Minimal/Measurable Residual Disease Monitoring in NPM1-Mutated Acute Myeloid Leukemia: A Clinical Viewpoint and Perspectives
Abstract
:1. Introduction
2. NPM1 Mutations in AML: Biological and Clinical Features
3. ELN Recommendations for MRD Assessment
4. Prognostic MRD Thresholds and Relevant Timepoints for NPM1 Mutations
5. NPM1 Mutation Levels at AML Diagnosis
6. Sequential MRD Monitoring and Molecular Prediction of Relapse
7. MRD Levels and Allogeneic Hematopoietic Stem Cell Transplant in NPM1-Mutated AML
8. MRD Assessment in Elderly Patients with NPM1-Mutated AML
9. Clonal Evolution and Loss of NPM1 Mutation at AML Relapse
10. Newer Molecular Technologies to Assess MRD in NPM1-Mutated AML
11. Persistence of Pre-Leukemic Clones at AML Remission: What about NPM1 Mutations?
12. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Tomlinson, B.; Lazarus, H.M. Enhancing acute myeloid leukemia therapy—Monitoring response using residual disease testing as a guide to therapeutic decision-making. Expert Rev. Hematol. 2017, 10, 563–574. [Google Scholar] [CrossRef] [PubMed]
- Ossenkoppele, G.; Schuurhuis, G.J. MRD in AML: Does it already guide therapy decision-making? Hematol. Am. Soc. Hematol. Educ. Program 2016, 2016, 356–365. [Google Scholar] [CrossRef] [PubMed]
- Hourigan, C.S.; Gale, R.P.; Gormley, N.J.; Ossenkoppele, G.J.; Walter, R.B. Measurable residual disease testing in acute myeloid leukemia. Leukemia 2017, 31, 1482–1490. [Google Scholar] [CrossRef] [PubMed]
- Buccisano, F.; Maurillo, L.; Del Principe, M.I.; Di Veroli, A.; De Bellis, E.; Biagi, A.; Zizzari, A.; Rossi, V.; Rapisarda, V.; Amadori, S.; et al. Minimal residual disease as a biomarker for outcome prediction and therapy optimization in acute myeloid leukemia. Expert Rev. Hematol. 2018, 11, 307–313. [Google Scholar] [CrossRef] [PubMed]
- Araki, D.; Wood, B.L.; Othus, M.; Radich, J.P.; Halpern, A.B.; Zhou, Y.; Mielcarek, M.; Estey, E.H.; Appelbaum, F.R.; Walter, R.B. Allogeneic hematopoietic cell transplantation for acute myeloid leukemia: Time to move toward a minimal residual disease-based definition of complete remission? J. Clin. Oncol. 2016, 34, 329–336. [Google Scholar] [CrossRef] [PubMed]
- Inaba, H.; Coustan-Smith, E.; Cao, X.; Pounds, S.B.; Shurtleff, S.A.; Wang, K.Y.; Raimondi, S.C.; Onciu, M.; Jacobsen, J.; Ribeiro, R.C.; et al. Comparative analysis of different approaches to measure response in acute myeloid leukemia. J. Clin. Oncol. 2012, 30, 3625–3632. [Google Scholar] [CrossRef] [PubMed]
- Dohner, H.; Estey, E.; Grimwade, D.; Amadori, S.; Appelbaum, F.R.; Buchner, T.; Dombret, H.; Ebert, B.L.; Fenaux, P.; Larson, R.A.; et al. Diagnosis and management of AML in adults: 2017 ELN recommendations from an international expert panel. Blood 2017, 129, 424–447. [Google Scholar] [CrossRef] [PubMed]
- Mosna, F.; Capelli, D.; Gottardi, M. Minimal residual disease in acute myeloid leukemia: Still a work in progress? J. Clin. Med. 2017, 6, 57. [Google Scholar] [CrossRef] [PubMed]
- Grimwade, D.; Freeman, S.D. Defining minimal residual disease in acute myeloid leukemia: Which platforms are ready for “prime time”? Blood 2014, 124, 3345–3355. [Google Scholar] [CrossRef] [PubMed]
- Coltoff, A.; Houldsworth, J.; Keyzner, A.; Renteria, A.S.; Mascarenhas, J. Role of minimal residual disease in the management of acute myeloid leukemia—A case-based discussion. Ann. Hematol. 2018, 97, 1155–1167. [Google Scholar] [CrossRef] [PubMed]
- Grisendi, S.; Mecucci, C.; Falini, B.; Pandolfi, P.P. Nucleophosmin and cancer. Nat. Rev. Cancer 2006, 6, 493–505. [Google Scholar] [CrossRef] [PubMed]
- Falini, B.; Nicoletti, I.; Martelli, M.F.; Mecucci, C. Acute myeloid leukemia carrying cytoplasmic/mutated nucleophosmin (NPMc+ AML): Biologic and clinical features. Blood 2007, 109, 874–885. [Google Scholar] [CrossRef] [PubMed]
- Falini, B.; Bolli, N.; Liso, A.; Martelli, M.P.; Mannucci, R.; Pileri, S.; Nicoletti, I. Altered nucleophosmin transport in acute myeloid leukaemia with mutated NPM1: Molecular basis and clinical implications. Leukemia 2009, 23, 1731–1743. [Google Scholar] [CrossRef] [PubMed]
- Falini, B.; Martelli, M.P.; Bolli, N.; Sportoletti, P.; Liso, A.; Tiacci, E.; Haferlach, T. Acute myeloid leukemia with mutated nucleophosmin (NPM1): Is it a distinct entity? Blood 2011, 117, 1109–1120. [Google Scholar] [CrossRef] [PubMed]
- Grimwade, D.; Ivey, A.; Huntly, B.J.P. Molecular landscape of acute myeloid leukemia in younger adults and its clinical relevance. Blood 2016, 127, 29–41. [Google Scholar] [CrossRef] [PubMed]
- Falini, B.; Mecucci, C.; Tiacci, E.; Alcalay, M.; Rosati, R.; Pasqualucci, L.; La Starza, R.; Diverio, D.; Colombo, E.; Santucci, A.; et al. Cytoplasmic nucleophosmin in acute myelogenous leukemia with a normal karyotype. N. Engl. J. Med. 2005, 352, 254–266. [Google Scholar] [CrossRef] [PubMed]
- Heath, E.M.; Chan, S.M.; Minden, M.D.; Murphy, T.; Shlush, L.I.; Schimmer, A.D. Biological and clinical consequences of NPM1 mutations in AML. Leukemia 2017, 31, 798–807. [Google Scholar] [CrossRef] [PubMed]
- Falini, B.; Martelli, M.P.; Bolli, N.; Bonasso, R.; Ghia, E.; Pallotta, M.T.; Diverio, D.; Nicoletti, I.; Pacini, R.; Tabarrini, A.; et al. Immunohistochemistry predicts nucleophosmin (NPM) mutations in acute myeloid leukemia. Blood 2006, 108, 1999–2005. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gu, X.; Ebrahem, Q.; Mahfouz, R.Z.; Hasipek, M.; Enane, F.; Radivoyevitch, T.; Rapin, N.; Przychodzen, B.; Hu, Z.; Balusu, R.; et al. Leukemogenic nucleophosmin mutation disrupts the transcription factor hub regulating granulo-monocytic fates. J. Clin. Investig. 2018, 128, 4260–4279. [Google Scholar] [CrossRef] [PubMed]
- Forghieri, F.; Paolini, A.; Morselli, M.; Bigliardi, S.; Bonacorsi, G.; Leonardi, G.; Coluccio, V.; Maccaferri, M.; Fantuzzi, V.; Faglioni, L.; et al. NPM1 mutations may reveal acute myeloid leukemia in cases otherwise morphologically diagnosed as myelodysplastic syndromes or myelodysplastic/myeloproliferative neoplasms. Leuk. Lymphoma 2015, 56, 3222–3226. [Google Scholar] [CrossRef] [PubMed]
- Arber, D.A.; Orazi, A.; Hasserjian, R.; Thiele, J.; Borowitz, M.J.; Le Beau, M.M.; Bloomfield, C.D.; Cazzola, M.; Vardiman, J.W. The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia. Blood 2016, 127, 2391–2405. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Haferlach, C.; Mecucci, C.; Schnittger, S.; Kohlmann, A.; Mancini, M.; Cuneo, A.; Testoni, N.; Rege-Cambrin, G.; Santucci, A.; Vignetti, M.; et al. AML with mutated NPM1 carrying a normal or aberrant karyotype show overlapping biologic, pathologic, immunophenotypic, and prognostic features. Blood 2009, 114, 3024–3032. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Micol, J.B.; Boissel, N.; Renneville, A.; Castaigne, S.; Gardin, C.; Preudhomme, C.; Dombret, H. The role of cytogenetic abnormalities in acute myeloid leukemia with NPM1 mutations and no FLT3 internal tandem duplication. Blood 2009, 114, 4601–4602. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Döhner, K.; Schlenk, R.F.; Habdank, M.; Scholl, C.; Rücker, F.G.; Corbacioglu, A.; Bullinger, L.; Fröhling, S.; Döhner, H. Mutant nucleophosmin (NPM1) predicts favorable prognosis in younger adults with acute myeloid leukemia and normal cytogenetics: Interaction with other gene mutations. Blood 2005, 106, 3740–3746. [Google Scholar] [CrossRef] [PubMed]
- Papaemmanuil, E.; Gerstung, M.; Bullinger, L.; Gaidzik, V.I.; Paschka, P.; Roberts, N.D.; Potter, N.E.; Heuser, M.; Thol, F.; Bolli, N.; et al. Genomic classification and prognosis in acute myeloid leukemia. N. Engl. J. Med. 2016, 374, 2209–2221. [Google Scholar] [CrossRef] [PubMed]
- Gale, R.E.; Green, C.; Allen, C.; Mead, A.J.; Burnett, A.K.; Hills, R.K.; Linch, D.C.; Medical Research Council Adult Leukaemia Working Party. The impact of FLT3 internal tandem duplication mutant level, number, size, and interaction with NPM1 mutations in a large cohort of young adult patients with acute myeloid leukemia. Blood 2008, 111, 2776–2784. [Google Scholar] [CrossRef] [PubMed]
- Pratcorona, M.; Brunet, S.; Nomdedéu, J.; Ribera, J.M.; Tormo, M.; Duarte, R.; Escoda, L.; Guàrdia, R.; Queipo de Llano, M.P.; Salamero, O.; et al. Favorable outcome of patients with acute myeloid leukemia harboring a low-allelic burden FLT3-ITD mutation and concomitant NPM1 mutation: Relevance to postremission therapy. Blood 2013, 121, 2734–2738. [Google Scholar] [CrossRef] [PubMed]
- Schlenk, R.F.; Kayser, S.; Bullinger, L.; Kobbe, G.; Casper, J.; Ringhoffer, M.; Held, G.; Brossart, P.; Lübbert, M.; Salih, H.R.; et al. Differential impact of allelic ratio and insertion site in FLT3-ITD positive AML with respect to allogeneic transplantation. Blood 2014, 124, 3441–3449. [Google Scholar] [CrossRef] [PubMed]
- Linch, D.C.; Hills, R.K.; Burnett, A.K.; Khwaja, A.; Gale, R.E. Impact of FLT3(ITD) mutant allele level on relapse risk in intermediate-risk acute myeloid leukemia. Blood 2014, 124, 273–276. [Google Scholar] [CrossRef] [PubMed]
- Gorello, P.; Cazzaniga, G.; Alberti, F.; Dell’Oro, M.G.; Gottardi, E.; Specchia, G.; Roti, G.; Rosati, R.; Martelli, M.F.; Diverio, D.; et al. Quantitative assessment of minimal residual disease in acute myeloid leukemia carrying nucleophosmin (NPM1) gene mutations. Leukemia 2007, 21, 340–350. [Google Scholar] [CrossRef] [PubMed]
- Chou, W.C.; Tang, J.L.; Wu, S.J.; Tsay, W.; Yao, M.; Huang, S.Y.; Huang, K.C.; Chen, C.Y.; Huang, C.F.; Tien, H.F. Clinical implications of minimal residual disease monitoring by quantitative polymerase chain reaction in acute myeloid leukemia patients bearing nucleophosmin (NPM1) mutations. Leukemia 2007, 21, 998–1004. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Papadaki, C.; Dufour, A.; Seibl, M.; Schneider, S.; Bohlander, S.K.; Zellmeier, E.; Mellert, G.; Hiddemann, W.; Spiekermann, K. Monitoring minimal residual disease in acute myeloid leukaemia with NPM1 mutations by quantitative PCR: Clonal evolution is a limiting factor. Br. J. Haematol. 2009, 144, 517–523. [Google Scholar] [CrossRef] [PubMed]
- Barragan, E.; Pajuelo, J.C.; Ballester, S.; Fuster, O.; Cervera, J.; Moscardo, F.; Senent, L.; Such, E.; Sanz, M.A.; Bolufer, P. Minimal residual disease detection in acute myeloid leukemia by mutant nucleophosmin (NPM1): Comparison with WT1 gene expression. Clin. Chim. Acta 2008, 395, 120–123. [Google Scholar] [CrossRef] [PubMed]
- Bacher, U.; Badbaran, A.; Fehse, B.; Zabelina, T.; Zander, A.R.; Kröger, N. Quantitative monitoring of NPM1 mutations provides a valid minimal residual disease parameter following allogeneic stem cell transplantation. Exp. Hematol. 2009, 37, 135–142. [Google Scholar] [CrossRef] [PubMed]
- Schnittger, S.; Kern, W.; Tschulik, C.; Weiss, T.; Dicker, F.; Falini, B.; Haferlach, C.; Haferlach, T. Minimal residual disease levels assessed by NPM1 mutation-specific RQ-PCR provide important prognostic information in AML. Blood 2009, 114, 2220–2231. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stahl, T.; Badbaran, A.; Kröger, N.; Klyuchnikov, E.; Zabelina, T.; Zeschke, S.; Schafhausen, P.; Schultz, W.; Asenova, S.; Smirnova, A.; et al. Minimal residual disease diagnostics in patients with acute myeloid leukemia in the post-transplant period: Comparison of peripheral blood and bone marrow analysis. Leuk. Lymphoma 2010, 51, 1837–1843. [Google Scholar] [CrossRef] [PubMed]
- Dvorakova, D.; Racil, Z.; Jeziskova, I.; Palasek, I.; Protivankova, M.; Lengerova, M.; Razga, F.; Mayer, J. Monitoring of minimal residual disease in acute myeloid leukemia with frequent and rare patient-specific NPM1 mutations. Am. J. Hematol. 2010, 85, 926–929. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ommen, H.B.; Schnittger, S.; Jovanovic, J.V.; Ommen, I.B.; Hasle, H.; Østergaard, M.; Grimwade, D.; Hokland, P. Strikingly different molecular relapse kinetics in NPM1c, PML-RARA, RUNX1-RUNX1T1, and CBFB-MYH11 acute myeloid leukemias. Blood 2010, 115, 198–205. [Google Scholar] [CrossRef] [PubMed]
- Kristensen, T.; Møller, M.B.; Friis, L.; Bergmann, O.J.; Preiss, B. NPM1 mutation is a stable marker for minimal residual disease monitoring in acute myeloid leukaemia patients with increased sensitivity compared to WT1 expression. Eur. J. Haematol. 2011, 87, 400–408. [Google Scholar] [CrossRef] [PubMed]
- Krönke, J.; Schlenk, R.F.; Jensen, K.O.; Tschürtz, F.; Corbacioglu, A.; Gaidzik, V.I.; Paschka, P.; Onken, S.; Eiwen, K.; Habdank, M.; et al. Monitoring of minimal residual disease in NPM1-mutated acute myeloid leukemia: A study from the German-Austrian acute myeloid leukemia study group. J. Clin. Oncol. 2011, 29, 2709–2716. [Google Scholar] [CrossRef] [PubMed]
- Thol, F.; Kölking, B.; Damm, F.; Reinhardt, K.; Klusmann, J.H.; Reinhardt, D.; von Neuhoff, N.; Brugman, M.H.; Schlegelberger, B.; Suerbaum, S.; et al. Next-generation sequencing for minimal residual disease monitoring in acute myeloid leukemia patients with FLT3-ITD or NPM1 mutations. Genes Chromosomes Cancer 2012, 51, 689–695. [Google Scholar] [CrossRef] [PubMed]
- Abdelhamid, E.; Preudhomme, C.; Helevaut, N.; Nibourel, O.; Gardin, C.; Rousselot, P.; Castaigne, S.; Gruson, B.; Berthon, C.; Soua, Z.; et al. Minimal residual disease monitoring based on FLT3 internal tandem duplication in adult acute myeloid leukemia. Leuk. Res. 2012, 36, 316–323. [Google Scholar] [CrossRef] [PubMed]
- Schiller, J.; Praulich, I.; Krings Rocha, C.; Kreuzer, K.A. Patient-specific analysis of FLT3 internal tandem duplications for the prognostication and monitoring of acute myeloid leukemia. Eur. J. Haematol. 2012, 89, 53–62. [Google Scholar] [CrossRef] [PubMed]
- Shayegi, N.; Kramer, M.; Bornhäuser, M.; Schaich, M.; Schetelig, J.; Platzbecker, U.; Röllig, C.; Heiderich, C.; Landt, O.; Ehninger, G.; et al. The level of residual disease based on mutant NPM1 is an independent prognostic factor for relapse and survival in AML. Blood 2013, 122, 83–92. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jeziskova, I.; Razga, F.; Toskova, M.; Dvorakova, D.; Timilsina, S.; Mayer, J.; Racil, Z. Quantitative detection of IDH2 mutation for minimal residual disease monitoring in patients with acute myeloid leukemia and its comparison with mutations in NPM1 gene. Leuk. Lymphoma 2013, 54, 867–870. [Google Scholar] [CrossRef] [PubMed]
- Salipante, S.J.; Fromm, J.R.; Shendure, J.; Wood, B.L.; Wu, D. Detection of minimal residual disease in NPM1-mutated acute myeloid leukemia by next-generation sequencing. Mod. Pathol. 2014, 27, 1438–1446. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hubmann, M.; Köhnke, T.; Hoster, E.; Schneider, S.; Dufour, A.; Zellmeier, E.; Fiegl, M.; Braess, J.; Bohlander, S.K.; Subklewe, M.; et al. Molecular response assessment by quantitative real-time polymerase chain reaction after induction therapy in NPM1-mutated patients identifies those at high risk of relapse. Haematologica 2014, 99, 1317–1325. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bacher, U.; Dicker, F.; Haferlach, C.; Alpermann, T.; Rose, D.; Kern, W.; Haferlach, T.; Schnittger, S. Quantification of rare NPM1 mutation subtypes by digital PCR. Br. J. Haematol. 2014, 167, 710–714. [Google Scholar] [CrossRef] [PubMed]
- Lambert, J.; Lambert, J.; Nibourel, O.; Pautas, C.; Hayette, S.; Cayuela, J.M.; Terré, C.; Rousselot, P.; Dombret, H.; Chevret, S.; et al. MRD assessed by WT1 and NPM1 transcript levels identifies distinct outcomes in AML patients and is influenced by gemtuzumab ozogamicin. Oncotarget 2014, 5, 6280–6288. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Debarri, H.; Lebon, D.; Roumier, C.; Cheok, M.; Marceau-Renaut, A.; Nibourel, O.; Geffroy, S.; Helevaut, N.; Rousselot, P.; Gruson, B.; et al. IDH1/2 but not DNMT3A mutations are suitable targets for minimal residual disease monitoring in acute myeloid leukemia patients: A study by the Acute Leukemia French Association. Oncotarget 2015, 6, 42345–42353. [Google Scholar] [CrossRef] [PubMed]
- Pettersson, L.; Levéen, P.; Axler, O.; Dvorakova, D.; Juliusson, G.; Ehinger, M. Improved minimal residual disease detection by targeted quantitative polymerase chain reaction in Nucleophosmin 1 type a mutated acute myeloid leukemia. Genes Chromosomes Cancer 2016, 55, 750–766. [Google Scholar] [CrossRef] [PubMed]
- Karas, M.; Steinerova, K.; Lysak, D.; Hrabetova, M.; Jungova, A.; Sramek, J.; Jindra, P.; Polivka, J.; Holubec, L. Pre-transplant quantitative determination of NPM1 mutation significantly predicts outcome of allogeneic hematopoietic stem cell transplantation in patients with normal karyotype AML in complete remission. Anticancer Res. 2016, 36, 5487–5498. [Google Scholar] [CrossRef] [PubMed]
- Alizad Ghandforoush, N.; Chahardouli, B.; Rostami, S.; Ghadimi, H.; Ghasemi, A.; Alimoghaddam, K.; Ghavamzadeh, A.; Nadali, F. Evaluation of minimal residual disease in acute myeloid leukemia with NPM1 marker. Int. J. Hematol. Oncol. Stem Cell. Res. 2016, 10, 147–152. [Google Scholar] [PubMed]
- Ivey, A.; Hills, R.K.; Simpson, M.A.; Jovanovic, J.V.; Gilkes, A.; Grech, A.; Patel, Y.; Bhudia, N.; Farah, H.; Mason, J.; et al. Assessment of minimal residual disease in standard-risk AML. N. Engl. J. Med. 2016, 374, 422–433. [Google Scholar] [CrossRef] [PubMed]
- Kayser, S.; Benner, A.; Thiede, C.; Martens, U.; Huber, J.; Stadtherr, P.; Janssen, J.W.; Röllig, C.; Uppenkamp, M.J.; Bochtler, T.; et al. Pretransplant NPM1 MRD levels predict outcome after allogeneic hematopoietic stem cell transplantation in patients with acute myeloid leukemia. Blood Cancer J. 2016, 6, e449. [Google Scholar] [CrossRef] [PubMed]
- Malmberg, E.B.; Ståhlman, S.; Rehammar, A.; Samuelsson, T.; Alm, S.J.; Kristiansson, E.; Abrahamsson, J.; Garelius, H.; Pettersson, L.; Ehinger, M.; et al. Patient-tailored analysis of minimal residual disease in acute myeloid leukemia using next-generation sequencing. Eur. J. Haematol. 2017, 98, 26–37. [Google Scholar] [CrossRef] [PubMed]
- Balsat, M.; Renneville, A.; Thomas, X.; de Botton, S.; Caillot, D.; Marceau, A.; Lemasle, E.; Marolleau, J.P.; Nibourel, O.; Berthon, C.; et al. Postinduction minimal residual disease predicts outcome and benefit from allogeneic stem cell transplantation in acute myeloid leukemia with NPM1 mutation: A study by the Acute Leukemia French Association Group. J. Clin. Oncol. 2017, 35, 185–193. [Google Scholar] [CrossRef] [PubMed]
- Schieppati, F.; Passi, A.; Borlenghi, E.; Lamorgese, C.; Ruggeri, G.; Chiarini, M.; Giustini, V.; Malagola, M.; Cattaneo, C.; Sciumé, M.; et al. Molecular monitoring of NPM1 is a useful tool for detecting early-stage relapse and to guide pre-emptive treatment approaches in patients with NPM1-mutated acute myeloid leukemia. Blood 2017, 130, 3931. [Google Scholar]
- Mencia-Trinchant, N.; Hu, Y.; Alas, M.A.; Ali, F.; Wouters, B.J.; Lee, S.; Ritchie, E.K.; Desai, P.; Guzman, M.L.; Roboz, G.J.; et al. Minimal residual disease monitoring of acute myeloid leukemia by massively multiplex digital PCR in patients with NPM1 mutations. J. Mol. Diagn. 2017, 19, 537–548. [Google Scholar] [CrossRef] [PubMed]
- Getta, B.M.; Devlin, S.M.; Levine, R.L.; Arcila, M.E.; Mohanty, A.S.; Zehir, A.; Tallman, M.S.; Giralt, S.A.; Roshal, M. Multicolor flow cytometry and multigene Next-Generation Sequencing are complementary and highly predictive for relapse in acute myeloid leukemia after allogeneic transplantation. Biol. Blood Marrow Transplant. 2017, 23, 1064–1071. [Google Scholar] [CrossRef] [PubMed]
- Bill, M.; Grimm, J.; Jentzsch, M.; Kloss, L.; Goldmann, K.; Schulz, J.; Beinicke, S.; Häntschel, J.; Cross, M.; Vucinic, V.; et al. Digital droplet PCR-based absolute quantification of pre-transplant NPM1 mutation burden predicts relapse in acute myeloid leukemia patients. Ann. Hematol. 2018, 97, 1757–1765. [Google Scholar] [CrossRef] [PubMed]
- Jongen-Lavrencic, M.; Grob, T.; Hanekamp, D.; Kavelaars, F.G.; Al Hinai, A.; Zeilemaker, A.; Erpelinck-Verschueren, C.A.J.; Gradowska, P.L.; Meijer, R.; Cloos, J.; et al. Molecular minimal residual disease in acute myeloid leukemia. N. Engl. J. Med. 2018, 378, 1189–1199. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Othus, M.; Walter, R.B.; Estey, E.H.; Wu, D.; Wood, B.L. Deep NPM1 sequencing following allogeneic hematopoietic cell transplantation improves risk assessment in adults with NPM1-mutated AML. Biol. Blood Marrow Transplant. 2018, 24, 1615–1620. [Google Scholar] [CrossRef] [PubMed]
- Zappasodi, P.; Marbello, L.; Borlenghi, E.; Fumagalli, M.; Bernardi, M.; Fracchiolla, N.; Mancini, V.; Da Vià, M.; Ravano, E.; Cerqui, E.; et al. Molecular remission at the end of treatment is a necessary goal for a good outcome in ELN favorable-risk acute myeloid leukemia: A real-life analysis on 201 patients by the Rete Ematologica Lombarda network. Ann. Hematol. 2018. [Google Scholar] [CrossRef] [PubMed]
- Delsing Malmberg, E.; Johansson Alm, S.; Nicklasson, M.; Lazarevic, V.; Ståhlman, S.; Samuelsson, T.; Lenhoff, S.; Asp, J.; Ehinger, M.; Palmqvist, L.; et al. Minimal residual disease assessed with deep sequencing of NPM1 mutations predicts relapse after allogeneic stem cell transplant in AML. Leuk. Lymphoma 2018. [Google Scholar] [CrossRef] [PubMed]
- Kapp-Schwoerer, S.; Corbacioglu, A.; Weber, D.; Gaidzik, V.I.; Rucker, F.G.; Paschka, P.; Kronke, J.; Teleanu, M.V.; Gohring, G.; Schlegelberger, B.; et al. Impact of NPM1 MRD status after two cycles of intensive chemotherapy to inform type of post-remission therapy: A study of the AML study group (AMLSG). HemaSphere 2018, 2, 434. [Google Scholar]
- Caprioli, C.; Lussana, F.; Stefanoni, P.; Pavoni, C.; Spinelli, O.; Buklijas, K.; Michelato, A.; Zanghì, P.; Borleri, G.; Algarotti, A.; et al. Comparison between multiparametric flow cytometry and RT-QPCR assay in evaluating minimal residual disease before allogeneic stem cell transplantation in NPM1 acute myeloid leukemia. HemaSphere 2018, 2, 443. [Google Scholar]
- Patkar, N.; Kodgule, R.; Kakirde, C.; Raval, G.; Bhanshe, P.; Badrinath, Y.; Ghoghale, S.; Kadechkar, S.; Khizer, S.H.; Kannan, S.; et al. Detection of measurable residual disease (MRD) by ultradeep next generation sequencing (NGS) is highly predictive of outcome in NPM1 mutated acute myeloid leukemia (AML). HemaSphere 2018, 2, 55. [Google Scholar]
- Onecha, E.; Linares, M.; Rapado, I.; Ruiz-Heredia, Y.; Martinez-Sanchez, P.; Cedena, T.; Pratcorona, M.; Perez Oteyza, J.; Herrera, P.; Barragan, E.; et al. Novel deep targeted sequencing method for minimal residual disease monitoring in acute myeloid leukemia. Haematologica 2018. [Google Scholar] [CrossRef] [PubMed]
- Petrova, L.; Vrbacky, F.; Lanska, M.; Zavrelova, A.; Zak, P.; Hrochova, K. IDH1 and IDH2 mutations in patients with acute myeloid leukemia: Suitable targets for minimal residual disease monitoring? Clin. Biochem. 2018. [Google Scholar] [CrossRef] [PubMed]
- Prata, P.H.; Bally, C.; Prebet, T.; Recher, C.; Venton, G.; Thomas, X.; Raffoux, E.; Pigneux, A.; Cluzeau, T.; Desoutter, J.; et al. NPM1 mutation is not associated with prolonged complete remission in acute myeloid leukemia patients treated with hypomethylating agents. Haematologica 2018, 103, e455–e457. [Google Scholar] [CrossRef] [PubMed]
- Ottone, T.; Alfonso, V.; Iaccarino, L.; Hasan, S.K.; Mancini, M.; Divona, M.; Lavorgna, S.; Cicconi, L.; Panetta, P.; Maurillo, L.; et al. Longitudinal detection of DNMT3AR882H transcripts in patients with acute myeloid leukemia. Am. J. Hematol. 2018, 93, e120–e123. [Google Scholar] [CrossRef] [PubMed]
- Gaksch, L.; Kashofer, K.; Heitzer, E.; Quehenberger, F.; Daga, S.; Hofer, S.; Halbwedl, I.; Graf, R.; Krisper, N.; Hoefler, G.; et al. Residual disease detection using parallel sequencing predicts relapse in cytogenetically normal acute myeloid leukemia. Am. J. Hematol. 2018, 93, 23–30. [Google Scholar] [CrossRef] [PubMed]
- Schuurhuis, G.J.; Heuser, M.; Freeman, S.; Béné, M.C.; Buccisano, F.; Cloos, J.; Grimwade, D.; Haferlach, T.; Hills, R.K.; Hourigan, C.S.; et al. Minimal/measurable residual disease in AML: A consensus document from the European LeukemiaNet MRD Working Party. Blood 2018, 131, 1275–1291. [Google Scholar] [CrossRef] [PubMed]
- Hantel, A.; Stock, W.; Kosuri, S. Molecular minimal residual disease testing in acute myeloid leukemia: A review for the practicing clinician. Clin. Lymphoma Myeloma Leuk. 2018, 18, 636–647. [Google Scholar] [CrossRef] [PubMed]
- Patel, S.S.; Kuo, F.C.; Gibson, C.J.; Steensma, D.P.; Soiffer, R.J.; Alyea, E.P.; Chen, Y.A.; Fathi, A.T.; Graubert, T.A.; Brunner, A.M.; et al. High NPM1-mutant allele burden at diagnosis predicts unfavorable outcomes in de novo AML. Blood 2018, 131, 2816–2825. [Google Scholar] [CrossRef] [PubMed]
- Ravandi, F.; Walter, R.B.; Freeman, S.D. Evaluating measurable residual disease in acute myeloid leukemia. Blood Adv. 2018, 2, 1356–1366. [Google Scholar] [PubMed]
- Röllig, C.; Bornhäuser, M.; Kramer, M.; Thiede, C.; Ho, A.D.; Krämer, A.; Schäfer-Eckart, K.; Wandt, H.; Hänel, M.; Einsele, H.; et al. Allogeneic stem-cell transplantation in patients with NPM1-mutated acute myeloid leukemia: Results from a prospective donor versus no-donor analysis of patients after upfront HLA typing within the SAL-AML 2003 trial. J. Clin. Oncol. 2015, 33, 403–410. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.J.; Savani, B.N.; Mohty, M.; Gorin, N.C.; Labopin, M.; Ruggeri, A.; Schmid, C.; Baron, F.; Esteve, J.; Giebel, S.; et al. Post-remission strategies for the prevention of relapse following allogeneic hematopoietic cell transplantation for high-risk acute myeloid leukemia: Expert review from the Acute Leukemia Working Party of the European Society for Blood and Marrow Transplantation. Bone Marrow Transplant. 2018. [Google Scholar] [CrossRef]
- Platzbecker, U.; Wermke, M.; Radke, J.; Oelschlaegel, U.; Seltmann, F.; Kiani, A.; Klut, I.M.; Knoth, H.; Röllig, C.; Schetelig, J.; et al. Azacitidine for treatment of imminent relapse in MDS or AML patients after allogeneic HSCT: Results of the RELAZA trial. Leukemia 2012, 26, 381–389. [Google Scholar] [CrossRef] [PubMed]
- Platzbecker, U.; Middeke, J.M.; Sockel, K.; Mutherig, A.; Herbst, R.; Hanel, M.; Wolf, D.; Baldus, C.D.; Fransecky, L.; Noppeney, R.; et al. Minimal-residual disease guided treatment with azacitidine in MDS/AML patients at imminent risk of relapse: Results of the prospective RELAZA2 trial. Blood 2017, 130, 565. [Google Scholar]
- Sockel, K.; Wermke, M.; Radke, J.; Kiani, A.; Schaich, M.; Bornhäuser, M.; Ehninger, G.; Thiede, C.; Platzbecker, U. Minimal residual disease-directed preemptive treatment with azacitidine in patients with NPM1-mutant acute myeloid leukemia and molecular relapse. Haematologica 2011, 96, 1568–1570. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Buccisano, F.; Dillon, R.; Freeman, S.D.; Venditti, A. Role of minimal (measurable) residual disease assessment in older patients with acute myeloid leukemia. Cancers 2018, 10, 215. [Google Scholar] [CrossRef] [PubMed]
- Siegel, R.; Ma, J.; Zou, Z.; Jemal, A. Cancer statistics, 2014. CA Cancer J. Clin. 2014, 64, 9–29. [Google Scholar] [CrossRef] [PubMed]
- Arellano, M.; Carlisle, J.W. How I treat older patients with acute myeloid leukemia. Cancer 2018, 124, 2472–2483. [Google Scholar] [CrossRef] [PubMed]
- Dombret, H.; Gardin, C. An update of current treatments for adult acute myeloid leukemia. Blood 2016, 127, 53–61. [Google Scholar] [CrossRef] [PubMed]
- Bullinger, L.; Dohner, K.; Dohner, H. Genomics of acute myeloid leukemia diagnosis and pathways. J. Clin. Oncol. 2017, 35, 934–946. [Google Scholar] [CrossRef] [PubMed]
- Ostronoff, F.; Othus, M.; Lazenby, M.; Estey, E.; Appelbaum, F.R.; Evans, A.; Godwin, J.; Gilkes, A.; Kopecky, K.J.; Burnett, A.; et al. Prognostic significance of NPM1 mutations in the absence of FLT3—Internal tandem duplication in older patients with acute myeloid leukemia: A SWOG and UK National Cancer Research Institute/Medical Research Council report. J. Clin. Oncol. 2015, 33, 1157–1164. [Google Scholar] [CrossRef] [PubMed]
- Prassek, V.V.; Rothenberg-Thurley, M.; Sauerland, M.C.; Herold, T.; Janke, H.; Ksienzyk, B.; Konstandin, N.P.; Goerlich, D.; Krug, U.; Faldum, A.; et al. Genetics of acute myeloid leukemia in the elderly: Mutation spectrum and clinical impact in intensively treated patients aged ≥75 years. Haematologica 2018, 103, 1853–1861. [Google Scholar] [CrossRef] [PubMed]
- Chou, W.C.; Tang, J.L.; Lin, L.I.; Yao, M.; Tsay, W.; Chen, C.Y.; Wu, S.J.; Huang, C.F.; Chiou, R.J.; Tseng, M.H.; et al. Nucleophosmin mutations in de novo acute myeloid leukemia: The age-dependent incidences and the stability during disease evolution. Cancer Res. 2006, 66, 3310–3316. [Google Scholar] [CrossRef] [PubMed]
- Falini, B.; Martelli, M.P.; Mecucci, C.; Liso, A.; Bolli, N.; Bigerna, B.; Pucciarini, A.; Pileri, S.; Meloni, G.; Martelli, M.F.; et al. Cytoplasmic mutated nucleophosmin is stable in primary leukemic cells and in a xenotransplant model of NPMc_ acute myeloid leukemia in SCID mice. Haematologica 2008, 93, 775–779. [Google Scholar] [CrossRef] [PubMed]
- Meloni, G.; Mancini, M.; Gianfelici, V.; Martelli, M.P.; Foa, R.; Falini, B. Late relapse of acute myeloid leukemia with mutated NPM1 after eight years: Evidence of NPM1 mutation stability. Haematologica 2009, 94, 298–300. [Google Scholar] [CrossRef] [PubMed]
- Bolli, N.; Galimberti, S.; Martelli, M.P.; Tabarrini, A.; Roti, G.; Mecucci, C.; Martelli, M.F.; Petrini, M.; Falini, B. Cytoplasmic nucleophosmin in myeloid sarcoma occurring 20 years after diagnosis of acute myeloid leukaemia. Lancet Oncol. 2006, 7, 350–352. [Google Scholar] [CrossRef]
- Martínez-Losada, C.; Serrano-López, J.; Serrano-López, J.; Noguera, N.I.; Garza, E.; Piredda, L.; Lavorgna, S.; Consalvo, M.A.I.; Ottone, T.; Alfonso, V.; et al. Clonal genetic evolution at relapse of favorable-risk acute myeloid leukemia with NPM1 mutation is associated with phenotypic changes and worse outcomes. Haematologica 2018, 103, e400–e403. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Krönke, J.; Bullinger, L.; Teleanu, V.; Tschürtz, F.; Gaidzik, V.I.; Kühn, M.W.; Rücker, F.G.; Holzmann, K.; Paschka, P.; Kapp-Schwörer, S.; et al. Clonal evolution in relapsed NPM1-mutated acute myeloid leukemia. Blood 2013, 122, 100–108. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bacher, U.; Porret, N.; Joncourt, R.; Sanz, J.; Aliu, N.; Wiedemann, G.; Jeker, B.; Banz, Y.; Pabst, T. Pitfalls in the molecular follow-up of NPM1 mutant acute myeloid leukemia. Haematologica 2018, 103, e486–e488. [Google Scholar] [CrossRef] [PubMed]
- Pinheiro, L.B.; Coleman, V.A.; Hindson, C.M.; Herrmann, J.; Hindson, B.J.; Bhat, S.; Emslie, K.R. Evaluation of a droplet digital polymerase chain reaction format for DNA copy number quantification. Anal. Chem. 2011, 84, 1003–1011. [Google Scholar] [CrossRef] [PubMed]
- Wertheim, G.B.W.; Bagg, A. NPM1 for MRD: Droplet like it’s hot! J. Mol. Diagn 2017, 19, 498–501. [Google Scholar] [CrossRef] [PubMed]
- Barakat, F.H.; Luthra, R.; Yin, C.C.; Barkoh, B.A.; Hai, S.; Jamil, W.; Bhakta, Y.I.; Chen, S.; Medeiros, L.J.; Zuo, Z. Detection of nucleophosmin 1 mutations by quantitative real-time polymerase chain reaction versus capillary electrophoresis: A comparative study. Arch. Pathol. Lab. Med. 2011, 135, 994–1000. [Google Scholar] [CrossRef] [PubMed]
- Behjati, S.; Tarpey, P.S. What is next generation sequencing? Arch. Dis. Child. Educ. Pract. Ed. 2013, 98, 236–238. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yan, B.; Hu, Y.; Ban, K.H.K.; Tiang, Z.; Ng, C.; Lee, J.; Tan, W.; Chiu, L.; Wee Tan, T.; Seah, E.; et al. Single-cell genomic profiling of acute myeloid leukemia for clinical use: A pilot study. Oncol. Lett. 2017, 13, 1625–1630. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Povinelli, B.J.; Rodriguez-Meira, A.; Mead, A.J. Single cell analysis of normal and leukemic hematopoiesis. Mol. Asp. Med. 2018, 59, 85–94. [Google Scholar] [CrossRef] [PubMed]
- Zhu, S.; Qing, T.; Zheng, Y.; Jin, L.; Shi, L. Advances in single-cell RNA sequencing and its applications in cancer research. Oncotarget 2017, 8, 53763–53779. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Luthra, R.; Patel, K.P.; Reddy, N.G.; Haghshenas, V.; Routbort, M.J.; Harmon, M.A.; Barkoh, B.A.; Kanagal-Shamanna, R.; Ravandi, F.; Cortes, J.E.; et al. Next-generation sequencing-based multigene mutational screening for acute myeloid leukemia using MiSeq: Applicability for diagnostics and disease monitoring. Haematologica 2014, 99, 465–473. [Google Scholar] [CrossRef] [PubMed]
- Thol, F.; Gabdoulline, R.; Liebich, A.; Klement, P.; Schiller, J.; Kandziora, C.; Hambach, L.; Stadler, M.; Koenecke, C.; Flintrop, M.; et al. Measurable residual disease (MRD) monitoring by NGS before allogeneic hematopoietic cell transplantation in AML. Blood 2018, 132, 1703–1713. [Google Scholar] [CrossRef] [PubMed]
- Klco, J.M.; Miller, C.A.; Griffith, M.; Petti, A.; Spencer, D.H.; Ketkar-Kulkarni, S.; Wartman, L.D.; Christopher, M.; Lamprecht, T.L.; Helton, N.M.; et al. Association between mutation clearance after induction therapy and outcomes in acute myeloid leukemia. JAMA 2015, 314, 811–822. [Google Scholar] [CrossRef] [PubMed]
- Hirsch, P.; Tang, R.; Abermil, N.; Flandrin, P.; Moatti, H.; Favale, F.; Suner, L.; Lorre, F.; Marzac, C.; Fava, F.; et al. Precision and prognostic value of clone-specific minimal residual disease in acute myeloid leukemia. Haematologica 2017, 102, 1227–1237. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rothenberg-Thurley, M.; Amler, S.; Goerlich, D.; Köhnke, T.; Konstandin, N.P.; Schneider, S.; Sauerland, M.C.; Herold, T.; Hubmann, M.; Ksienzyk, B.; et al. Persistence of pre-leukemic clones during first remission and risk of relapse in acute myeloid leukemia. Leukemia 2018, 32, 1598–1608. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morita, K.; Kantarjian, H.P.; Wang, F.; Yan, Y.; Bueso-Ramos, C.; Sasaki, K.; Issa, G.C.; Wang, S.; Jorgensen, J.; Song, X.; et al. Clearance of somatic mutations at remission and the risk of relapse in acute myeloid leukemia. J. Clin. Oncol. 2018, 36, 1788–1797. [Google Scholar] [CrossRef] [PubMed]
- Kayser, S.; Schlenk, R.F.; Grimwade, D.; Yosuico, V.E.D.; Walter, R.B. Minimal residual disease-directed therapy in acute myeloid leukemia. Blood 2015, 125, 2331–2335. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kunchala, P.; Kuravi, S.; Jensen, R.; McGuirk, J.; Balusu, R. When the good go bad: Mutant NPM1 in acute myeloid leukemia. Blood Rev. 2018, 32, 167–183. [Google Scholar] [CrossRef] [PubMed]
- Brunetti, L.; Gundry, M.C.; Sorcini, D.; Guzman, A.G.; Huang, Y.H.; Ramabadran, R.; Gionfriddo, I.; Mezzasoma, F.; Milano, F.; Nabet, B.; et al. Mutant NPM1 maintains the leukemic state through HOX expression. Cancer Cell 2018, 34, 499–512. [Google Scholar] [CrossRef] [PubMed]
- Uckelmann, H.J.; Armstrong, S.A.; Stone, R.M. Location, location, location: Mutant NPM1c cytoplasmic localization is required to maintain stem cell genes in AML. Cancer Cell 2018, 34, 355–357. [Google Scholar] [CrossRef] [PubMed]
Reference/Type of Study | Number of Patients/Median Age (Years, Range) | Number of Samples (PB/BM) | Number of Samples per Patient (Median, Range) | Molecular Method/Material | NPM1 Mutation Type | Sensitivity of the Assay |
---|---|---|---|---|---|---|
Gorello et al., 2006 [30]/retrospective | 20/NA | NA (PB and/or BM samples at diagnosis and/or at different timepoints) | NA (13 patients analyzed at diagnosis and post-induction). MRD kinetics during follow-up of 3 representative patients is reported | RQ-PCR/cDNA (5 cases), DNA (15 cases) | A, B (cDNA); A, B, D, E, G, H (DNA) | 10−3–10−6 |
Chou et al., 2007 [31]/retrospective | 38/47 (17–87) | 194 BM | 5 | RQ-PCR/DNA | 7 different mutations | 10−5 |
Papadaki et al., 2008 [32]/retrospective | 51/58 (22–78) | 154 (18 PB/136 BM) | NA (26 patients analyzed at diagnosis and at least at 2 timepoints during therapy; 27 patients analyzed at diagnosis and after induction therapy) | RQ-PCR/cDNA | A | 10−5 |
Barragan et al., 2008 [33]/- | 24/17 cases (71%) <60 yeas | 97 (5 PB/92 BM) | NA | RQ-PCR/cDNA | A | 10−5 |
Bacher et al., 2009 [34]/retrospective | 13/47 (20–66) | 139 (PB/BM) | 7 (2–25) | RQ-PCR/DNA | A, B | 10−4–10−6 |
Schnittger et al., 2009 [35]/retrospective | 252/59 (20–79) | 1227 (28 PB at diagnosis/1199 BM) | 4 (2–16) | RQ-PCR/cDNA | 17 different mutations | 10−4–10−6 |
Stahl et al., 2010 [36]/retrospective | 25/53 (21–73) | 76 (38 PB/38 BM) | 1–2 | RQ-PCR/DNA | A | 10−4–10−6 |
Dvorakova et al., 2010 [37]/retrospective | 25/51 (43–75) | 1026 (339 PB/687 BM) | 28 (11–68) | RQ-PCR/DNA | 9 different mutations | 10−4–10−6 |
Ommen et al., 2010 [38]/retrospective | 180 (54 in HR)/NA | 193 CCR and 70 relapse samples | NA | RQ-PCR/cDNA | NA | 10−4–10−6 |
Kristensen et al., 2011 [39]/retrospective | 20/61 (41–76) | 204 | NA | RQ-PCR/DNA | A | 2.4 × 10−5 |
Kronke et al., 2011 [40]/retrospective | 245/49 (19–61) | 1682 (410 PB/1272 BM) | NA | RQ-PCR/cDNA | 6 different mutations | 10−5–10−6 |
Thol et al., 2012 [41]/retrospective | 10/NA (adult patients) | 45 | NA | NGS, RQ-PCR/DNA, cDNA | 3 different mutations (8 cases A, 1 case D, 1 case atypical) | 10−4 |
Abdelhamid et al., 2012 [42]/retrospective | 20/55 (27–69) | 116 (20 at diagnosis, 96 follow-up samples, namely 55 PB and 41 BM) | 4.5 (2–11) | RQ-PCR/DNA | 3 different mutations (A, B, insCACG) | 10−4–10−5 |
Schiller et al., 2012 [43]/retrospective | 30 (among 54 FLT3-ITD+ patients)/62 | NA | NA | RQ-PCR/cDNA | NA | 10−4–10−6 |
Shayegi et al., 2013 [44]/retrospective | 155/51 (20–79) | 1750 (817 PB/933 BM) | NA | RQ-PCR/DNA | A, B, D | 10−5 |
Jeziskova et al., 2013 [45]/retrospective | 6 (among 8 patients with IDH2 mutations)/57 (53–72) | 60 (17 PB/43 BM) | 3–14 | RQ-PCR/DNA | A, B | 10−4–10−6 |
Salipante et al., 2014 [46]/retrospective | 6/NA | 22 BM | 2–6 | NGS/DNA | No need for mutation-specific probes | 10−5 |
Hubmann et al., 2014 [47]/retrospective | 158/57 (18–80) | 588 BM | NA | RQ-PCR/cDNA | A, B, D | 10−6 |
Bacher et al., 2014 [48]/retrospective | 99/NA | 498 | 4 (1–28) | digital PCR/cDNA | 37 different mutations | 10−4–10−5 |
Lambert et al., 2014 [49]/prospective | 77 patients with NPM1 mutation/61 (57–65) | 250 (125 PB/125 BM) | NA | RQ-PCR/cDNA | A, B, D | 10−5 |
Debarri et al., 2015 [50]/retrospective | 31/60 (23–70) | 94 | NA | RQ-PCR for NPM1; NGS for IDH1/2 and DNMT3A/cDNA | A, B, D | 10−5 |
Pettersson et al., 2016 [51]/- | 19/64 (28–78) | 63 (2 PB/61 BM) | 1–9 | RQ-PCR/DNA | A | 10−5 |
Karas et al., 2016 [52]/retrospective | 60/54 (30–66) | 60 BM | 1 (pre-HSCT) | RQ-PCR/cDNA | A, B, D | NA |
Alizad Ghandforoush et al., 2016 [53]/retrospective | 11/42 (28–63) | 71 (PB/BM) | NA | RQ-PCR/DNA | A | 10−5 |
Ivey et al., 2016 [54]/prospective | 346 in preliminary development phase, 91 in validation cohort/50 (6–68) | 2569 in first phase (1667 PB/902 BM) | 6 | RQ-PCR/cDNA | 27 different mutations | 10−5 |
Kayser et al., 2016 [55]/retrospective | 67/55 (21–70) | 406 (BM) at different timepoints | pre-transplant MRD was available for 39/51 (76.4%) patients in CR at HSCT (22 cases, 56% MRD-positive) | RQ-PCR/cDNA | A, B, D | 10−5–10−6 |
Malmberg et al., 2017 [56]/retrospective | 17 (3 NPM1-mutated patients)/39 (2–71) | NA | NA | RQ-PCR, NGS/DNA | A | 10−5 |
Balsat et al., 2017 [57]/retrospective | 152/49 (21–61) | 304 (PB/BM) at diagnosis and 270 post-induction (135 PB/135 BM) | samples obtained at diagnosis and after induction CHT | RQ-PCR/cDNA | A, B, D | 10−5 |
Schieppati et al., 2017 [58]/- | 68/56 (27–74) | NA | 4 PB/BM samples (at diagnosis, TP1 at CR, TP2 post-consolidation, TP3 post 1st cycle of Ara-C) | RQ-PCR/cDNA | NA | 10−4–10−5 |
Mencia-Trinchant et al., 2017 [59]/- | 3/- | NA | Sequential determination of MRD levels | ddPCR/cDNA | multiplex assay effective in a range of diverse common and rare NPM1 mutations (14) | 10−4–10−5 |
Getta et al., 2017 [60]/retrospective | 104 (10 with NPM1 mutation)/58 (21–78) | 58 BM at diagnosis, 83 BM before HSCT for NGS | NA | NGS, MFC/DNA | 2 different mutations | 10−4 |
Bill et al., 2018 [61]/retrospective | 51/62 (33–74) | 51 (40 PB/11 BM) | samples collected directly before HSCT | ddPCR/cDNA | A, D | 10−4 |
Jongen-Lavrencic et al., 2018 [62]/retrospective | 430 (168 with NPM1 mutation)/51 (18–66) | 482 PB/BM samples at diagnosis, 430 BM samples after treatment | 2 (at diagnosis and in CR) | NGS, MFC/DNA | NA | 10−4 |
Zhou et al., 2018 [63]/retrospective | 59/57(21–79) | 104 BM | pre-HSCT and post-HSCT | NGS, MFC/DNA | - | 10−4 |
Zappasodi et al., 2018 [64]/retrospective, real-life study | 201 (116 with NPM1 mutation)/58 | NA | Availability of samples during treatment and follow-up was variable. | RQ-PCR/cDNA | NA | 10−4–10−5 |
Delsing Malmberg et al., 2018 [65]/retrospective | 29/49 (18–66) | 83 (6 PB/77 BM) | 3 (at diagnosis, before and after HSCT) | NGS/DNA | all recurrent insertion mutations in NPM1 exon 12 (mutation A in 25 cases) | 10−4 |
Kapp-Schwoerer et al., 2018 [66]/retrospective | 611/18–60 | 6339 (2812 PB/3527 BM) | NA (samples analyzed at diagnosis, during treatment and follow-up) | RQ-PCR/cDNA | NA | 10−5–10−6 |
Caprioli et al., 2018 [67]/retrospective | 27/57 (23–65) | 27 BM | 1 (pre alloHSCT) | RQ-PCR/cDNA | NA | 10−4 |
Patkar et al., 2018 [68]/retrospective | 83/NA | NA | NA | NGS/DNA | 12 different mutations | 10−5 |
Onecha et al., 2018 [69]/retrospective | 63 (57 with NPM1 mutation)/54 (42–66) | 106 BM (51 after induction, 55 post consolidation CHT) | 2 | NGS/DNA | A | 10−5 |
Petrova et al., 2018 [70]/retrospective | 90 (22 positive for IDH1/2 mutations, 11 with NPM1 mutation)/61 (22–82) | 149 BM | NA (90 at diagnosis, 22 after induction, 37 during follow-up) | RQ-PCR for NPM1 mutations/cDNA | A | NA |
Prata et al., 2018 [71]/retrospective | 34 with newly diagnosed NPM1-mutated AML/77 (55–85) | MRD assessment available on BM samples in 6 patients | NA | RQ-PCR/NA | A, B, D | NA |
Ottone et al., 2018 [72]/retrospective | 556 de novo AML (177 with NPM1 mutation)/49 (16–89) | NA (BM samples at diagnosis, during follow-up, at relapse) | NA (NPM1-mutated transcripts monitoring in 51 cases) | RQ-PCR/cDNA | A | 10−5 |
Gaksch et al., 2018 [73]/retrospective | 34 cytogenetically normal AML (16 cases with NPM1 mutation)/47 (22–79) | 34 BM or PB at diagnosis, 27 BM samples in remission | 2 (at diagnosis and after at least one consolidation therapy) | NGS/DNA extracted from BM slides | Multiplex analysis of 19 genes, including NPM1 mutational hotspots | 10−2 |
Reference | Intensive CHT/HSCT (No. of Patients) | Significant MRD Threshold | Prognostic Timepoints | Correlation with Other Molecular Markers | Clonal Evolution | Median Time since Molecular to Morphologic Relapse (Range) | Clinical Relevance |
---|---|---|---|---|---|---|---|
Gorello et al., 2006 [30] | Yes/NA | NA (3/5 cases with MRD <1% long-term survivors) | NA | NA | NA | NA |
|
Chou et al., 2007 [31] | 38 Yes/11 alloHSCT | 0.1% | End of consolidation; follow-up | FLT3-ITD worsened RFS | No | 4.9 months (1–12.3) |
|
Papadaki et al., 2008 [32] | 50 Yes/11 alloHSCT | NA (median log10 reduction of 2.48 post induction correlated with response to therapy) | NA | NA | In 2/21 relapses (9.5%) NPM1 mutation was lost. | NA |
|
Barragan et al., 2008 [33] | 24 Yes/NA | NA (in 19 patients in CCR a median 3% MRD after induction was shown. Median MRD level after consolidation 0.3% | NA | Expression levels of WT1 and NPM1 showed strong positive correlation. | No | MRD increase 1 to 5 months before relapse in 4/6 cases |
|
Bacher et al., 2009 [34] | -/13 alloHSCT | NA | All 4 patients (29%) with persistent MRD positive after HSCT relapsed | Correlation with molecular chimerism. | No | 24 days (12–38) |
|
Schnittger et al., 2009 [35] | 252 Yes/53 alloHSCT | 0.01% during 1st line treatment.0.1% after HSCT and during 2nd line treatment. |
| FLT3-ITD prognostic factor affecting EFS | No | 62 days (15–221) |
|
Stahl et al., 2010 [36] | -/25 alloHSCT | NA | Post-HSCT follow-up | High rate of congruent results with chimerism analysis | No | NA |
|
Dvorakova et al., 2010 [37] | 25 Yes/4 alloHSCT | Reappearance of NPM1 mutation or one order NCN increase in patients with persistent positivity at any timepoint. | NA | NA | No | 97 days (12–141) |
|
Ommen et al., 2010 [38] | NA/NA | 0.005% (threshold to define molecular relapse) | NA | More rapid MRD growth in FLT3-ITD+ cases | No | 120 days without FLT3-ITD, 65 days in FLT3-ITD+ cases |
|
Kristensen et al., 2011 [39] | 20 Yes/NA | NA | Reoccurrence of NPM1 mutation at any time was associated with relapse. | NPM1 mutation is superior to WT1 expression levels as MRD marker. | No (NPM1 mutation stability. Karyotype evolution in 56% of relapses). | 46 days (20–182) |
|
Kronke et al., 2011 [40] | 245 Yes/80 alloHSCT | 2% |
| FLT3-ITD significant factor for inferior survival. | In 5 patients NPM1 mutation was not detectable at relapse (9% of evaluable relapse samples) | 2.6 months (0.4–23.6) |
|
Thol et al., 2012 [41] | 10 Yes/NA | NA (mean allelic ratio at diagnosis 0.37, range 0.29–0.46) | NA | NA | NPM1 mutation not detectable in 1/4 patients at relapse. | NA |
|
Abdelhamid et al., 2012 [42] | 20 Yes/NA | NA | After induction therapy | Similar kinetics of FLT3-ITD, NPM1 and WT1 expression for predicted clinical trend. | No | NA for NPM1 mutation |
|
Schiller et al., 2012 [43] | 54 (30 NPM1-mutated) Yes/7 alloHSCT | NA | NA (samples collected at diagnosis, during treatment and follow-up) | MRD for FLT3-ITD as sensitive as other MRD parameters as NPM1 mutations or MLL-PTD | NA | NA |
|
Shayegi et al., 2013 [44] | 155 Yes/40 alloHSCT | -MRD level >1% after conventional CHT-MRD level >10% after alloHSCT | After intensive CHT and after HSCT | Prognostic role of MRD remained significant after adjustment for FLT3-ITD status | No |
|
|
Jeziskova et al., 2013 [45] | 8 Yes/4 alloHSCT | NA | NA | Concordance of quantitative detection of IDH2 and NPM1 mutations, except for on case. | NA | NA |
|
Salipante et al., 2014 [46] | 6 Yes/NA | NA | NA | NA | In 2 patients genetically distinct NPM1 tumor subclones were detected | NA |
|
Hubmann et al., 2014 [47] | 158 Yes/30 alloHSCT | cut-off ratio 0.01 and 3-log reduction | After induction CHT | Prognostic role of MRD regardless of ELN risk stratification. | NPM1 mutation not detectable in 3 of 45 (6.7%) patients at relapse | 58 days (20–98) |
|
Bacher et al., 2014 [48] | 99 Yes/NA | 0.01% |
| NA | No | NA |
|
Lambert et al., 2014 [49] | 77 Yes/NA | 0.1% (in BM samples) |
| After adjustment for FLT3-ITD status, the effect of NPM1 MRD appeared to be similar. | No | NA |
|
Debarri et al., 2015 [50] | 31 Yes/NA | 0.1% |
| Analysis of correlation between NPM1 mutations and IDH1/2 or DNMT3A mutations | One patient with IDH2 mutation developed a NPM1-negative MDS | NA |
|
Pettersson et al., 2016 [51] | 15 Yes/5 HSCT | 0.1% | During follow-up | NA | One of 8 relapsing patients developed a NPM1-negative relapse | NA |
|
Karas et al., 2016 [52] | -/60 alloHSCT | 0.1% | pre-transplant (less than 1 week prior to start conditioning regimen) | FLT3-ITD positivity had no adverse effect on HSCT outcome in patients with AML with NPM1 mutation in CR | No | 4 months (3–13) from HSCT to relapse, especially in patients with high preHSCT MRD |
|
Alizad Ghandforoush et al., 2016 [53] | 11 Yes/6 alloHSCT | <5 log reduction | during follow-up | NA | No | NA |
|
Ivey et al., 2016 [54] | 346 + 91 Yes/82 alloHSCT | 0.01% | after second CHT cycle (PB samples) | Presence of FLT3-ITD or DNMT3A mutations did not provide additional prognostic information | NPM1 mutations detectable in 69/70 (99%) patients at relapse | 133 days (BM), 87 days (PB) |
|
Kayser et al., 2016 [55] | -/67 alloHSCT | 1% | prior to alloHSCT | FLT3-ITD status had no impact on prognosis | No | NA |
|
Malmberg et al., 2017 [56] | NA/NA | 0.001% | NA | CPS1, FAM193A, ITGB7 | NA | NA |
|
Balsat et al., 2017 [57] | 152 Yes/44 alloHSCT | 4-log reduction in PB MRD | post-induction CHT cycle | Abnormal karyotype, FLT3-ITD, PB MRD associated with higher relapse incidence and shorter OS. | No | NA |
|
Schieppati et al., 2017 [58] | 68 Yes/9 alloHSCT | 0.5% | TP1 (BM), TP3 (PB) | FLT3-ITD did not impact on relapse risk | No | NA |
|
Mencia-Trinchant et al., 2017 [59] | 3 Yes/- | NA | NA | NA | No | NA |
|
Getta et al., 2017 [60] | -/104 alloHSCT | <5% VAF | before HSCT | NA | No | NA |
|
Bill et al., 2018 [61] | 51 Yes/51 HSCT | 0.01% | prior to HSCT | Adverse prognostic role of NPM1 mutation MRD independent of other known prognostic markers | NA | 101 days after HSCT (median time to relapse for all patient cohort) |
|
Jongen-Lavrencic et al., 2018 [62] | 430 (168) Yes/ | 2.5% allele frequency | samples obtained during a defined period of remission, between 21 days and 4 months after start of second treatment cycle | - | NA | NA |
|
Zhou et al., 2018 [63] | -/59 alloHSCT | 0.01% | pre-HSCT and post HSCT (around day +28) | Peri-HSCT MRD independent prognostic factor | No | NA |
|
Zappasodi et al., 2018 [64] | 201 Yes/4 alloHSCT | NA | MRD negativity at any time, during or after the end of 1st line treatment | NA | No | NA |
|
Delsing Malmberg et al., 2018 [65] | -/29 alloHSCT | 0.02% | pre and post-HSCT | MRD was an independent risk factor associated with clinical outcome | No | 4.5 months (3.5–11) for MRD+; 7.7 months (7–32) for MRD-cases |
|
Kapp-Schwoerer et al., 2018 [66] | 611 Yes/162 alloHSCT | 2% | post two CHT cycles (BM) | NPM1 MRD negativity associated with lower relapse rate and better OS independent of DNMT3A and FLT3-ITD mutations | No | NA |
|
Caprioli et al., 2018 [67] | -/27 alloHSCT | 0.01% | pre-alloHSCT | NA | No | NA |
|
Patkar et al., 2018 [68] | 83 Yes/- | 1-log cut-off between post induction and post consolidation | post induction and post consolidation | NGS-MRD for NPM1 mutations as the most independent prognostic factor | No | NA |
|
Onecha et al., 2018 [69] | 50 Yes/7 alloHSCT | 0.1% post induction/0.025% post consolidation | post induction and post consolidation | Higher risk of death in subjects with advanced age, MRD+ status or with FLT3-ITD | No | NA |
|
Petrova et al., 2018 [70] | 22 Yes/NA | NA | NA | NPM1 mutation MRD more sensitive than IDH1/2-based MRD | NA | NA |
|
Prata et al., 2018 [71] | 0/0 (34 patients received upfront therapy with HMA) | NA | >3 log NPM1 MRD reduction observed in 4/6 patients after 6 cycles, but three of them relapsed within <6 months of this reduction. | No factors, including type of HMA, FLT3 and IDH1/2 status, were prognostic of response or survival | NA | NA |
|
Ottone et al., 2018 [72] | 177 Yes/NA | NA | NA | Evaluation of correlation with DNMT3A and FLT3 mutations | NA | NA |
|
Gaksch et al., 2018 [73] | 34 Yes/- | VAF <0.5% | After at least one consolidation cycle | In multivariate analysis including age, leukocyte count and genetic risk, residual disease positivity remained statistically significant as an adverse factor for RFS | NA | NA |
|
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Forghieri, F.; Comoli, P.; Marasca, R.; Potenza, L.; Luppi, M. Minimal/Measurable Residual Disease Monitoring in NPM1-Mutated Acute Myeloid Leukemia: A Clinical Viewpoint and Perspectives. Int. J. Mol. Sci. 2018, 19, 3492. https://doi.org/10.3390/ijms19113492
Forghieri F, Comoli P, Marasca R, Potenza L, Luppi M. Minimal/Measurable Residual Disease Monitoring in NPM1-Mutated Acute Myeloid Leukemia: A Clinical Viewpoint and Perspectives. International Journal of Molecular Sciences. 2018; 19(11):3492. https://doi.org/10.3390/ijms19113492
Chicago/Turabian StyleForghieri, Fabio, Patrizia Comoli, Roberto Marasca, Leonardo Potenza, and Mario Luppi. 2018. "Minimal/Measurable Residual Disease Monitoring in NPM1-Mutated Acute Myeloid Leukemia: A Clinical Viewpoint and Perspectives" International Journal of Molecular Sciences 19, no. 11: 3492. https://doi.org/10.3390/ijms19113492
APA StyleForghieri, F., Comoli, P., Marasca, R., Potenza, L., & Luppi, M. (2018). Minimal/Measurable Residual Disease Monitoring in NPM1-Mutated Acute Myeloid Leukemia: A Clinical Viewpoint and Perspectives. International Journal of Molecular Sciences, 19(11), 3492. https://doi.org/10.3390/ijms19113492