Alterations of Expression of the Serotonin 5-HT4 Receptor in Brain Disorders
Abstract
:1. Introduction
2. Promoter Studies and Transcript Variants
3. SNPs in Non-Coding Regions
4. Isoforms and Alternative Splicing
5. Post-Translational Regulation
5.1. Phosphorylation
5.2. Palmitoylation
5.3. Glycosylation
6. Basal Expression
6.1. Transcript Level
6.2. Protein Level
7. Changes in Expression in Brain Disorders and Changes Induced by Drug Treatment
7.1. Depression and Anxiety
7.2. Food Intake and Obesity
7.3. Memory and Alzheimer’s Disease
7.4. Schizophrenia
7.5. Parkinson’s Disease
8. Other Proteins Affecting 5-HT4R Signaling
8.1. SERT (5-HTT)
8.2. Adaptor Protein p11
8.3. CK2
8.4. Testosterone
8.5. Nav1.7
9. Conclusions
Conflicts of Interest
References
- Palacios, J.M. Serotonin receptors in brain revisited. Brain Res 1645. [Google Scholar] [CrossRef] [PubMed]
- Riad, M.; Garcia, S.; Watkins, K.C.; Jodoin, N.; Doucet, E.; Langlois, X.; el Mestikawy, S.; Hamon, M.; Descarries, L. Somatodendritic localization of 5-ht1a and preterminal axonal localization of 5-ht1b serotonin receptors in adult rat brain. J. Comp. Neurol. 2000, 417, 181–194. [Google Scholar] [CrossRef]
- Lerer, B.; Macciardi, F.; Segman, R.H.; Adolfsson, R.; Blackwood, D.; Blairy, S.; Del Favero, J.; Dikeos, D.G.; Kaneva, R.; Lilli, R.; et al. Variability of 5-ht2c receptor cys23ser polymorphism among european populations and vulnerability to affective disorder. Mol. Psychiatry 2001, 6, 579–585. [Google Scholar] [CrossRef] [PubMed]
- Tecott, L.H.; Sun, L.M.; Akana, S.F.; Strack, A.M.; Lowenstein, D.H.; Dallman, M.F.; Julius, D. Eating disorder and epilepsy in mice lacking 5-ht2c serotonin receptors. Nature 1995, 374, 542–546. [Google Scholar] [CrossRef] [PubMed]
- Vollenweider, F.X.; Kometer, M. The neurobiology of psychedelic drugs: Implications for the treatment of mood disorders. Nat. Rev. Neurosci. 2010, 11, 642–651. [Google Scholar] [CrossRef] [PubMed]
- Hannon, J.; Hoyer, D. Molecular biology of 5-ht receptors. Behav. Brain Res. 2008, 195, 198–213. [Google Scholar] [CrossRef] [PubMed]
- Dumuis, A.; Bouhelal, R.; Sebben, M.; Cory, R.; Bockaert, J. A nonclassical 5-hydroxytryptamine receptor positively coupled with adenylate cyclase in the central nervous system. Mol. Pharmacol. 1988, 34, 880–887. [Google Scholar] [PubMed]
- Gerald, C.; Adham, N.; Kao, H.T.; Olsen, M.A.; Laz, T.M.; Schechter, L.E.; Bard, J.A.; Vaysse, P.J.; Hartig, P.R.; Branchek, T.A.; et al. The 5-ht4 receptor: Molecular cloning and pharmacological characterization of two splice variants. EMBO J. 1995, 14, 2806–2815. [Google Scholar] [CrossRef] [PubMed]
- Claeysen, S.; Sebben, M.; Journot, L.; Bockaert, J.; Dumuis, A. Cloning, expression and pharmacology of the mouse 5-ht(4l) receptor. FEBS Lett. 1996, 398, 19–25. [Google Scholar] [CrossRef]
- Bonaventure, P.; Hall, H.; Gommeren, W.; Cras, P.; Langlois, X.; Jurzak, M.; Leysen, J.E. Mapping of serotonin 5-ht(4) receptor mrna and ligand binding sites in the post-mortem human brain. Synapse 2000, 36, 35–46. [Google Scholar] [CrossRef]
- Compan, V.; Daszuta, A.; Salin, P.; Sebben, M.; Bockaert, J.; Dumuis, A. Lesion study of the distribution of serotonin 5-ht4 receptors in rat basal ganglia and hippocampus. Eur. J. Neurosci. 1996, 8, 2591–2598. [Google Scholar] [CrossRef] [PubMed]
- Tonini, M.; Pace, F. Drugs acting on serotonin receptors for the treatment of functional gi disorders. Dig. Dis. 2006, 24, 59–69. [Google Scholar] [CrossRef] [PubMed]
- Hegde, S.S.; Wong, A.G.; Perry, M.R.; Ku, P.; Moy, T.M.; Loeb, M.; Eglen, R.M. 5-ht4 receptor mediated stimulation of gastric emptying in rats. Naunyn-Schmiedebergs Arch. Pharmacol. 1995, 351, 589–595. [Google Scholar] [CrossRef] [PubMed]
- Callahan, M.J. Irritable bowel syndrome neuropharmacology. A review of approved and investigational compounds. J. Clin. Gastroenterol. 2002, 35, S58–S67. [Google Scholar] [CrossRef] [PubMed]
- Qvigstad, E.; Brattelid, T.; Sjaastad, I.; Andressen, K.W.; Krobert, K.A.; Birkeland, J.A.; Sejersted, O.M.; Kaumann, A.J.; Skomedal, T.; Osnes, J.B.; et al. Appearance of a ventricular 5-ht4 receptor-mediated inotropic response to serotonin in heart failure. Cardiovasc. Res. 2005, 65, 869–878. [Google Scholar] [CrossRef] [PubMed]
- Maillet, M.; Gastineau, M.; Bochet, P.; Asselin-Labat, M.L.; Morel, E.; Laverriere, J.N.; Lompre, A.M.; Fischmeister, R.; Lezoualc’h, F. Functional studies of the 5′-untranslated region of human 5-ht4 receptor mrna. Biochem. J. 2005, 387, 463–471. [Google Scholar] [CrossRef] [PubMed]
- Cartier, D.; Lihrmann, I.; Parmentier, F.; Bastard, C.; Bertherat, J.; Caron, P.; Kuhn, J.M.; Lacroix, A.; Tabarin, A.; Young, J.; et al. Overexpression of serotonin4 receptors in cisapride-responsive adrenocorticotropin-independent bilateral macronodular adrenal hyperplasia causing cushing’s syndrome. J. Clin. Endocrinol. Metab. 2003, 88, 248–254. [Google Scholar] [CrossRef] [PubMed]
- Bockaert, J.; Claeysen, S.; Compan, V.; Dumuis, A. 5-ht4 receptors. Curr. Drug Targets CNS Neurol. Disord. 2004, 3, 39–51. [Google Scholar] [CrossRef] [PubMed]
- Barthet, G.; Gaven, F.; Framery, B.; Shinjo, K.; Nakamura, T.; Claeysen, S.; Bockaert, J.; Dumuis, A. Uncoupling and endocytosis of 5-hydroxytryptamine 4 receptors. Distinct molecular events with different grk2 requirements. J. Biol. Chem. 2005, 280, 27924–27934. [Google Scholar] [CrossRef] [PubMed]
- Barthet, G.; Framery, B.; Gaven, F.; Pellissier, L.; Reiter, E.; Claeysen, S.; Bockaert, J.; Dumuis, A. 5-hydroxytryptamine 4 receptor activation of the extracellular signal-regulated kinase pathway depends on src activation but not on g protein or beta-arrestin signaling. Mol. Biol. Cell 2007, 18, 1979–1991. [Google Scholar] [CrossRef] [PubMed]
- Compan, V.; Zhou, M.; Grailhe, R.; Gazzara, R.A.; Martin, R.; Gingrich, J.; Dumuis, A.; Brunner, D.; Bockaert, J.; Hen, R. Attenuated response to stress and novelty and hypersensitivity to seizures in 5-ht4 receptor knock-out mice. J. Neurosci. 2004, 24, 412–419. [Google Scholar] [CrossRef] [PubMed]
- Jean, A.; Laurent, L.; Delaunay, S.; Doly, S.; Dusticier, N.; Linden, D.; Neve, R.; Maroteaux, L.; Nieoullon, A.; Compan, V. Adaptive control of dorsal raphe by 5-ht4 in the prefrontal cortex prevents persistent hypophagia following stress. Cell Rep. 2017, 21, 901–909. [Google Scholar] [CrossRef] [PubMed]
- Jean, A.; Laurent, L.; Bockaert, J.; Charnay, Y.; Dusticier, N.; Nieoullon, A.; Barrot, M.; Neve, R.; Compan, V. The nucleus accumbens 5-htr(4)-cart pathway ties anorexia to hyperactivity. Transl. Psychiatry 2012, 2, e203. [Google Scholar] [CrossRef] [PubMed]
- Consolo, S.; Arnaboldi, S.; Giorgi, S.; Russi, G.; Ladinsky, H. 5-ht4 receptor stimulation facilitates acetylcholine release in rat frontal cortex. Neuroreport 1994, 5, 1230–1232. [Google Scholar] [CrossRef] [PubMed]
- Siniscalchi, A.; Badini, I.; Beani, L.; Bianchi, C. 5-ht4 receptor modulation of acetylcholine outflow in guinea pig brain slices. Neuroreport 1999, 10, 547–551. [Google Scholar] [CrossRef] [PubMed]
- Bijak, M.; Misgeld, U. Effects of serotonin through serotonin1a and serotonin4 receptors on inhibition in the guinea-pig dentate gyrus in vitro. Neuroscience 1997, 78, 1017–1026. [Google Scholar] [CrossRef]
- Meneses, A.; Hong, E. Effects of 5-ht4 receptor agonists and antagonists in learning. Pharmacol. Biochem. Behav. 1997, 56, 347–351. [Google Scholar] [CrossRef]
- Fontana, D.J.; Daniels, S.E.; Wong, E.H.; Clark, R.D.; Eglen, R.M. The effects of novel, selective 5-hydroxytryptamine (5-ht)4 receptor ligands in rat spatial navigation. Neuropharmacology 1997, 36, 689–696. [Google Scholar] [CrossRef]
- Mohler, E.G.; Shacham, S.; Noiman, S.; Lezoualc’h, F.; Robert, S.; Gastineau, M.; Rutkowski, J.; Marantz, Y.; Dumuis, A.; Bockaert, J.; et al. Vrx-03011, a novel 5-ht4 agonist, enhances memory and hippocampal acetylcholine efflux. Neuropharmacology 2007, 53, 563–573. [Google Scholar] [CrossRef] [PubMed]
- Quiedeville, A.; Boulouard, M.; Hamidouche, K.; Da Silva Costa-Aze, V.; Nee, G.; Rochais, C.; Dallemagne, P.; Fabis, F.; Freret, T.; Bouet, V. Chronic activation of 5-ht4 receptors or blockade of 5-ht6 receptors improve memory performances. Behav. Brain Res. 2015, 293, 10–17. [Google Scholar] [CrossRef] [PubMed]
- Marchetti, E.; Jacquet, M.; Escoffier, G.; Miglioratti, M.; Dumuis, A.; Bockaert, J.; Roman, F.S. Enhancement of reference memory in aged rats by specific activation of 5-ht(4) receptors using an olfactory associative discrimination task. Brain Res. 2011, 1405, 49–56. [Google Scholar] [CrossRef] [PubMed]
- Letty, S.; Child, R.; Dumuis, A.; Pantaloni, A.; Bockaert, J.; Rondouin, G. 5-ht4 receptors improve social olfactory memory in the rat. Neuropharmacology 1997, 36, 681–687. [Google Scholar] [CrossRef]
- Lelong, V.; Dauphin, F.; Boulouard, M. Rs 67333 and d-cycloserine accelerate learning acquisition in the rat. Neuropharmacology 2001, 41, 517–522. [Google Scholar] [CrossRef]
- Lamirault, L.; Simon, H. Enhancement of place and object recognition memory in young adult and old rats by rs 67333, a partial agonist of 5-ht4 receptors. Neuropharmacology 2001, 41, 844–853. [Google Scholar] [CrossRef]
- Marchetti, E.; Dumuis, A.; Bockaert, J.; Soumireu-Mourat, B.; Roman, F.S. Differential modulation of the 5-ht(4) receptor agonists and antagonist on rat learning and memory. Neuropharmacology 2000, 39, 2017–2027. [Google Scholar] [CrossRef]
- Galeotti, N.; Ghelardini, C.; Bartolini, A. Role of 5-ht4 receptors in the mouse passive avoidance test. J. Pharmacol. Exp. Ther. 1998, 286, 1115–1121. [Google Scholar] [PubMed]
- Restivo, L.; Roman, F.; Dumuis, A.; Bockaert, J.; Marchetti, E.; Ammassari-Teule, M. The promnesic effect of g-protein-coupled 5-ht4 receptors activation is mediated by a potentiation of learning-induced spine growth in the mouse hippocampus. Neuropsychopharmacology 2008, 33, 2427–2434. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Yung, K.K.; Chan, Y.S.; Yung, W.H. 5-ht excites globus pallidus neurons by multiple receptor mechanisms. Neuroscience 2008, 151, 439–451. [Google Scholar] [CrossRef] [PubMed]
- Bianchi, C.; Rodi, D.; Marino, S.; Beani, L.; Siniscalchi, A. Dual effects of 5-ht4 receptor activation on gaba release from guinea pig hippocampal slices. Neuroreport 2002, 13, 2177–2180. [Google Scholar] [CrossRef] [PubMed]
- Bonhomme, N.; De Deurwaerdere, P.; Le Moal, M.; Spampinato, U. Evidence for 5-ht4 receptor subtype involvement in the enhancement of striatal dopamine release induced by serotonin: A microdialysis study in the halothane-anesthetized rat. Neuropharmacology 1995, 34, 269–279. [Google Scholar] [CrossRef]
- Lucas, G.; Di Matteo, V.; De Deurwaerdere, P.; Porras, G.; Martin-Ruiz, R.; Artigas, F.; Esposito, E.; Spampinato, U. Neurochemical and electrophysiological evidence that 5-ht4 receptors exert a state-dependent facilitatory control in vivo on nigrostriatal, but not mesoaccumbal, dopaminergic function. Eur. J. Neurosci. 2001, 13, 889–898. [Google Scholar] [CrossRef] [PubMed]
- Navailles, S.; Di Giovanni, G.; De Deurwaerdere, P. The 5-ht4 agonist prucalopride stimulates l-dopa-induced dopamine release in restricted brain regions of the hemiparkinsonian rat in vivo. CNS Neurosci. Ther. 2015, 21, 745–747. [Google Scholar] [CrossRef] [PubMed]
- Conductier, G.; Dusticier, N.; Lucas, G.; Cote, F.; Debonnel, G.; Daszuta, A.; Dumuis, A.; Nieoullon, A.; Hen, R.; Bockaert, J.; et al. Adaptive changes in serotonin neurons of the raphe nuclei in 5-ht(4) receptor knock-out mouse. Eur. J. Neurosci. 2006, 24, 1053–1062. [Google Scholar] [CrossRef] [PubMed]
- Lucas, G.; Compan, V.; Charnay, Y.; Neve, R.L.; Nestler, E.J.; Bockaert, J.; Barrot, M.; Debonnel, G. Frontocortical 5-ht4 receptors exert positive feedback on serotonergic activity: Viral transfections, subacute and chronic treatments with 5-ht4 agonists. Biol. Psychiatry 2005, 57, 918–925. [Google Scholar] [CrossRef] [PubMed]
- Covington, H.E., 3rd; Lobo, M.K.; Maze, I.; Vialou, V.; Hyman, J.M.; Zaman, S.; LaPlant, Q.; Mouzon, E.; Ghose, S.; Tamminga, C.A.; et al. Antidepressant effect of optogenetic stimulation of the medial prefrontal cortex. J. Neurosci. 2010, 30, 16082–16090. [Google Scholar] [CrossRef] [PubMed]
- Castello, J.; LeFrancois, B.; Flajolet, M.; Greengard, P.; Friedman, E.; Rebholz, H. Ck2 regulates 5-ht4 receptor signaling and modulates depressive-like behavior. Mol. Psychiatry 2018, 23, 872–882. [Google Scholar] [CrossRef] [PubMed]
- Kennett, G.A.; Bright, F.; Trail, B.; Blackburn, T.P.; Sanger, G.J. Anxiolytic-like actions of the selective 5-ht4 receptor antagonists sb 204070a and sb 207266a in rats. Neuropharmacology 1997, 36, 707–712. [Google Scholar] [CrossRef]
- Lucas, G.; Rymar, V.V.; Du, J.; Mnie-Filali, O.; Bisgaard, C.; Manta, S.; Lambas-Senas, L.; Wiborg, O.; Haddjeri, N.; Pineyro, G.; et al. Serotonin(4) (5-ht(4)) receptor agonists are putative antidepressants with a rapid onset of action. Neuron 2007, 55, 712–725. [Google Scholar] [CrossRef] [PubMed]
- Hiroi, T.; Hayashi-Kobayashi, N.; Nagumo, S.; Ino, M.; Okawa, Y.; Aoba, A.; Matsui, H. Identification and characterization of the human serotonin-4 receptor gene promoter. Biochem. Biophys. Res. Commun. 2001, 289, 337–344. [Google Scholar] [CrossRef] [PubMed]
- Wohlfarth, C.; Schmitteckert, S.; Hartle, J.D.; Houghton, L.A.; Dweep, H.; Fortea, M.; Assadi, G.; Braun, A.; Mederer, T.; Pohner, S.; et al. Mir-16 and mir-103 impact 5-ht4 receptor signalling and correlate with symptom profile in irritable bowel syndrome. Sci. Rep. 2017, 7, 14680. [Google Scholar] [CrossRef] [PubMed]
- Bai, M.; Zhu, X.Z.; Zhang, Y.; Zhang, S.; Zhang, L.; Xue, L.; Zhong, M.; Zhang, X. Anhedonia was associated with the dysregulation of hippocampal htr4 and microrna let-7a in rats. Physiol. Behav. 2014, 129, 135–141. [Google Scholar] [CrossRef] [PubMed]
- Hancock, D.B.; Eijgelsheim, M.; Wilk, J.B.; Gharib, S.A.; Loehr, L.R.; Marciante, K.D.; Franceschini, N.; van Durme, Y.M.; Chen, T.H.; Barr, R.G.; et al. Meta-analyses of genome-wide association studies identify multiple loci associated with pulmonary function. Nat. Genet. 2010, 42, 45–52. [Google Scholar] [CrossRef] [PubMed]
- Wilk, J.B.; Shrine, N.R.; Loehr, L.R.; Zhao, J.H.; Manichaikul, A.; Lopez, L.M.; Smith, A.V.; Heckbert, S.R.; Smolonska, J.; Tang, W.; et al. Genome-wide association studies identify chrna5/3 and htr4 in the development of airflow obstruction. Am. J. Respir. Crit. Care Med. 2012, 186, 622–632. [Google Scholar] [CrossRef] [PubMed]
- Soler Artigas, M.; Loth, D.W.; Wain, L.V.; Gharib, S.A.; Obeidat, M.; Tang, W.; Zhai, G.; Zhao, J.H.; Smith, A.V.; Huffman, J.E.; et al. Genome-wide association and large-scale follow up identifies 16 new loci influencing lung function. Nat. Genet. 2011, 43, 1082–1090. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- House, J.S.; Li, H.; DeGraff, L.M.; Flake, G.; Zeldin, D.C.; London, S.J. Genetic variation in htr4 and lung function: Gwas follow-up in mouse. FASEB J. 2015, 29, 323–335. [Google Scholar] [CrossRef] [PubMed]
- Blondel, O.; Gastineau, M.; Langlois, M.; Fischmeister, R. The 5-ht4 receptor antagonist ml10375 inhibits the constitutive activity of human 5-ht4(c) receptor. Br. J. Pharmacol. 1998, 125, 595–597. [Google Scholar] [CrossRef] [PubMed]
- Brattelid, T.; Kvingedal, A.M.; Krobert, K.A.; Andressen, K.W.; Bach, T.; Hystad, M.E.; Kaumann, A.J.; Levy, F.O. Cloning, pharmacological characterisation and tissue distribution of a novel 5-ht4 receptor splice variant, 5-ht4(i). Naunyn-Schmiedebergs Arch. Pharmacol. 2004, 369, 616–628. [Google Scholar] [CrossRef] [PubMed]
- Coupar, I.M.; Desmond, P.V.; Irving, H.R. Human 5-ht(4) and 5-ht(7) receptor splice variants: Are they important? Curr. Neuropharmacol. 2007, 5, 224–231. [Google Scholar] [CrossRef] [PubMed]
- Ray, A.M.; Kelsell, R.E.; Houp, J.A.; Kelly, F.M.; Medhurst, A.D.; Cox, H.M.; Calver, A.R. Identification of a novel 5-ht(4) receptor splice variant (r5-ht(4c1)) and preliminary characterisation of specific 5-ht(4a) and 5-ht(4b) receptor antibodies. Eur. J. Pharmacol. 2009, 604, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Bender, E.; Pindon, A.; van Oers, I.; Zhang, Y.B.; Gommeren, W.; Verhasselt, P.; Jurzak, M.; Leysen, J.; Luyten, W. Structure of the human serotonin 5-ht4 receptor gene and cloning of a novel 5-ht4 splice variant. J. Neurochem. 2000, 74, 478–489. [Google Scholar] [CrossRef] [PubMed]
- Vilaro, M.T.; Domenech, T.; Palacios, J.M.; Mengod, G. Cloning and characterization of a novel human 5-ht4 receptor variant that lacks the alternatively spliced carboxy terminal exon. Rt-pcr distribution in human brain and periphery of multiple 5-ht4 receptor variants. Neuropharmacology 2002, 42, 60–73. [Google Scholar] [CrossRef]
- Vilaro, M.T.; Cortes, R.; Mengod, G. Serotonin 5-ht4 receptors and their mrnas in rat and guinea pig brain: Distribution and effects of neurotoxic lesions. J. Comp. Neurol. 2005, 484, 418–439. [Google Scholar] [CrossRef] [PubMed]
- Claeysen, S.; Faye, P.; Sebben, M.; Taviaux, S.; Bockaert, J.; Dumuis, A. 5-ht4 receptors: Cloning and expression of new splice variants. Ann. N. Y. Acad. Sci. 1998, 861, 49–56. [Google Scholar] [CrossRef] [PubMed]
- Kaizuka, T.; Hayashi, T. Comparative analysis of palmitoylation sites of serotonin (5-ht) receptors in vertebrates. Neuropsychopharmacol. Rep. 2018, 38, 75–85. [Google Scholar] [CrossRef] [PubMed]
- Vilaro, M.T.; Cortes, R.; Gerald, C.; Branchek, T.A.; Palacios, J.M.; Mengod, G. Localization of 5-ht4 receptor mrna in rat brain by in situ hybridization histochemistry. Mol. Brain Res. 1996, 43, 356–360. [Google Scholar] [CrossRef]
- Claeysen, S.; Sebben, M.; Becamel, C.; Bockaert, J.; Dumuis, A. Novel brain-specific 5-ht4 receptor splice variants show marked constitutive activity: Role of the c-terminal intracellular domain. Mol. Pharmacol. 1999, 55, 910–920. [Google Scholar] [PubMed]
- Joubert, L.; Hanson, B.; Barthet, G.; Sebben, M.; Claeysen, S.; Hong, W.; Marin, P.; Dumuis, A.; Bockaert, J. New sorting nexin (snx27) and nherf specifically interact with the 5-ht4a receptor splice variant: Roles in receptor targeting. J. Cell Sci. 2004, 117, 5367–5379. [Google Scholar] [CrossRef] [PubMed]
- Pindon, A.; Van Hecke, G.; Josson, K.; Van Gompel, P.; Lesage, A.; Leysen, J.E.; Jurzak, M. Internalization of human 5-ht4a and 5-ht4b receptors is splice variant dependent. Biosci. Rep. 2004, 24, 215–223. [Google Scholar] [CrossRef] [PubMed]
- Pindon, A.; van Hecke, G.; van Gompel, P.; Lesage, A.S.; Leysen, J.E.; Jurzak, M. Differences in signal transduction of two 5-ht4 receptor splice variants: Compound specificity and dual coupling with galphas- and galphai/o-proteins. Mol. Pharmacol. 2002, 61, 85–96. [Google Scholar] [CrossRef] [PubMed]
- Benovic, J.L.; Strasser, R.H.; Caron, M.G.; Lefkowitz, R.J. Beta-adrenergic receptor kinase: Identification of a novel protein kinase that phosphorylates the agonist-occupied form of the receptor. Proc. Natl. Acad. Sci. USA 1986, 83, 2797–2801. [Google Scholar] [CrossRef] [PubMed]
- Lohse, M.J.; Benovic, J.L.; Codina, J.; Caron, M.G.; Lefkowitz, R.J. Beta-arrestin: A protein that regulates beta-adrenergic receptor function. Science 1990, 248, 1547–1550. [Google Scholar] [CrossRef] [PubMed]
- Krupnick, J.G.; Benovic, J.L. The role of receptor kinases and arrestins in g protein-coupled receptor regulation. Annu. Rev. Pharmacol. Toxicol. 1998, 38, 289–319. [Google Scholar] [CrossRef] [PubMed]
- Pitcher, J.A.; Freedman, N.J.; Lefkowitz, R.J. G protein-coupled receptor kinases. Annu. Rev. Biochem. 1998, 67, 653–692. [Google Scholar] [CrossRef] [PubMed]
- Stadel, J.M.; Strulovici, B.; Nambi, P.; Lavin, T.N.; Briggs, M.M.; Caron, M.G.; Lefkowitz, R.J. Desensitization of the beta-adrenergic receptor of frog erythrocytes. Recovery and characterization of the down-regulated receptors in sequestered vesicles. J. Biol. Chem. 1983, 258, 3032–3038. [Google Scholar] [PubMed]
- Ferguson, S.S. Evolving concepts in g protein-coupled receptor endocytosis: The role in receptor desensitization and signaling. Pharmacol. Rev. 2001, 53, 1–24. [Google Scholar] [PubMed]
- Willets, J.M.; Mistry, R.; Nahorski, S.R.; Challiss, R.A. Specificity of g protein-coupled receptor kinase 6-mediated phosphorylation and regulation of single-cell m3 muscarinic acetylcholine receptor signaling. Mol. Pharmacol. 2003, 64, 1059–1068. [Google Scholar] [CrossRef] [PubMed]
- Salom, D.; Wang, B.; Dong, Z.; Sun, W.; Padayatti, P.; Jordan, S.; Salon, J.A.; Palczewski, K. Post-translational modifications of the serotonin type 4 receptor heterologously expressed in mouse rod cells. Biochemistry 2012, 51, 214–224. [Google Scholar] [CrossRef] [PubMed]
- Barthet, G.; Carrat, G.; Cassier, E.; Barker, B.; Gaven, F.; Pillot, M.; Framery, B.; Pellissier, L.P.; Augier, J.; Kang, D.S.; et al. Beta-arrestin1 phosphorylation by grk5 regulates g protein-independent 5-ht4 receptor signalling. EMBO J. 2009, 28, 2706–2718. [Google Scholar] [CrossRef] [PubMed]
- Ponimaskin, E.; Dumuis, A.; Gaven, F.; Barthet, G.; Heine, M.; Glebov, K.; Richter, D.W.; Oppermann, M. Palmitoylation of the 5-hydroxytryptamine4a receptor regulates receptor phosphorylation, desensitization, and beta-arrestin-mediated endocytosis. Mol. Pharmacol. 2005, 67, 1434–1443. [Google Scholar] [CrossRef] [PubMed]
- Ponimaskin, E.G.; Heine, M.; Joubert, L.; Sebben, M.; Bickmeyer, U.; Richter, D.W.; Dumuis, A. The 5-hydroxytryptamine(4a) receptor is palmitoylated at two different sites, and acylation is critically involved in regulation of receptor constitutive activity. J. Biol. Chem. 2002, 277, 2534–2546. [Google Scholar] [CrossRef] [PubMed]
- Penas-Cazorla, R.; Vilaro, M.T. Serotonin 5-ht4 receptors and forebrain cholinergic system: Receptor expression in identified cell populations. Brain Struct. Funct. 2015, 220, 3413–3434. [Google Scholar] [CrossRef] [PubMed]
- Domenech, T.; Beleta, J.; Fernandez, A.G.; Gristwood, R.W.; Cruz Sanchez, F.; Tolosa, E.; Palacios, J.M. Identification and characterization of serotonin 5-ht4 receptor binding sites in human brain: Comparison with other mammalian species. Mol. Brain Res. 1994, 21, 176–180. [Google Scholar] [CrossRef]
- Feng, J.; Cai, X.; Zhao, J.; Yan, Z. Serotonin receptors modulate gaba(a) receptor channels through activation of anchored protein kinase c in prefrontal cortical neurons. J. Neurosci. 2001, 21, 6502–6511. [Google Scholar] [CrossRef] [PubMed]
- Roychowdhury, S.; Haas, H.; Anderson, E.G. 5-ht1a and 5-ht4 receptor colocalization on hippocampal pyramidal cells. Neuropharmacology 1994, 33, 551–557. [Google Scholar] [CrossRef]
- Grossman, C.J.; Kilpatrick, G.J.; Bunce, K.T. Development of a radioligand binding assay for 5-ht4 receptors in guinea-pig and rat brain. Br. J. Pharmacol. 1993, 109, 618–624. [Google Scholar] [CrossRef] [PubMed]
- Waeber, C.; Sebben, M.; Grossman, C.; Javoy-Agid, F.; Bockaert, J.; Dumuis, A. [3h]-gr113808 labels 5-ht4 receptors in the human and guinea-pig brain. Neuroreport 1993, 4, 1239–1242. [Google Scholar] [CrossRef] [PubMed]
- Waeber, C.; Sebben, M.; Nieoullon, A.; Bockaert, J.; Dumuis, A. Regional distribution and ontogeny of 5-ht4 binding sites in rodent brain. Neuropharmacology 1994, 33, 527–541. [Google Scholar] [CrossRef]
- Mengod, G.; Vilaro, M.T.; Raurich, A.; Lopez-Gimenez, J.F.; Cortes, R.; Palacios, J.M. 5-ht receptors in mammalian brain: Receptor autoradiography and in situ hybridization studies of new ligands and newly identified receptors. Histochem. J. 1996, 28, 747–758. [Google Scholar] [CrossRef] [PubMed]
- Egeland, M.; Warner-Schmidt, J.; Greengard, P.; Svenningsson, P. Co-expression of serotonin 5-ht(1b) and 5-ht(4) receptors in p11 containing cells in cerebral cortex, hippocampus, caudate-putamen and cerebellum. Neuropharmacology 2011, 61, 442–450. [Google Scholar] [CrossRef] [PubMed]
- Imoto, Y.; Kira, T.; Sukeno, M.; Nishitani, N.; Nagayasu, K.; Nakagawa, T.; Kaneko, S.; Kobayashi, K.; Segi-Nishida, E. Role of the 5-ht4 receptor in chronic fluoxetine treatment-induced neurogenic activity and granule cell dematuration in the dentate gyrus. Mol. Brain 2015, 8, 29. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wong, E.H.; Reynolds, G.P.; Bonhaus, D.W.; Hsu, S.; Eglen, R.M. Characterization of [3h]gr 113808 binding to 5-ht4 receptors in brain tissues from patients with neurodegenerative disorders. Behav. Brain Res. 1996, 73, 249–252. [Google Scholar] [CrossRef]
- Varnas, K.; Halldin, C.; Pike, V.W.; Hall, H. Distribution of 5-ht4 receptors in the postmortem human brain--an autoradiographic study using [125i]sb 207710. Eur. Neuropsychopharmacol. 2003, 13, 228–234. [Google Scholar] [CrossRef]
- Madsen, K.; Haahr, M.T.; Marner, L.; Keller, S.H.; Baare, W.F.; Svarer, C.; Hasselbalch, S.G.; Knudsen, G.M. Age and sex effects on 5-ht(4) receptors in the human brain: A [(11)c]sb207145 pet study. J. Cereb. Blood Flow Metab. 2011, 31, 1475–1481. [Google Scholar] [CrossRef] [PubMed]
- Waeber, C.; Sebben, M.; Bockaert, J.; Dumuis, A. Regional distribution and ontogeny of 5-ht4 binding sites in rat brain. Behav. Brain Res. 1995, 73, 259–262. [Google Scholar] [CrossRef]
- Reynolds, G.P.; Mason, S.L.; Meldrum, A.; De Keczer, S.; Parnes, H.; Eglen, R.M.; Wong, E.H. 5-hydroxytryptamine (5-ht)4 receptors in post mortem human brain tissue: Distribution, pharmacology and effects of neurodegenerative diseases. Br. J. Pharmacol. 1995, 114, 993–998. [Google Scholar] [CrossRef] [PubMed]
- Rosel, P.; Arranz, B.; Urretavizcaya, M.; Oros, M.; San, L.; Navarro, M.A. Altered 5-ht2a and 5-ht4 postsynaptic receptors and their intracellular signalling systems ip3 and camp in brains from depressed violent suicide victims. Neuropsychobiology 2004, 49, 189–195. [Google Scholar] [CrossRef] [PubMed]
- Licht, C.L.; Kirkegaard, L.; Zueger, M.; Chourbaji, S.; Gass, P.; Aznar, S.; Knudsen, G.M. Changes in 5-ht4 receptor and 5-ht transporter binding in olfactory bulbectomized and glucocorticoid receptor heterozygous mice. Neurochem. Int. 2010, 56, 603–610. [Google Scholar] [CrossRef] [PubMed]
- Haahr, M.E.; Fisher, P.; Holst, K.; Madsen, K.; Jensen, C.G.; Marner, L.; Lehel, S.; Baare, W.; Knudsen, G.; Hasselbalch, S. The 5-ht4 receptor levels in hippocampus correlates inversely with memory test performance in humans. Hum. Brain Mapp. 2013, 34, 3066–3074. [Google Scholar] [CrossRef] [PubMed]
- Haahr, M.E.; Rasmussen, P.M.; Madsen, K.; Marner, L.; Ratner, C.; Gillings, N.; Baare, W.F.; Knudsen, G.M. Obesity is associated with high serotonin 4 receptor availability in the brain reward circuitry. Neuroimage 2012, 61, 884–888. [Google Scholar] [CrossRef] [PubMed]
- Licht, C.L.; Marcussen, A.B.; Wegener, G.; Overstreet, D.H.; Aznar, S.; Knudsen, G.M. The brain 5-ht4 receptor binding is down-regulated in the flinders sensitive line depression model and in response to paroxetine administration. J. Neurochem. 2009, 109, 1363–1374. [Google Scholar] [CrossRef] [PubMed]
- Vidal, R.; Valdizan, E.M.; Mostany, R.; Pazos, A.; Castro, E. Long-term treatment with fluoxetine induces desensitization of 5-ht4 receptor-dependent signalling and functionality in rat brain. J. Neurochem. 2009, 110, 1120–1127. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Manuel-Apolinar, L.; Rocha, L.; Pascoe, D.; Castillo, E.; Castillo, C.; Meneses, A. Modifications of 5-ht4 receptor expression in rat brain during memory consolidation. Brain Res. 2005, 1042, 73–81. [Google Scholar] [CrossRef] [PubMed]
- Ratner, C.; Ettrup, A.; Bueter, M.; Haahr, M.E.; Compan, V.; le Roux, C.W.; Levin, B.; Hansen, H.H.; Knudsen, G.M. Cerebral markers of the serotonergic system in rat models of obesity and after roux-en-y gastric bypass. Obesity 2012, 20, 2133–2141. [Google Scholar] [CrossRef] [PubMed]
- Heiman, M.; Heilbut, A.; Francardo, V.; Kulicke, R.; Fenster, R.J.; Kolaczyk, E.D.; Mesirov, J.P.; Surmeier, D.J.; Cenci, M.A.; Greengard, P. Molecular adaptations of striatal spiny projection neurons during levodopa-induced dyskinesia. Proc. Natl. Acad. Sci. USA 2014, 111, 4578–4583. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kudryavtseva, N.N.; Smagin, D.A.; Kovalenko, I.L.; Galyamina, A.G.; Vishnivetskaya, G.B.; Babenko, V.N.; Orlov, Y.L. serotonergic genes in the development of anxiety/depression-like state and pathology of aggressive behavior in male mice: Rna-seq data. Mol. Biol 2017, 51, 288–300. [Google Scholar] [CrossRef]
- Chen, A.; Kelley, L.D.; Janusonis, S. Effects of prenatal stress and monoaminergic perturbations on the expression of serotonin 5-ht(4) and adrenergic beta(2) receptors in the embryonic mouse telencephalon. Brain Res. 2012, 1459, 27–34. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, E.F.; Warner-Schmidt, J.L.; Otopalik, B.G.; Pickett, S.B.; Greengard, P.; Heintz, N. Identification of the cortical neurons that mediate antidepressant responses. Cell 2012, 149, 1152–1163. [Google Scholar] [CrossRef] [PubMed]
- Madsen, K.; Torstensen, E.; Holst, K.K.; Haahr, M.E.; Knorr, U.; Frokjaer, V.G.; Brandt-Larsen, M.; Iversen, P.; Fisher, P.M.; Knudsen, G.M. Familial risk for major depression is associated with lower striatal 5-ht(4) receptor binding. Int. J. Neuropsychopharmacol. 2014, 18. [Google Scholar] [CrossRef]
- Ohtsuki, T.; Ishiguro, H.; Detera-Wadleigh, S.D.; Toyota, T.; Shimizu, H.; Yamada, K.; Yoshitsugu, K.; Hattori, E.; Yoshikawa, T.; Arinami, T. Association between serotonin 4 receptor gene polymorphisms and bipolar disorder in japanese case-control samples and the nimh genetics initiative bipolar pedigrees. Mol. Psychiatry 2002, 7, 954–961. [Google Scholar] [CrossRef] [PubMed]
- Haahr, M.E.; Fisher, P.M.; Jensen, C.G.; Frokjaer, V.G.; Mahon, B.M.; Madsen, K.; Baare, W.F.; Lehel, S.; Norremolle, A.; Rabiner, E.A.; et al. Central 5-ht4 receptor binding as biomarker of serotonergic tonus in humans: A [11c]sb207145 pet study. Mol. Psychiatry 2014, 19, 427–432. [Google Scholar] [CrossRef] [PubMed]
- Jean, A.; Conductier, G.; Manrique, C.; Bouras, C.; Berta, P.; Hen, R.; Charnay, Y.; Bockaert, J.; Compan, V. Anorexia induced by activation of serotonin 5-ht4 receptors is mediated by increases in cart in the nucleus accumbens. Proc. Natl. Acad. Sci. USA 2007, 104, 16335–16340. [Google Scholar] [CrossRef] [PubMed]
- Tsang, S.W.; Keene, J.; Hope, T.; Spence, I.; Francis, P.T.; Wong, P.T.; Chen, C.P.; Lai, M.K. A serotoninergic basis for hyperphagic eating changes in Alzheimer’s disease. J. Neurol. Sci. 2010, 288, 151–155. [Google Scholar] [CrossRef] [PubMed]
- Baranger, K.; Giannoni, P.; Girard, S.D.; Girot, S.; Gaven, F.; Stephan, D.; Migliorati, M.; Khrestchatisky, M.; Bockaert, J.; Marchetti-Gauthier, E.; et al. Chronic treatments with a 5-ht4 receptor agonist decrease amyloid pathology in the entorhinal cortex and learning and memory deficits in the 5xfad mouse model of Alzheimer’s disease. Neuropharmacology 2017, 126, 128–141. [Google Scholar] [CrossRef] [PubMed]
- Giannoni, P.; Gaven, F.; de Bundel, D.; Baranger, K.; Marchetti-Gauthier, E.; Roman, F.S.; Valjent, E.; Marin, P.; Bockaert, J.; Rivera, S.; et al. Early administration of rs 67333, a specific 5-ht4 receptor agonist, prevents amyloidogenesis and behavioral deficits in the 5xfad mouse model of Alzheimer’s disease. Front. Aging Neurosci. 2013, 5, 96. [Google Scholar] [CrossRef] [PubMed]
- Bockaert, J.; Claeysen, S.; Compan, V.; Dumuis, A. 5-ht(4) receptors, a place in the sun: Act two. Curr. Opin. Pharmacol. 2011, 11, 87–93. [Google Scholar] [CrossRef] [PubMed]
- Brodney, M.A.; Johnson, D.E.; Sawant-Basak, A.; Coffman, K.J.; Drummond, E.M.; Hudson, E.L.; Fisher, K.E.; Noguchi, H.; Waizumi, N.; McDowell, L.L.; et al. Identification of multiple 5-ht(4) partial agonist clinical candidates for the treatment of Alzheimer’s disease. J. Med. Chem. 2012, 55, 9240–9254. [Google Scholar] [CrossRef] [PubMed]
- Madsen, K.; Neumann, W.J.; Holst, K.; Marner, L.; Haahr, M.T.; Lehel, S.; Knudsen, G.M.; Hasselbalch, S.G. Cerebral serotonin 4 receptors and amyloid-beta in early Alzheimer’s disease. J. Alzheimers Dis. 2011, 26, 457–466. [Google Scholar] [CrossRef] [PubMed]
- Lai, M.K.; Tsang, S.W.; Francis, P.T.; Esiri, M.M.; Hope, T.; Lai, O.F.; Spence, I.; Chen, C.P. [3h]gr113808 binding to serotonin 5-ht(4) receptors in the postmortem neocortex of alzheimer disease: A clinicopathological study. J. Neural Transm. 2003, 110, 779–788. [Google Scholar] [PubMed]
- Suzuki, T.; Iwata, N.; Kitamura, Y.; Kitajima, T.; Yamanouchi, Y.; Ikeda, M.; Nishiyama, T.; Kamatani, N.; Ozaki, N. Association of a haplotype in the serotonin 5-ht4 receptor gene (htr4) with japanese schizophrenia. Am. J. Med. Genet. B Neuropsychiatr. Genet. 2003, 121B, 7–13. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Wang, Y.; Zhou, R.; Wang, B.; Zhang, H.; Yang, L.; Faraone, S.V. Association of attention-deficit/hyperactivity disorder with serotonin 4 receptor gene polymorphisms in han chinese subjects. Neurosci. Lett. 2006, 401, 6–9. [Google Scholar] [CrossRef] [PubMed]
- Holmes, A.; Murphy, D.L.; Crawley, J.N. Reduced aggression in mice lacking the serotonin transporter. Psychopharmacology 2002, 161, 160–167. [Google Scholar] [CrossRef] [PubMed]
- Jennings, K.A.; Loder, M.K.; Sheward, W.J.; Pei, Q.; Deacon, R.M.; Benson, M.A.; Olverman, H.J.; Hastie, N.D.; Harmar, A.J.; Shen, S.; et al. Increased expression of the 5-ht transporter confers a low-anxiety phenotype linked to decreased 5-ht transmission. J. Neurosci. 2006, 26, 8955–8964. [Google Scholar] [CrossRef] [PubMed]
- Mannoury la Cour, C.; Boni, C.; Hanoun, N.; Lesch, K.P.; Hamon, M.; Lanfumey, L. Functional consequences of 5-ht transporter gene disruption on 5-ht(1a) receptor-mediated regulation of dorsal raphe and hippocampal cell activity. J. Neurosci. 2001, 21, 2178–2185. [Google Scholar] [CrossRef] [PubMed]
- Gobbi, G.; Murphy, D.L.; Lesch, K.; Blier, P. Modifications of the serotonergic system in mice lacking serotonin transporters: An in vivo electrophysiological study. J. Pharmacol. Exp. Ther. 2001, 296, 987–995. [Google Scholar] [PubMed]
- Basselin, M.; Fox, M.A.; Chang, L.; Bell, J.M.; Greenstein, D.; Chen, M.; Murphy, D.L.; Rapoport, S.I. Imaging elevated brain arachidonic acid signaling in unanesthetized serotonin transporter (5-htt)-deficient mice. Neuropsychopharmacology 2009, 34, 1695–1709. [Google Scholar] [CrossRef] [PubMed]
- Qu, Y.; Villacreses, N.; Murphy, D.L.; Rapoport, S.I. 5-ht2a/2c receptor signaling via phospholipase a2 and arachidonic acid is attenuated in mice lacking the serotonin reuptake transporter. Psychopharmacology 2005, 180, 12–20. [Google Scholar] [CrossRef] [PubMed]
- Jennings, K.A.; Sheward, W.J.; Harmar, A.J.; Sharp, T. Evidence that genetic variation in 5-ht transporter expression is linked to changes in 5-ht2a receptor function. Neuropharmacology 2008, 54, 776–783. [Google Scholar] [CrossRef] [PubMed]
- Vidal, R.; Valdizan, E.M.; Vilaro, M.T.; Pazos, A.; Castro, E. Reduced signal transduction by 5-ht4 receptors after long-term venlafaxine treatment in rats. Br. J. Pharmacol. 2010, 161, 695–706. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Warner-Schmidt, J.L.; Flajolet, M.; Maller, A.; Chen, E.Y.; Qi, H.; Svenningsson, P.; Greengard, P. Role of p11 in cellular and behavioral effects of 5-ht4 receptor stimulation. J. Neurosci. 2009, 29, 1937–1946. [Google Scholar] [CrossRef] [PubMed]
- Albert, P.R. Why is depression more prevalent in women? J. Psychiatry Neurosci. 2015, 40, 219–221. [Google Scholar] [CrossRef] [PubMed]
- Perfalk, E.; Cunha-Bang, S.D.; Holst, K.K.; Keller, S.; Svarer, C.; Knudsen, G.M.; Frokjaer, V.G. Testosterone levels in healthy men correlate negatively with serotonin 4 receptor binding. Psychoneuroendocrinology 2017, 81, 22–28. [Google Scholar] [CrossRef] [PubMed]
- Minett, M.S.; Pereira, V.; Sikandar, S.; Matsuyama, A.; Lolignier, S.; Kanellopoulos, A.H.; Mancini, F.; Iannetti, G.D.; Bogdanov, Y.D.; Santana-Varela, S.; et al. Endogenous opioids contribute to insensitivity to pain in humans and mice lacking sodium channel nav1.7. Nat. Commun. 2015, 6, 8967. [Google Scholar] [CrossRef] [PubMed]
- Isensee, J.; Krahe, L.; Moeller, K.; Pereira, V.; Sexton, J.E.; Sun, X.; Emery, E.; Wood, J.N.; Hucho, T. Synergistic regulation of serotonin and opioid signaling contributes to pain insensitivity in nav1.7 knockout mice. Sci. Signal. 2017, 10. [Google Scholar] [CrossRef] [PubMed]
species | Tissue | Cell Type | Transcript/Protein | Method | Reference |
---|---|---|---|---|---|
human | caudate nucleus, putamen, nucleus accumbens, globus pallidus, substantia nigra. Lesser densities in hippocampus and cortex | protein | [3H]-R116712 and [3H]-pruclapride binding | Bonaventure et al., 2000, [10] | |
caudate nucleus, putamen, nucleus accumbens, and in the hippocampal formation but not in globus pallidus and substantia nigra | mRNA | in situ hybridization | Bonaventure et al., 2000, [10] | ||
caudate nucleus, putamen, nucleus accumbens, globus pallidus, substantia nigra, hippocampus (CA1, subiculum), neocortex | protein | [125I-]SB 20771 binding | Varnas et al., 2003, [92], | ||
human, calf, guinea pig | caudate nucleus, lenticular nucleus, substantia nigra, hippocampus, frontal cortex | protein | [3H]-GR 113808 binding to membrane preparations | Domenech et al., 1994, [82] | |
caudate nucleus, lateral pallidum, putamen, medial pallidum, temporal cortex, hippocampus, amygdala, frontal cortex, cerebellar cortex | protein | [3H]-GR 113808 binding | Reynolds et al., 1995, [95] | ||
rat | islands of Calleja, olfactory tubercle, ventral pallidum, fundus striati, amygdala, habenula and septo-hippocampal system. striatum, substantia nigra (lateralis), interpeduncular nucleus, superior colliculus | protein | [3H]-GR 113808 binding | Waeber et al., 1996, [94] | |
caudate putamen, ventral striatum, medial habenula and hippocampus | mRNA | in situ hybridization | Vilaró et al., 1996, [65] | ||
prefrontal cortex | 60% of pryamidal glutamatergic neurons | mRNA, protein | indirect through stimulation | Feng et al., 2001, [80] | |
basal forebrain, hippocampus, cortex | GABAergic, glutamatergic and parvalbumin-containing neurons, hippocampal and cortical glutamatergic neurons | mRNA | in situ hybridization | Penas-Cazorla et al., 2015, [78] | |
rat, guinea pig | striatum, globus pallidaus, hippocampus, substantia nigra, olfactory tubercle | protein | [3H]-GR 113808 binding | Grossman et al., 1993, [82] | |
striatum, hippocampus | striatal GABAergic projection neurons, projection from dentate granule cells to field CA3, habenulo-interpeduncular pathway, somatodendritically and axonally | mRNA, protein | [125I]-SB 207710 binding, in situ hybridization | Vilaro et al., 2005, [62] | |
mouse | striatum | GABAergic projection neurons but not dopaminergic neurons | protein | Kainic acid lesions and [3H]-GR 113808 binding | Compan et al., 1996, [11] |
striatum | GABAergic projection neurons | protein | immunohistochemistry | Egeland et al., 2011, [89] | |
dentate gyrus | mature granule cells | protein | LacZ-IR staining | Imoto et al., 2015, [90] |
Species | Tissue | Condition/Treatment | Direction of Change | Transcript/Protein | Method | Reference |
---|---|---|---|---|---|---|
human | frontal cortex, caudate nucleus | suicide victims | up | protein | antagonist binding | Rosel et al., 2004, [96] |
association with bipolar disorder | SNPs | sequencing of PCR products | Ohtsuki et al.,2002, [97] | |||
hippocampus, frontal cortex | Alzheimer’s disease | down | protein | [3H]-GR113808 binding | Reynolds et al.,1995, [95] | |
putamen | Huntington’s disease | down | protein | [3H]-GR113808 binding | Reynolds et al., 1995, [95] | |
hippocampus | cognition, episodic memory, recall | negative correlation | protein | PET, [11C]-SB207145 | Haahr et al., 2013, [98] | |
nucleus accumbens, ventral pallidum, orbitofrontal cortex,hippocampus | body mass index, obesity | positive correlation | protein | PET, [11C]-SB207145 | Haahr et al., 2012, [99] | |
rat | striatum, subthalamic nucleus, hippocampus | lesion of serotonergic nuclei | up in rostral dorsal, ventral striatum, substantia nigra, hippocampus | protein | [3H]-GR113808 binding | Compan et al., 1996, [11] |
striatum (caudate putamen, globus pallidus | lesion of DA neurons | up | protein | [3H]-GR113808 binding | Compan et al., 1996, [11] | |
hippocampus, lateral globus pallidus | Flinders sensitive line (depression model) | down | protein | [3H]-SB207145 binding | Licht et al., 2009, [100] | |
hippocampus, hypothalamus, caudate putamen, nucleus accumbens, Globus pallidus | 21 days paroxetine (SSRI) | down after SSRI | protein | [3H]-SB207145 binding | Licht et al., 2009, [100] | |
hippocampus, hypothalamus | 4 days of 5-HT depletion | up after 5-HT depletion | protein | [3H]-SB207145 binding | Licht et al., 2009, [100] | |
hippocampus (CA1), striatum | 21 days of fluoxetine (SSRI) | down | [3H]-GR113808 binding | Vidal et al., 2009, [101] | ||
15 regions incl.hippocampus | learning: autoshaping test for food retrieval | upregulated in most regions | protein | [3H]-GR113808 binding | Manuel-Apolinar et al., 2005, [102] | |
caudate putamen, nucleus accumbens | rat models of obesity | up | protein | [3H]SB207145 binding | Ratner et al., 2012, [103] | |
hippocampus | maternal deprivation, unpredictable stress | down | mRNA, protein | qPCR and Western botting | Bai et al., 2014, [51] | |
mouse | striatum | 6-OHDA lesion model of Parkinson’s disease | down in D2 MSNs | mRNA | Affymetrix GeneChip microarray | Heiman et al., 2014, [104] |
ventral hippocampus | bulbectomy | up in ventral hippocampus, down in olfactory tubercles | protein | [3H]-SB207145 binding | Licht et al., 2010, [97] | |
caudal putamen | GR (+/−) mice | up | protein | [3H]-SB207145 binding | Licht et al., 2010, [97] | |
midbrain raphe nuclei and VTA | social defeat | up after defeat | mRNA | RNA seq | Kudryavtseva et al., 2017, [105] | |
prefrontal cortex | restraint stress | up after restraint | mRNA | qPCR | Jean et al., 2017, [22] |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rebholz, H.; Friedman, E.; Castello, J. Alterations of Expression of the Serotonin 5-HT4 Receptor in Brain Disorders. Int. J. Mol. Sci. 2018, 19, 3581. https://doi.org/10.3390/ijms19113581
Rebholz H, Friedman E, Castello J. Alterations of Expression of the Serotonin 5-HT4 Receptor in Brain Disorders. International Journal of Molecular Sciences. 2018; 19(11):3581. https://doi.org/10.3390/ijms19113581
Chicago/Turabian StyleRebholz, Heike, Eitan Friedman, and Julia Castello. 2018. "Alterations of Expression of the Serotonin 5-HT4 Receptor in Brain Disorders" International Journal of Molecular Sciences 19, no. 11: 3581. https://doi.org/10.3390/ijms19113581
APA StyleRebholz, H., Friedman, E., & Castello, J. (2018). Alterations of Expression of the Serotonin 5-HT4 Receptor in Brain Disorders. International Journal of Molecular Sciences, 19(11), 3581. https://doi.org/10.3390/ijms19113581