogenase of sweet sorghum improves salt tolerance of Arabidopsis thaliana. J. Agric. Chem. 2018, 66, 5992–6002. [Google Scholar] [CrossRef] [PubMed]
- Sew, Y.S.; Stroher, E. Loss of Mitochondrial Malate Dehydrogenase Activity Alters Seed Metabolism Impairing Seed Maturation and Post-Germination Growth in Arabidopsis. Plant Physiol. 2016, 171, 849–863. [Google Scholar] [PubMed]
- Glevarec, G.; Bouton, S.; Jaspard, E.; Riou, M.T.; Cliquet, J.B.; Suzuki, A.; Limami, A.M. Respective roles of the glutamine synthetase/glutamate synthase cycle and glutamate dehydrogenase in ammonium and amino acid metabolism during germination and post-germinative growth in the model legume Medicago truncatula. Planta 2004, 219, 286–297. [Google Scholar] [CrossRef] [PubMed]
- Jain, M.; Tyagi, A.K.; Khurana, J.P. Constitutive expression of a meiotic recombination protein gene homolog, OsTOP6A1, from rice confers abiotic stress tolerance in transgenic Arabidopsis plants. Plant Cell Rep. 2008, 27, 767–778. [Google Scholar] [CrossRef] [PubMed]
- John, R.; Ganeshan, U.; Singh, B.N.; Kaul, T.; Reddy, M.K.; Sopory, S.K.; Rajam, M.V. Over-expression of topoisomerase II enhances salt stress tolerance in tobacco. Front. Plant Sci. 2016, 7, 1280. [Google Scholar] [CrossRef] [PubMed]
- Xing, M.; Sun, C.; Li, H.; Hu, S.; Lei, L.; Kang, J. Integrated analysis of transcriptome and proteome changes related to the Ogura cytoplasmic male sterility in cabbage. PLoS ONE 2018, 13, e0193462. [Google Scholar] [CrossRef] [PubMed]
- Zhu, H.G.; Cheng, W.H.; Tian, W.G.; Li, Y.J.; Liu, F.; Xue, F.; Zhu, Q.H.; Sun, Y.Q.; Sun, J. iTRAQ-based comparative proteomic analysis provides insights into somatic embryogenesis in Gossypium hirsutum L. Plant Mol. Biol. 2018, 96, 89–102. [Google Scholar] [CrossRef] [PubMed]
- Menotta, M.; Orazi, S.; Gioacchini, A.M.; Spapperi, C.; Ricci, A.; Chessa, L.; Magnani, M. Proteomics and transcriptomics analyses of ataxia telangiectasia cells treated with Dexamethasone. PLoS ONE 2018, 13, e0195388. [Google Scholar] [CrossRef] [PubMed]
- Ma, Q.; Liu, X.; Feng, W.; Liu, S.; Zhuang, Z. Analyses of the molecular mechanisms associated with salinity adaption of Trachidermus fasciatus through combined iTRAQ-based proteomics and RNA sequencing-based transcriptomics. Prog. Biophys. Mol. Biol. 2018, 136, 40–53. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Wang, K.; Li, S.; Yang, P. Exploration of rice pistil responses during early post-pollination through a combined proteomic and transcriptomic analysis. J. Proteom. 2016, 131, 214–226. [Google Scholar] [CrossRef] [PubMed]
- Peng, X.; Qin, Z.; Zhang, G.; Guo, Y.; Huang, J. Integration of the proteome and transcriptome reveals multiple levels of gene regulation in the rice dl2 mutant. Front. Plant Sci. 2015, 6, 351. [Google Scholar] [CrossRef] [PubMed]
- Sasaki, A.; Ashikari, M.; Ueguchi-Tanaka, M.; Itoh, H.; Nishimura, A.; Swapan, D.; Ishiyama, K.; Saito, T.; Kobayashi, M.; Khush, G.S.; et al. Green revolution: A mutant gibberellin-synthesis gene in rice. Nature 2002, 416, 701–702. [Google Scholar] [CrossRef] [PubMed]
- Kuroha, T.; Nagai, K.; Gamuyao, R.; Wang, D.R.; Furuta, T.; Nakamori, M.; Kitaoka, T.; Adachi, K.; Minami, A.; Mori, Y.; et al. Ethylene-gibberellin signaling underlies adaptation of rice to periodic flooding. Science 2018, 361, 181–186. [Google Scholar] [CrossRef] [PubMed]
- Hong, Z.; Ueguchi-Tanaka, M.; Fujioka, S.; Takatsuto, S.; Yoshida, S.; Hasegawa, Y.; Ashikari, M.; Kitano, H.; Matsuoka, M. The Rice brassinosteroid-deficient dwarf2 mutant, defective in the rice homolog of Arabidopsis DIMINUTO/DWARF1, is rescued by the endogenously accumulated alternative bioactive brassinosteroid, dolichosterone. Plant Cell 2005, 17, 2243–2254. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.F.; Xiong, M.; Xu, P.; Huang, L.C.; Zhang, C.Q.; Liu, Q.Q. Dissection of brassinosteroid-regulated proteins in rice embryos during germination by quantitative proteomics. Sci. Rep. 2016, 6, 34583. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eisen, M.B.; Spellman, P.T.; Brown, P.O.; Botstein, D. Cluster analysis and display of genome-wide expression patterns. Proc. Natl. Acad. Sci. USA 1998, 95, 14863–14868. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mi, H.; Poudel, S.; Muruganujan, A.; Casagrande, J.T.; Thomas, P.D. PANTHER version 10: Expanded protein families and functions, and analysis tools. Nucleic Acids Res. 2016, 44, D336–D342. [Google Scholar] [CrossRef] [PubMed]
- Szklarczyk, D.; Franceschini, A.; Wyder, S.; Forslund, K.; Heller, D.; Huerta-Cepas, J.; Simonovic, M.; Roth, A.; Santos, A.; Tsafou, K.P.; et al. STRING v10: Protein-protein interaction networks, integrated over the tree of life. Nucleic. Acids. Res. 2015, 43, D447–D452. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Shen, L.; Fu, Y.; Yan, C.; Wang, K. A simple CRISPR/Cas9 system for multiplex genome editing in rice. J. Genet. Genom. 2015, 42, 703–706. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.F.; Yu, J.W.; Lu, J.; Fei, H.Y.; Luo, M.; Cao, B.W.; Huang, L.C.; Zhang, C.Q.; Liu, Q.Q. Seed-specific expression of OsDWF4, a rate-limiting gene involved in brassinosteroids biosynthesis, improves both grain yield and quality in rice. J. Agric. Food Chem. 2018, 66, 3759–3772. [Google Scholar] [CrossRef] [PubMed]
Gene ID | NIP (BRZ/Mock) Fold Change a | sd1/NIP Fold Change b | Protein Score c | Unique Peptide d | Sequence Coverage (%) e | Description |
---|---|---|---|---|---|---|
Os01g0652800 | 0.693 | 0.568 | 133 | 3 | 8.9 | Protein of unknown function DUF231 |
Os02g0248800 | 0.208 | 0.586 | 1443 | 3 | 7.1 | Similar to glutelin type-B2 precursor |
Os02g0249000 | 0.406 | 0.776 | 804 | 10 | 22.7 | Glutelin |
Os03g0231600 | 0.799 | 0.712 | 241 | 3 | 9.4 | Similar to branched-chain-amino-acid aminotransferase 3 |
Os03g0240700 | 0.826 | 0.731 | 133 | 1 | 10.1 | Similar to Erwinia induced protein 2 |
Os03g0337900 | 0.831 | 0.818 | 371 | 5 | 13.5 | Similar to predicted protein |
Os03g0812000 | 0.587 | 0.703 | 305 | 2 | 6.6 | DNA topoisomerase type IIA |
Os04g0165700 | 0.804 | 0.685 | 312 | 3 | 9.5 | Cysteine synthase |
Os05g0329100 | 0.555 | 0.661 | 917 | 3 | 42.7 | Prolamin |
Os06g0112200 | 0.812 | 0.781 | 274 | 3 | 15.4 | Purine and other phosphorylases |
Os07g0214300 | 0.474 | 0.763 | 1815 | 2 | 28.3 | Seed allergenic protein RAG2 precursor |
Os07g0529600 | 0.65 | 0.71 | 333 | 6 | 25.1 | Similar to thiazole biosynthetic enzyme 1-1 |
Os08g0530400 | 0.465 | 0.75 | 71 | 2 | 8.8 | Moco-containing protein |
Os09g0484200 | 0.808 | 0.615 | 2271 | 7 | 58 | Hypothetical protein |
Os11g0213600 | 0.682 | 0.785 | 180 | 5 | 11.6 | Peptidase S10 |
Gene ID | NIP(BRZ/Mock) | sd1/NIP | Protein | Unique | Sequence | Description |
---|---|---|---|---|---|---|
Fold Change a | Fold Change b | Score c | Peptide d | Coverage (%) e | ||
Os01g0358400 | 1.259 | 1.229 | 2745 | 1 | 43.4 | Similar to 40S ribosomal protein S4 |
Os01g0880800 | 1.585 | 1.506 | 891 | 5 | 16.8 | Similar to acyl-[acyl-carrier-protein] desaturase |
Os02g0550100 | 1.38 | 1.238 | 419 | 1 | 10.8 | Similar to vacuolar ATP synthase 16 kDa proteolipid subunit |
Os02g0587000 | 1.529 | 2.233 | 569 | 2 | 20.8 | Similar to glycine-rich protein |
Os03g0192400 | 1.258 | 1.382 | 257 | 3 | 26.8 | GRIM-19 family protein |
Os03g0750000 | 1.288 | 1.579 | 2653 | 1 | 25.9 | Similar to ethylene-responsive protein |
Os03g0774200 | 1.484 | 1.261 | 170 | 4 | 18.4 | Similar to NADH-ubiquinone oxidoreductase subunit 8 |
Os03g0799000 | 1.997 | 1.316 | 126 | 2 | 18.4 | Similar to histone H1 |
Os04g0249600 | 1.371 | 1.272 | 151 | 2 | 23.9 | Rhodanese-like domain containing protein |
Os05g0512600 | 1.221 | 1.428 | 365 | 2 | 15.4 | X8 domain-containing protein |
Os07g0119400 | 1.554 | 1.554 | 142 | 4 | 11.6 | Similar to pectin esterase-like protein |
Os08g0465800 | 1.304 | 1.357 | 952 | 8 | 33.4 | Similar to glutamate decarboxylase |
Os09g0539500 | 1.367 | 1.402 | 784 | 3 | 36.6 | Similar to SKP1-like protein 1A |
Os11g0210500 | 1.25 | 1.427 | 1940 | 6 | 39.8 | Similar to alcohol dehydrogenase |
Gene ID | NIP (BRZ/Mock) | sd1/NIP | Protein | Unique | Sequence | Description |
---|---|---|---|---|---|---|
Fold Change a | Fold Change b | Score c | Peptide d | Coverage (%) e | ||
Os01g0210500 | 0.762 | 1.366 | 1133 | 6 | 45 | Similar to SOUL-like protein |
Os01g0233000 | 1.237 | 0.611 | 391 | 5 | 34.3 | DREPP plasma membrane polypeptide family protein |
Os01g0294700 | 1.239 | 0.694 | 707 | 8 | 33.7 | Haem peroxidase, plant/fungal/bacterial family protein |
Os02g0209300 | 0.69 | 1.333 | 78 | 1 | 13.7 | Hypothetical conserved gene |
Os03g0341100 | 1.234 | 0.767 | 506 | 4 | 28.3 | Similar to 60S ribosomal protein L18 |
Os03g0379100 | 1.252 | 0.811 | 176 | 3 | 6.9 | Protein of unknown function DUF248 |
Os03g0700400 | 1.297 | 0.408 | 1056 | 3 | 37.3 | Similar to LOX4 |
Os03g0842900 | 0.768 | 1.28 | 1047 | 13 | 43.9 | Similar to steroleosin-B |
Os04g0165300 | 0.825 | 1.271 | 74 | 2 | 8.9 | Conserved hypothetical protein |
Os04g0390800 | 0.818 | 1.244 | 2520 | 16 | 54.8 | NAD(P)-binding domain containing protein |
Os04g0497200 | 1.275 | 0.735 | 169 | 4 | 9.3 | Cellulase precursor |
Os04g0546500 | 0.807 | 1.31 | 836 | 2 | 13.5 | Similar to oleosin |
Os05g0268500 | 0.451 | 1.478 | 131 | 5 | 12 | Similar to serine carboxypeptidase 2 |
Os05g0474400 | 1.253 | 0.775 | 197 | 2 | 10.9 | Prenylated rab acceptor PRA1 family protein |
Os06g0675700 | 0.463 | 1.229 | 831 | 4 | 18 | Similar to high pI alpha-glucosidase |
Os11g0582400 | 0.626 | 1.385 | 702 | 2 | 5.1 | Similar to embryo-specific protein |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Q.-F.; Wang, J.-D.; Xiong, M.; Wei, K.; Zhou, P.; Huang, L.-C.; Zhang, C.-Q.; Fan, X.-L.; Liu, Q.-Q. iTRAQ-Based Analysis of Proteins Co-Regulated by Brassinosteroids and Gibberellins in Rice Embryos during Seed Germination. Int. J. Mol. Sci. 2018, 19, 3460. https://doi.org/10.3390/ijms19113460
Li Q-F, Wang J-D, Xiong M, Wei K, Zhou P, Huang L-C, Zhang C-Q, Fan X-L, Liu Q-Q. iTRAQ-Based Analysis of Proteins Co-Regulated by Brassinosteroids and Gibberellins in Rice Embryos during Seed Germination. International Journal of Molecular Sciences. 2018; 19(11):3460. https://doi.org/10.3390/ijms19113460
Chicago/Turabian StyleLi, Qian-Feng, Jin-Dong Wang, Min Xiong, Ke Wei, Peng Zhou, Li-Chun Huang, Chang-Quan Zhang, Xiao-Lei Fan, and Qiao-Quan Liu. 2018. "iTRAQ-Based Analysis of Proteins Co-Regulated by Brassinosteroids and Gibberellins in Rice Embryos during Seed Germination" International Journal of Molecular Sciences 19, no. 11: 3460. https://doi.org/10.3390/ijms19113460
APA StyleLi, Q. -F., Wang, J. -D., Xiong, M., Wei, K., Zhou, P., Huang, L. -C., Zhang, C. -Q., Fan, X. -L., & Liu, Q. -Q. (2018). iTRAQ-Based Analysis of Proteins Co-Regulated by Brassinosteroids and Gibberellins in Rice Embryos during Seed Germination. International Journal of Molecular Sciences, 19(11), 3460. https://doi.org/10.3390/ijms19113460