One Major Challenge of Sequencing Large Plant Genomes Is to Know How Big They Really Are
Abstract
:1. Introduction
2. Estimation of Genome Size
3. Standardization
4. The Human Genome as a Universal Reference Standard
5. Sizing the Large Triticeae Genomes
6. Completeness of the Current Triticeae Reference Genome Assemblies
7. Concluding Remarks and Recommendations
8. Materials and Methods
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- He, K.; Lin, K.; Wang, G.; Li, F. Genome sizes of nine insect species determined by flow cytometry and k-mer analysis. Front Physiol. 2016, 7, 569. [Google Scholar] [CrossRef] [PubMed]
- Sun, H.; Ding, J.; Piednoël, M.; Schneeberger, K. findGSE: Estimating genome size variation within human and Arabidopsis using k-mer frequencies. Bioinformatics 2018, 34, 550–557. [Google Scholar] [CrossRef] [PubMed]
- International Wheat Genome Sequencing Consortium. Shifting the limits in wheat research and breeding using a fully annotated reference genome. Science 2018, 361, eaar7191. [Google Scholar] [CrossRef] [PubMed]
- Van’t Hof, J. Cell population kinetics of excised roots of Pisum sativum. J. Cell Biol. 1965, 27, 179–189. [Google Scholar] [CrossRef] [PubMed]
- Doležel, J.; Bartoš, J. Plant DNA flow cytometry and estimation of nuclear genome size. Ann. Bot. 2005, 95, 99–110. [Google Scholar] [CrossRef] [PubMed]
- Swift, H. The constancy of desoxyribose nucleic acid in plant nuclei. Proc. Natl. Acad. Sci. USA 1950, 36, 643–654. [Google Scholar] [CrossRef] [PubMed]
- Greilhuber, J.; Doležel, J.; Lysák, M.A.; Bennett, M.D. The origin, evolution and proposed stabilization of the terms ‘genome size’, and ‘C-value’ to describe nuclear DNA contents. Ann. Bot. 2005, 95, 255–260. [Google Scholar] [CrossRef] [PubMed]
- Doležel, J.; Greilhuber, J.; Suda, J. Estimation of nuclear DNA content in plants using flow cytometry. Nat. Protoc. 2007, 2, 2233–2244. [Google Scholar] [CrossRef] [PubMed]
- Tiersch, T.R.; Chandler, R.W.; Wachtel, S.S.; Elias, S. Reference standards for flow cytometry and application in comparative studies of nuclear DNA content. Cytometry 1989, 10, 706–710. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shapiro, H.S. Deoxyribonucleic acid content per cell of various organisms. In Handbook of Biochemistry and Molecular Biology; Fasman, G.D., Ed.; CRC Press: Cleveland, OH, USA, 1976; Volume 2, pp. 284–306. [Google Scholar]
- Rasch, E.M.; Barr, H.J.; Rasch, R.W. The DNA content of sperm of Drosophila melanogaster. Chromosoma 1971, 33, 1–18. [Google Scholar] [CrossRef] [PubMed]
- Gregory, T.R. Animal Genome Size Database. 2005. Available online: http://www.genomesize.com (accessed on 25 October 2018).
- Doležel, J.; Greilhuber, J. Nuclear genome size: Are we getting closer? Cytometry 2010, 77, 635–642. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- International Human Genome Sequencing Consortium. Initial sequencing and analysis of the human genome. Nature 2001, 409, 860–921. [Google Scholar] [CrossRef] [PubMed]
- Venter, J.C.; Adams, M.D.; Myers, W.W.; Li, P.W.; Mural, R.J.; Sutton, G.G. The sequence of the human genome. Science 2001, 291, 1304–1351. [Google Scholar] [CrossRef] [PubMed]
- Seo, J.S.; Rhie, A.; Kim, J.; Lee, S.; Sohn, M.H.; Kim, C.U.; Hastie, A.; Cao, H.; Yun, J.Y.; Kim, J.; et al. De novo assembly and phasing of a Korean human genome. Nature 2016, 538, 243–247. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jain, M.; Koren, S.; Miga, K.H.; Quick, J.; Rand, A.C.; Sasani, T.A.; Tyson, J.R.; Beggs, A.D.; Dilthey, A.T.; Fiddes, I.T.; et al. Nanopore sequencing and assembly of a human genome with ultra-long reads. Nat. Biotechnol. 2018, 36, 338–345. [Google Scholar] [CrossRef] [PubMed]
- Doležel, J.; Bartoš, J.; Voglmayr, H.; Greilhuber, J. Nuclear DNA content and genome size of trout and human. Cytometry 2003, 51, 127–128. [Google Scholar] [CrossRef] [PubMed]
- Doležel, J.; Greilhuber, J.; Lucretti, S.; Meister, A.; Lysák, M.A.; Nardi, L.; Obermayer, R. Plant genome size estimation by flow cytometry: Inter-laboratory comparison. Ann. Bot. 1998, 82, 17–26. [Google Scholar] [CrossRef]
- Praca-Fontes, M.M.; Carvalho, C.R.; Clarindo, W.R.; Cruz, C.D. Revisiting the DNA C-values of the genome size-standards used in plant flow cytometry to choose the “best primary standards”. Plant Cell Rep. 2011, 30, 1183–1191. [Google Scholar] [CrossRef] [PubMed]
- Mascher, M.; Gundlach, H.; Himmelbach, A.; Beier, S.; Twardziok, S.O.; Wicker, T.; Radchuk, V.; Dockter, C.; Hedley, P.E.; Russell, J.; et al. A chromosome conformation capture ordered sequence of the barley genome. Nature 2017, 544, 427–433. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Avni, R.; Nave, M.; Barad, O.; Baruch, K.; Twardziok, S.O.; Gundlach, H.; Hale, I.; Mascher, M.; Spannagl, M.; Wiebe, K.; et al. Wild emmer genome architecture and diversity elucidate wheat evolution and domestication. Science 2017, 357, 93–97. [Google Scholar] [CrossRef] [PubMed]
- Doležel, J.; Binarová, P.; Lucretti, S. Analysis of nuclear DNA content in plant cells by flow cytometry. Biol. Plant. 1989, 31, 113–120. [Google Scholar] [CrossRef]
Plant Species and Cultivar * | 2C DNA Content (pg DNA) ** |
---|---|
Raphanus sativus L. ‘Saxa’ | 1.11 |
Solanum lycopersicum L. ‘Stupické polní rané’ | 1.96 |
Glycine max Merr. ‘Polanka’ | 2.50 |
Zea mays L. ‘CE-777’ | 5.43 |
Pisum sativum L. ‘Ctirad’ | 9.09 |
Secale cereale L. ‘Daňkovské’ | 16.19 |
Vicia faba L. ‘Inovec’ | 26.90 |
Allium cepa L. ‘Alice’ | 34.89 |
Species and Genotype | 2C Nuclear DNA Content (pg) * | Reference Standard | |
---|---|---|---|
Mean | ± SD | ||
Triticum aestivum cv. Chinese Spring | 33.91 | 0.27 | Secale cereale cv. Daňkovské |
Triticum dicoccoides cv. Zavitan | 25.11 | 0.16 | Secale cereale cv. Daňkovské |
Hordeum vulgare cv. Morex | 10.31 | 0.09 | Secale cereale cv. Daňkovské |
Secale cereale inbred line Lo7 | 15.95 | 0.11 | Pisum sativum cv. Ctirad |
Species | Reference Genome Assembly (Gbp) * | Flow Cytometric Estimation of 1C Genome Size ** | |||
---|---|---|---|---|---|
GRCh38.12 | [9] | ||||
Genome Size (Gbp) | Assembly Coverage (%) | Genome size (Gbp) | Assembly Coverage (%) | ||
H. vulgare | 4.79 | 4.88 | 98 | 5.04 | 95 |
S. cereale | 6.67 | 7.42 | 90 | 7.80 | 86 |
T. dicoccoides | 10.50 | 11.87 | 88 | 12.28 | 85 |
T. aestivum | 14.50 | 16.03 | 90 *** | 16.58 | 87 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Doležel, J.; Čížková, J.; Šimková, H.; Bartoš, J. One Major Challenge of Sequencing Large Plant Genomes Is to Know How Big They Really Are. Int. J. Mol. Sci. 2018, 19, 3554. https://doi.org/10.3390/ijms19113554
Doležel J, Čížková J, Šimková H, Bartoš J. One Major Challenge of Sequencing Large Plant Genomes Is to Know How Big They Really Are. International Journal of Molecular Sciences. 2018; 19(11):3554. https://doi.org/10.3390/ijms19113554
Chicago/Turabian StyleDoležel, Jaroslav, Jana Čížková, Hana Šimková, and Jan Bartoš. 2018. "One Major Challenge of Sequencing Large Plant Genomes Is to Know How Big They Really Are" International Journal of Molecular Sciences 19, no. 11: 3554. https://doi.org/10.3390/ijms19113554
APA StyleDoležel, J., Čížková, J., Šimková, H., & Bartoš, J. (2018). One Major Challenge of Sequencing Large Plant Genomes Is to Know How Big They Really Are. International Journal of Molecular Sciences, 19(11), 3554. https://doi.org/10.3390/ijms19113554