Role of Cytokinins in Senescence, Antioxidant Defence and Photosynthesis
Abstract
:1. Introduction
2. Antisenescent and Antioxidant Activity of Natural Cytokinins (CKs), Kinetin (Kin) and 6-Benzylaminopurine (BAP)
3. Antisenescent and Antioxidant Activity of C2, C8 and N9 Purine-Based CK Derivatives
4. Antisenescent Activity of Urea Based CKs and Their Derivatives
5. Ability of CKs and CK Derivatives to Improve the Antioxidant Capacity and Secondary Metabolite Content
6. CKs and (A)Biotic Stress Responses
7. CKs and Photosynthesis
8. Mechanisms and Genes Implicated in the Antisenescent and Antioxidant Activity of CKs
9. Conclusions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
2Cl-3F-BAPR | 2-chloro-6-(3-fluorobenzylamino)-9-β-d-ribofuranosylpurine |
3F-BAP | 6-(3-fluorobenzylamino)purine |
3F-BAPR | 6-(3-fluorobenzylamino)-9-β-d-ribofuranosylpurine |
AHK | Arabidopsis histidine kinase |
APX | ascorbate peroxidase |
ARCK | aromatic cytokinins |
ARR | Arabidopsis response regulator |
BAP | 6-(benzylamino)purine |
CAT | catalase |
CK | cytokinin |
CPPU | N-(2-chloropyridin-4-yl)-N′-phenylurea |
CRF | cytokinin response factor |
cZ | 6-(Z)-(4-hydroxy-3-methylbut-2-enylamino)purine (cis-zeatin) |
DCPPU | N-(2,6-dichloro-pyridin-4-yl)-N′-phenylurea |
DHZ | 6-(4-hydroxy-3-methylbutylamino)purine (dihydrozeatin) |
DHZR | 6-(4-hydroxy-3-methylbutylamino)-9-β-d-ribofuranosylpurine (dihydrozeatin-riboside) |
GSH | glutathione |
INCYDE | 2-chloro-6-(3-methoxyphenylamino)purine |
iP | 6-(2-isopentenylamino)purine |
IPT | isopentenyl transferase |
ISCK | isoprenoid cytokinins |
Kin | 6-(furfurylamino)purine (kinetin) |
MDA | malondialdehyde |
mT | 6-(3-hydroxybenzylamino)purine (meta-topolin) |
mTR | 6-(3-hydroxybenzylamino)-9-β-d-ribofuranosylpurine (meta-topolin-9-riboside) |
ORAC | oxygen radical absorbance capacity |
oT | 6-(2-hydroxybenzylamino)purine (ortho-topolin) |
PI-55 | 6-(2-hydroxy-3-methylbenzylamino)purine |
POD | peroxidase |
ROS | reactive oxygen species |
SAGs | senescence-associated genes |
SOD | superoxide dismutase |
TDZ | 1-phenyl-3-(1,2,3-thiadiazol-5-yl)urea (thidiazuron) |
THF | tetrahydrofuran-2-yl |
THP | tetrahydropyran-2-yl |
tZ | 6-(E)-(4-hydroxy-3-methylbut-2-enylamino)purine (trans-zeatin) |
tZR | 6-(E)-(4-hydroxy-3-methylbut-2-enylamino)-9-β-d-ribofuranosylpurine (trans-zeatin-9-riboside) |
WLSA | wheat leaf senescence assay |
Z | 6-(4-hydroxy-3-methylbut-2-enylamino)purine (zeatin) |
ZR | 6-(4-hydroxy-3-methylbut-2-enylamino)-9-β-d-ribofuranosylpurine (zeatin-9-riboside) |
References
- Davies, P.J. Plant Hormones; Davies, P.J., Ed.; Springer: Dordrecht, The Netherlands, 2010; ISBN 978-1-4020-2684-3. [Google Scholar]
- Strnad, M. The aromatic cytokinins. Physiol. Plant. 1997, 101, 674–688. [Google Scholar] [CrossRef]
- Plíhalová, L.; Vylíčilová, H.; Doležal, K.; Zahajská, L.; Zatloukal, M.; Strnad, M. Synthesis of aromatic cytokinins for plant biotechnology. New Biotechnol. 2016, 33, 614–624. [Google Scholar] [CrossRef] [PubMed]
- Mok, D.W.S.; Mok, M.C. Cytokinin metabolism and action. Annu. Rev. Plant Physiol. Plant Mol. Biol. 2001, 52, 89–118. [Google Scholar] [CrossRef] [PubMed]
- Van Staden, J. Cytokinins and senescence. Senescence Aging Plants 1988, 281–328. [Google Scholar] [CrossRef]
- Gan, S.; Amasino, R.M. Inhibition of leaf senescence by autoregulated production of cytokinin. Science 1995, 270, 1986–1988. [Google Scholar] [CrossRef] [PubMed]
- Rivero, R.M.; Kojima, M.; Gepstein, A.; Sakakibara, H.; Mittler, R.; Gepstein, S.; Blumwald, E. Delayed leaf senescence induces extreme drought tolerance in a flowering plant. Proc. Natl. Acad. Sci. USA 2007, 104, 19631–19636. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koprna, R.; de Diego, N.; Dundálková, L.; Spíchal, L. Use of cytokinins as agrochemicals. Bioorg. Med. Chem. 2016, 24, 484–492. [Google Scholar] [CrossRef] [PubMed]
- Koyama, T. A hidden link between leaf development and senescence. Plant Sci. 2018, 276, 105–110. [Google Scholar] [CrossRef]
- Toscano, S.; Trivellini, A.; Ferrante, A.; Romano, D. Physiological mechanisms for delaying the leaf yellowing of potted geranium plants. Sci. Hortic. 2018, 242, 146–154. [Google Scholar] [CrossRef]
- Kulaeva, O.N. The influence of roots on leaf metabolism in relation to kinetin action. Sov. Plant Physiol. 1962, 9, 229–239. [Google Scholar]
- Brizzolari, A.; Marinello, C.; Carini, M.; Santaniello, E.; Biondi, P.A. Evaluation of the antioxidant activity and capacity of some natural N6-substituted adenine derivatives (cytokinins) by fluorimetric and spectrophotometric assays. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2016, 1019, 164–168. [Google Scholar] [CrossRef]
- Vanacker, H. Roles for redox regulation in leaf senescence of pea plants grown on different sources of nitrogen nutrition. J. Exp. Bot. 2006, 57, 1735–1745. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pilarska, M.; Skowron, E.; Pietraś, R.; Krupinska, K.; Niewiadomska, E. Changes in lipid peroxidation in stay-green leaves of tobacco with senescence-induced synthesis of cytokinins. Plant Physiol. Biochem. 2017, 118, 161–167. [Google Scholar] [CrossRef] [PubMed]
- Zimmermann, P.; Heinlein, C.; Orendi, G.; Zentgraf, U. Senescence-specific regulation of catalases in Arabidopsis thaliana (L.) Heynh. Plant, Cell Environ. 2006, 29, 1049–1060. [Google Scholar] [CrossRef]
- Richmond, A.E.; Lang, A. Effect of kinetin on protein content and survival of detached Xanthium leaves. Science 1957, 125, 650–651. [Google Scholar] [CrossRef]
- Dyer, T.A.; Osborne, D.J. Leaf nucleic acids. J. Exp. Bot. 1971, 22, 552–560. [Google Scholar] [CrossRef]
- Kamínek, M.; Luštinec, J. Sensitivity of oat leaf chlorophyll retention bioassay to natural and synthetic cytokinins. Biol. Plant. 1978, 20, 377–382. [Google Scholar] [CrossRef]
- Holub, J.; Hanuš, J.; Hanke, D.E.; Strnad, M. Biological activity of cytokinins derived from Ortho- and Meta-hydroxybenzyladenine. Plant Growth Regul. 1998, 26, 109–115. [Google Scholar] [CrossRef]
- Gajdošová, S.; Spíchal, L.; Kamínek, M.; Hoyerová, K.; Novák, O.; Dobrev, P.I.; Galuszka, P.; Klíma, P.; Gaudinová, A.; Žižková, E.; et al. Distribution, biological activities, metabolism, and the conceivable function of cis-zeatin-type cytokinins in plants. J. Exp. Bot. 2011, 62, 2827–2840. [Google Scholar] [CrossRef] [PubMed]
- Mik, V.; Szüčová, L.; Spíchal, L.; Plíhal, O.; Nisler, J.; Zahajská, L.; Doležal, K.; Strnad, M. N9-Substituted N6-[(3-methylbut-2-en-1-yl)amino]purine derivatives and their biological activity in selected cytokinin bioassays. Bioorg. Med. Chem. 2011, 19, 7244–7251. [Google Scholar] [CrossRef] [PubMed]
- Spíchal, L.; Rakova, N.Y.; Riefler, M.; Mizuno, T.; Romanov, G.A.; Strnad, M.; Schmülling, T. Two cytokinin receptors of Arabidopsis thaliana, CRE1/AHK4 and AHK3, differ in their ligand specificity in a bacterial assay. Plant Cell Physiol. 2004, 45, 1299–1305. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.J.; Ryu, H.; Hong, S.H.; Woo, H.R.; Lim, P.O.; Lee, I.C.; Sheen, J.; Nam, H.G.; Hwang, I. Cytokinin-mediated control of leaf longevity by AHK3 through phosphorylation of ARR2 in Arabidopsis. Proc. Natl. Acad. Sci. USA 2006, 103, 814–819. [Google Scholar] [CrossRef] [PubMed]
- Doležal, K.; Popa, I.; Kryštof, V.; Spíchal, L.; Fojtíková, M.; Holub, J.; Lenobel, R.; Schmülling, T.; Strnad, M. Preparation and biological activity of 6-benzylaminopurine derivatives in plants and human cancer cells. Bioorganic Med. Chem. 2006, 14, 875–884. [Google Scholar] [CrossRef]
- Gan, S.; Amasino, R. Cytokinins in plant senescence: From spray and pray to clone and play. BioEssays 1996, 18, 557–565. [Google Scholar] [CrossRef]
- Noodén, L.D.; Singh, S.; Letham, D.S. Correlation of xylem sap cytokinin levels with monocarpic senescence in soybean. Plant Physiol. 1990, 93, 33–39. [Google Scholar] [CrossRef] [PubMed]
- Singh, S.; Letham, D.S.; Palni, L.M.S. Cytokinin biochemistry in relation to leaf senescence. VII. Endogenous cytokinin levels and exogenous applications of cytokinins in relation to sequential leaf senescence of tobacco. Physiol. Plant. 1992, 86, 388–397. [Google Scholar] [CrossRef]
- Podlešáková, K.; Zalabák, D.; Čudejková, M.; Plíhal, O.; Szüčová, L.; Doležal, K.; Spíchal, L.; Strnad, M.; Galuszka, P. Novel cytokinin derivatives do not show negative effects on root growth and proliferation in submicromolar range. PLoS ONE 2012, 7, e39293. [Google Scholar] [CrossRef]
- Dhindsa, R.S.; Plumb-Dhindsa, P.L.; Reid, D.M. Leaf senescence and lipid peroxidation: Effects of some phytohormones, and scavengers of free radicals and singlet oxygen. Physiol. Plant. 1982, 56, 453–457. [Google Scholar] [CrossRef]
- Del Río, L.A.; Pastori, G.M.; Palma, J.M.; Sandalio, L.M.; Sevilla, F.; Corpas, F.J.; Jiménez, A.; López-Huertas, E.; Hernández, J.A. The activated oxygen role of peroxisomes in senescence. Plant Physiol. 1998, 116, 1195–1200. [Google Scholar] [CrossRef]
- Jiao, D.; Ji, B.; Li, X. Characteristics of chlorophyll fluorescence and membrane-lipid peroxidation during senescence of flag leaf in different cultivars of rice. Photosynthetica 2003, 41, 33–41. [Google Scholar] [CrossRef]
- Cabello, P.; Agüera, E.; de la Haba, P. Metabolic changes during natural ageing in sunflower (Helianthus annuus) leaves: Expression and activity of glutamine synthetase isoforms are regulated differently during senescence. Physiol. Plant. 2006, 128, 175–185. [Google Scholar] [CrossRef]
- Jajić, I.; Sarna, T.; Szewczyk, G.; Strzałka, K. Changes in production of reactive oxygen species in illuminated thylakoids isolated during development and senescence of barley. J. Plant Physiol. 2015, 184, 49–56. [Google Scholar] [CrossRef] [PubMed]
- Mik, V.; Szüčová, L.; Šmehilová, M.; Zatloukal, M.; Doležal, K.; Nisler, J.; Grúz, J.; Galuszka, P.; Strnad, M.; Spíchal, L. N9-substituted derivatives of kinetin: Effective anti-senescence agents. Phytochemistry 2011, 72, 821–831. [Google Scholar] [CrossRef] [PubMed]
- Zavaleta-Mancera, H.A.; López-Delgado, H.; Loza-Tavera, H.; Mora-Herrera, M.; Trevilla-García, C.; Vargas-Suárez, M.; Ougham, H. Cytokinin promotes catalase and ascorbate peroxidase activities and preserves the chloroplast integrity during dark-senescence. J. Plant Physiol. 2007, 164, 1572–1582. [Google Scholar] [CrossRef] [PubMed]
- Novák, J.; Pavlů, J.; Novák, O.; Nožková-Hlaváčková, V.; Špundová, M.; Hlavinka, J.; Koukalová, Š.; Skalák, J.; Černý, M.; Brzobohatý, B. High cytokinin levels induce a hypersensitive-like response in tobacco. Ann. Bot. 2013, 112, 41–55. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, R.; David, L.S. Cytokinin biochemistry in relation to leaf senescence. III. The senescence-retarding activity and metabolism of 9-substituted 6-benzylaminopurines in soybean leaves. J. Plant Growth Regul. 1989, 8, 181–197. [Google Scholar] [CrossRef]
- Corse, J.; Pacovsky, R.S.; Lyman, M.L.; Brandon, D.L. Biological activity of several 9-nonglycosidic-substituted natural cytokinins. J. Plant Growth Regul. 1989, 8, 211–223. [Google Scholar] [CrossRef]
- Szüčová, L.; Spíchal, L.; Doležal, K.; Zatloukal, M.; Greplová, J.; Galuszka, P.; Kryštof, V.; Voller, J.; Popa, I.; Massino, F.J.; et al. Synthesis, characterization and biological activity of ring-substituted 6-benzylamino-9-tetrahydropyran-2-yl and 9-tetrahydrofuran-2-ylpurine derivatives. Bioorganic Med. Chem. 2009, 17, 1938–1947. [Google Scholar] [CrossRef]
- Szüčová, L.; Zatloukal, M.; Spíchal, L.; Fröhlich, L.; Doležal, K.; Strnad, M.; Massino, F. 6,9-Disubstituted Purine Derivatives and their Use for Treating Skin. Patent EP 2043630, 10 May 2016. [Google Scholar]
- Szüčová, L.; Zatloukal, M.; Spíchal, L.; Voller, J.; Doležal, K.; Strnad, M.; Massino, F.J. 6,9-Disubstituted Purine Derivatives and Their Use as Cosmetics and Cosmetic Compositions. Patent US7960397, 14 June 2011. [Google Scholar]
- Zatloukal, M.; Gemrotová, M.; Doležal, K.; Havlíček, L.; Spíchal, L.; Strnad, M. Novel potent inhibitors of A. thaliana cytokinin oxidase/dehydrogenase. Bioorg. Med. Chem. 2008, 16, 9268–9275. [Google Scholar] [CrossRef]
- Doležal, K.; Popa, I.; Hauserová, E.; Spíchal, L.; Chakrabarty, K.; Novák, O.; Kryštof, V.; Voller, J.; Holub, J.; Strnad, M. Preparation, biological activity and endogenous occurrence of N6-benzyladenosines. Bioorg. Med. Chem. 2007, 15, 3737–3747. [Google Scholar] [CrossRef]
- Vylíčilová, H.; Husičková, A.; Spíchal, L.; Srovnal, J.; Doležal, K.; Plíhal, O.; Plíhalová, L. C2-substituted aromatic cytokinin sugar conjugates delay the onset of senescence by maintaining the activity of the photosynthetic apparatus. Phytochemistry 2016, 122, 22–33. [Google Scholar] [CrossRef] [PubMed]
- Hönig, M.; Plíhalová, L.; Spíchal, L.; Grúz, J.; Kadlecová, A.; Voller, J.; Svobodová, A.R.; Vostálová, J.; Ulrichová, J.; Doležal, K.; Strnad, M. New cytokinin derivatives possess UVA and UVB photoprotective effect on human skin cells and prevent oxidative stress. Eur. J. Med. Chem. 2018, 150, 946–957. [Google Scholar] [CrossRef] [PubMed]
- Bråthe, A.; Andresen, G.; Gundersen, L.L.; Malterud, K.E.; Rise, F. Antioxidant activity of synthetic cytokinin analogues: 6-Alkynyl- and 6-alkenylpurines as novel 15-lipoxygenase inhibitors. Bioorg. Med. Chem. 2002, 10, 1581–1586. [Google Scholar] [CrossRef]
- Zahajská, L.; Nisler, J.; Voller, J.; Gucký, T.; Pospíšil, T.; Spíchal, L.; Strnad, M. Preparation, characterization and biological activity of C8-substituted cytokinins. Phytochemistry 2017, 135, 115–127. [Google Scholar] [CrossRef] [PubMed]
- Skoog, F.; Hamzi, H.Q.; Szweykowska, A.M.; Leonard, N.J.; Carraway, K.L.; Fujii, T.; Helgeson, J.P.; Loeppky, R.N. Cytokinins: Structure/activity relationships. Phytochemistry 1967, 6, 1169–1192. [Google Scholar] [CrossRef]
- Nisler, J.; Zatloukal, M.; Sobotka, R.; Pilný, J.; Zdvihalová, B.; Novák, O.; Strnad, M.; Spíchal, L. New urea derivatives are effective anti-senescence compounds acting most likely via a cytokinin-independent mechanism. Front. Plant Sci. 2018, 9, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Mok, M.C.; Mok, D.W.S.; Armstrong, D.J.; Shudo, K.; Isogai, Y.; Okamoto, T. Cytokinin activity of N-phenyl-N′-1,2,3-thiadiazol-5-ylurea (thidiazuron). Phytochemistry 1982, 21, 1509–1511. [Google Scholar] [CrossRef]
- Thomas, J.C.; Katterman, F.R. Cytokinin activity induced by thidiazuron. Plant Physiol. 1986, 81, 681–683. [Google Scholar] [CrossRef]
- Ferrante, A.; Hunter, D.A.; Hackett, W.P.; Reid, M.S. Thidiazuron—A potent inhibitor of leaf senescence in Alstroemeria. Postharvest Biol. Technol. 2002, 25, 333–338. [Google Scholar] [CrossRef]
- Ferrante, A.; Tognoni, F.; Mensuali-Sodi, A.; Serra, G. Treatment with thidiazuron for preventing leaf yellowing in cut tulips and Chrysanthemum. Acta Hortic. 2003, 357–363. [Google Scholar] [CrossRef]
- Mutui, T.; Mibus, H.; Serek, M. Effects of thidiazuron, ethylene, abscisic acid and dark storage on leaf yellowing and rooting of Pelargonium cuttings. J. Hortic. Sci. Biotechnol. 2005, 80, 543–550. [Google Scholar] [CrossRef]
- Nisler, J. TDZ: Mode of Action, Use and Potential in Agriculture. In Thidiazuron: From Urea Derivative to Plant Growth Regulator; Ahmad, N., Faisal, M., Eds.; Springer: Singapore, 2018; pp. 37–59. [Google Scholar]
- Whitty, C.D.; Hall, R.H. A Cytokinin Oxidase in Zea mays. Can. J. Biochem. 1974, 52, 789–799. [Google Scholar] [CrossRef] [PubMed]
- Brownlee, B.G.; Hall, R.H.; Whitty, C.D. 3-Methyl-2-butenal: An Enzymatic Degradation Product of the Cytokinin, N6-(Δ2-Isopentenyl)adenine. Can. J. Biochem. 1975, 53, 37–41. [Google Scholar] [CrossRef] [PubMed]
- Chatfield, J.M.; Armstrong, D.J. Regulation of cytokinin oxidase activity in callus tissues of Phaseolus vulgaris L. cv great northern. Plant Physiol. 1986, 80, 493–499. [Google Scholar] [CrossRef] [PubMed]
- Kopečný, D.; Briozzo, P.; Popelková, H.; Šebela, M.; Končitíková, R.; Spíchal, L.; Nisler, J.; Madzak, C.; Frébort, I.; Laloue, M.; Houba-Hérin, N. Phenyl- and benzylurea cytokinins as competitive inhibitors of cytokinin oxidase/dehydrogenase: A structural study. Biochimie 2010, 92, 1052–1062. [Google Scholar] [CrossRef] [PubMed]
- Nisler, J.; Kopečný, D.; Končitíková, R.; Zatloukal, M.; Bazgier, V.; Berka, K.; Zalabák, D.; Briozzo, P.; Strnad, M.; Spíchal, L. Novel thidiazuron-derived inhibitors of cytokinin oxidase/dehydrogenase. Plant Mol. Biol. 2016, 92, 235–248. [Google Scholar] [CrossRef] [PubMed]
- Ferrante, A.; Vernieri, P.; Serra, G.; Tognoni, F. Changes in abscisic acid during leaf yellowing of cut stock flowers. Plant Growth Regul. 2004, 43, 127–134. [Google Scholar] [CrossRef]
- Mayak, S.; Halevy, A.H. Interrelationships of Ethylene and abscisic acid in the control of rose petal senescence. Plant Physiol. 1972, 50, 341–346. [Google Scholar] [CrossRef]
- Cutler, S.R.; Rodriguez, P.L.; Finkelstein, R.R.; Abrams, S.R. Abscisic acid: Emergence of a core signaling network. Annu. Rev. Plant Biol. 2010, 61, 651–679. [Google Scholar] [CrossRef]
- Mutui, T.M.; Mibus, H.; Serek, M. Influence of thidiazuron, ethylene, abscisic acid and dark storage on the expression levels of ethylene receptors (ETR) and ACC synthase (ACS) genes in Pelargonium. Plant Growth Regul. 2007, 53, 87–96. [Google Scholar] [CrossRef]
- Abeles, F.B.; Dunn, L.J.; Morgens, P.; Callahan, A.; Dinterman, R.E.; Schmidt, J. Induction of 33-kD and 60-kD peroxidases during ethylene-induced senescence of cucumber cotyledons. Plant Physiol. 1988, 87, 609–615. [Google Scholar] [CrossRef] [PubMed]
- Reid, M.S. Ethylene in plant growth, development, and senescence. In Plant Hormones; Davies, P.J., Ed.; Springer: Dordrecht, The Netherlands, 1995; pp. 486–508. [Google Scholar]
- Hatami, M.; Hatamzadeh, A.; Ghasemnezhad, M.; Sajedi, R.H. Antioxidant enzymatic protection during pelargonium plant leaf senescence is mediated by thidiazuron. Trakia J. Sci. 2013, 11, 152–157. [Google Scholar]
- Kaur, P.; Singh, K. Influence of growth regulators on physiology and senescence of cut stemsof Chrysanthemum (Chrysanthemum morifolium Ramat) Var. thai ching queen. IJAPPR 2015, 2, 31–41. [Google Scholar]
- Aremu, A.O.; Bairu, M.W.; Szüčová, L.; Doležal, K.; Finnie, J.F.; van Staden, J. Assessment of the role of meta-topolins on in vitro produced phenolics and acclimatization competence of micropropagated “Williams” banana. Acta Physiol. Plant. 2012, 34, 2265–2273. [Google Scholar] [CrossRef]
- Aremu, A.O.; Gruz, J.; Šubrtová, M.; Szüčová, L.; Doležal, K.; Bairu, M.W.; Finnie, J.F.; van Staden, J. Antioxidant and phenolic acid profiles of tissue cultured and acclimatized Merwilla plumbea plantlets in relation to the applied cytokinins. J. Plant Physiol. 2013, 170, 1303–1308. [Google Scholar] [CrossRef] [PubMed]
- Pietta, P.-G. Flavonoids as Antioxidants. J. Nat. Prod. 2000, 63, 1035–1042. [Google Scholar] [CrossRef] [PubMed]
- Shang, X.; He, X.; He, X.; Li, M.; Zhang, R.; Fan, P.; Zhang, Q.; Jia, Z. The genus Scutellaria an ethnopharmacological and phytochemical review. J. Ethnopharmacol. 2010, 128, 279–313. [Google Scholar] [CrossRef]
- Alipieva, K.; Korkina, L.; Orhan, I.E.; Georgiev, M.I. Verbascoside—A review of its occurrence, (bio)synthesis and pharmacological significance. Biotechnol. Adv. 2014, 32, 1065–1076. [Google Scholar] [CrossRef]
- Grzegorczyk-Karolak, I.; Rytczak, P.; Bielecki, S.; Wysokińska, H. The influence of liquid systems for shoot multiplication, secondary metabolite production and plant regeneration of Scutellaria alpina. Plant Cell Tissue Organ Cult. 2017, 128, 479–486. [Google Scholar] [CrossRef]
- Grzegorczyk-Karolak, I.; Kuźma, Ł.; Wysokińska, H. The effect of cytokinins on shoot proliferation, secondary metabolite production and antioxidant potential in shoot cultures of Scutellaria alpina. Plant Cell Tissue Organ Cult. 2015, 122, 699–708. [Google Scholar] [CrossRef]
- Grzegorczyk-Karolak, I.; Kuźma, Ł.; Wysokińska, H. Study on the chemical composition and antioxidant activity of extracts from shoot culture and regenerated plants of Scutellaria altissima L. Acta Physiol. Plant. 2015, 37, 1–9. [Google Scholar] [CrossRef]
- Aremu, A.O.; Stirk, W.A.; Masondo, N.A.; Plačková, L.; Novák, O.; Pěnčík, A.; Zatloukal, M.; Nisler, J.; Spíchal, L.; Doležal, K.; et al. Dissecting the role of two cytokinin analogues (INCYDE and PI-55) on in vitro organogenesis, phytohormone accumulation, phytochemical content and antioxidant activity. Plant Sci. 2015, 238, 81–94. [Google Scholar] [CrossRef] [PubMed]
- Grúz, J.; Spíchal, L. Application of purine derivative LGR-1814 improves func- tional properties of field-grown lettuce (Lactuca sativa). In International PSE Symposium on Phytochemicals in Nutrition and Health; BARI: Giovinazzo, Italy, 2011; p. 30. [Google Scholar]
- Coste, A.; Vlase, L.; Halmagyi, A.; Deliu, C.; Coldea, G. Effects of plant growth regulators and elicitors on production of secondary metabolites in shoot cultures of Hypericum hirsutum and Hypericum maculatum. Plant Cell Tissue Organ Cult. 2011, 106, 279–288. [Google Scholar] [CrossRef]
- Kirakosyan, A.; Gibson, D.M.; Kaufman, P.B. The production of dianthrones and phloroglucinol derivatives in St. John’s Wort. In Bioactive Molecules and Medicinal Plants; Ramawat, K., Merillon, J., Eds.; Springer: Berlin/Heidelberg, Germany, 2008; pp. 149–164. [Google Scholar]
- Petrova, M.; Nikolova, M.; Zayova, E. Micropropagation and evaluation of flavonoid content and antioxidant activity of salvia. Genet. Plant Physiol. 2015, 5, 48–60. [Google Scholar]
- De Moura, F.B.; Vieira, M.R.D.S.; Simoes, A.D.N.; Ferreira-Silva, S.L.; de Souza, C.A.; de Souza, E.S.; da Rocha, A.T.; da Silva, L.F.; Miguel, A. Physiological effect of kinetin on the photosynthetic apparatus and antioxidant enzymes activities during production of anthurium. Hortic. Plant J. 2018, 4, 182–192. [Google Scholar] [CrossRef]
- Zhang, D.; Xu, X.; Zhang, Z.; Jiang, G.; Feng, L.; Duan, X.; Jiang, Y. 6-Benzylaminopurine improves the quality of harvested litchi fruit. Postharvest Biol. Technol. 2018, 143, 137–142. [Google Scholar] [CrossRef]
- Wu, X.; Zhu, Z.; Li, X.; Zha, D. Effects of cytokinin on photosynthetic gas exchange, chlorophyll fluorescence parameters and antioxidative system in seedlings of eggplant (Solanum melongena L.) under salinity stress. Acta Physiol. Plant. 2012, 34, 2105–2114. [Google Scholar] [CrossRef]
- Yang, D.Q.; Luo, Y.L.; Dong, W.H.; Yin, Y.P.; Li, Y.; Wang, Z.L. Response of photosystem II performance and antioxidant enzyme activities in stay-green wheat to cytokinin. Photosynthetica 2018, 56, 567–577. [Google Scholar] [CrossRef]
- Liu, X.; Huang, B.; Banowetz, G. Cytokinin effects on creeping bentgrass responses to heat stress: I. Shoot and root growth. Crop Sci. 2002, 42, 457–465. [Google Scholar] [CrossRef]
- Ren, B.; Zhang, J.; Dong, S.; Liu, P.; Zhao, B. Exogenous 6-benzyladenine improves antioxidative system and carbon metabolism of summer maize waterlogged in the field. J. Agron. Crop Sci. 2018, 204, 175–184. [Google Scholar] [CrossRef]
- Hung, K.T.; Kao, C.H. Involvement of lipid peroxidation in water stress-promoted senescence of detached rice leaves. Plant Growth Regul. 1998, 24, 17–21. [Google Scholar] [CrossRef]
- Xu, Y.; Huang, B. Effects of foliar-applied ethylene inhibitor and synthetic cytokinin on creeping bentgrass to enhance heat tolerance. Crop Sci. 2009, 49, 1876. [Google Scholar] [CrossRef]
- Todorov, D.; Alexieva, V.; Karanov, E. Effect of putrescine, 4-PU-30, and abscisic acid on maize plants grown under normal, drought, and rewatering conditions. J. Plant Growth Regul. 1998, 17, 197–203. [Google Scholar] [CrossRef] [PubMed]
- Ogweno, J.O.; Hu, W.H.; Song, X.S.; Shi, K.; Mao, W.H.; Zhou, Y.H.; Yu, J.Q. Photoinhibition-induced reduction in photosynthesis is alleviated by abscisic acid, cytokinin and brassinosteroid in detached tomato leaves. Plant Growth Regul. 2010, 60, 175–182. [Google Scholar] [CrossRef]
- Ahanger, M.A.; Alyemeni, M.N.; Wijaya, L.; Alamri, S.A.; Alam, P.; Ashraf, M.; Ahmad, P. Potential of exogenously sourced kinetin in protecting Solanum lycopersicum from NaCl-induced oxidative stress through up-regulation of the antioxidant system, ascorbate-glutathione cycle and glyoxalase system. PLoS ONE 2018, 13, e0202175. [Google Scholar] [CrossRef]
- Zwack, P.J.; Rashotte, A.M. Interactions between cytokinin signalling and abiotic stress responses. J. Exp. Bot. 2015, 66, 4863–4871. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jameson, P.E. Cytokinins. In Encyclopedia of Applied Plant Sciences; Elsevier: Amsterdam, The Netherlands, 2017; Volume 1, pp. 391–402. ISBN 9780123948083. [Google Scholar]
- Spallek, T.; Melnyk, C.W.; Wakatake, T.; Zhang, J.; Sakamoto, Y.; Kiba, T.; Yoshida, S.; Matsunaga, S.; Sakakibara, H.; Shirasu, K. Interspecies hormonal control of host root morphology by parasitic plants. Proc. Natl. Acad. Sci. USA 2017, 114, 5283–5288. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sardesai, N.; Lee, L.; Chen, H.; Yi, H.; Olbricht, G.R.; Stirnberg, A.; Jeffries, J.; Xiong, K.; Doerge, R.W.; Gelvin, S.B. Cytokinins secreted by Agrobacterium promote transformation by repressing a plant myb transcription factor. Sci. Signal. 2013, 6. [Google Scholar] [CrossRef] [PubMed]
- Spallek, T.; Gan, P.; Kadota, Y.; Shirasu, K. Same tune, different song—Cytokinins as virulence factors in plant–pathogen interactions? Curr. Opin. Plant Biol. 2018, 44, 82–87. [Google Scholar] [CrossRef] [PubMed]
- Savory, E.A.; Fuller, S.L.; Weisberg, A.J.; Thomas, W.J.; Gordon, M.I.; Stevens, D.M.; Creason, A.L.; Belcher, M.S.; Serdani, M.; Wiseman, M.S.; et al. Evolutionary transitions between beneficial and phytopathogenic Rhodococcus challenge disease management. Elife 2017, 6, 1–28. [Google Scholar] [CrossRef] [PubMed]
- Stirk, W.A.; van Staden, J. Flow of cytokinins through the environment. Plant Growth Regul. 2010, 62, 101–116. [Google Scholar] [CrossRef]
- Hinsch, J.; Galuszka, P.; Tudzynski, P. Functional characterization of the first filamentous fungal tRNA-isopentenyltransferase and its role in the virulence of Claviceps purpurea. New Phytol. 2016, 211, 980–992. [Google Scholar] [CrossRef] [PubMed]
- Choi, J.; Huh, S.U.; Kojima, M.; Sakakibara, H.; Paek, K.H.; Hwang, I. The cytokinin-activated transcription factor ARR2 promotes plant immunity via TGA3/NPR1-dependent salicylic acid signaling in Arabidopsis. Dev. Cell 2010, 19, 284–295. [Google Scholar] [CrossRef] [PubMed]
- Naseem, M.; Dandekar, T. The role of auxin-cytokinin antagonism in plant-pathogen interactions. PLoS Pathog. 2012, 8, e1003026. [Google Scholar] [CrossRef] [PubMed]
- Walters, D.R.; McRoberts, N. Plants and biotrophs: A pivotal role for cytokinins? Trends Plant Sci. 2006, 11, 581–586. [Google Scholar] [CrossRef] [PubMed]
- Chernyad’ev, I.I. Photosynthesis in sugar beet plants treated with benzyladenine and metribuzin during leaf ontogeny. Russ. J. Plant Physiol. 2000, 47, 161–167. [Google Scholar]
- Chernyad’Ev, I.I. Ontogenetic changes in the photosynthetic apparatus and effects of cytokinins (review). Appl. Biochem. Microbiol. 2000, 36, 527–528. [Google Scholar] [CrossRef]
- Stoynova, E.Z.; Iliev, L.K.; Georgiev, G.T. Structural and functional alterations in radish plants induced by the phenylurea cytokinin 4-PU-30. Biol. Plant. 1996, 38, 237–244. [Google Scholar] [CrossRef]
- Tao, G.-Q.; Letham, D.S.; Yong, J.W.H.; Zhang, K.; John, P.C.L.; Schwartz, O.; Wong, S.C.; Farquhar, G.D. Promotion of shoot development and tuberisation in potato by expression of a chimaeric cytokinin synthesis gene at normal and elevated CO2 levels. Funct. Plant Biol. 2010, 37, 43. [Google Scholar] [CrossRef]
- Kulaeva, O.N.; Burkhanova, E.A.; Karavaiko, N.N.; Selivankina, S.Y.; Porfirova, S.A.; Maslova, G.G.; Zemlyachenko, Y.V.; Börner, T. Chloroplasts affect the leaf response to cytokinin. J. Plant Physiol. 2002, 159, 1309–1316. [Google Scholar] [CrossRef]
- Boasson, R.; Laetsch, W.M. Chloroplast replication and growth in tobacco. Science 1969, 166, 749–751. [Google Scholar] [CrossRef] [PubMed]
- Harvey, B.M.R.; Lu, B.C.; Fletcher, R.A. Benzyladenine accelerates chloroplast differentiation and stimulates photosynthetic enzyme activity in cucumber cotyledons. Can. J. Bot. 1974, 52, 2581–2586. [Google Scholar] [CrossRef]
- Momotani, E.; Aoki, K.; Tsuji, H. Effect of benzyladenine on diurnal changes in DNA content per chloroplast and chloroplast replication in intact bean leaves. J. Exp. Bot. 1991, 42, 1287–1293. [Google Scholar] [CrossRef]
- Chory, J.; Reinecke, D.; Sim, S.; Washburn, T.; Brenner, M. A role for cytokinins in de-etiolation in Arabidopsis (det mutants have an altered response to cytokinins). Plant Physiol. 1994, 104, 339–347. [Google Scholar] [CrossRef]
- Okazaki, K.; Kabeya, Y.; Suzuki, K.; Mori, T.; Ichikawa, T.; Matsui, M.; Nakanishi, H.; Miyagishima, S. The plastid division 1 and 2 components of the chloroplast division machinery determine the rate of chloroplast division in land plant cell differentiation. Plant Cell Online 2009, 21, 1769–1780. [Google Scholar] [CrossRef] [PubMed]
- Sudriá, C.; Palazón, J.; Cusidó, R.; Bonfill, M.; Piñol, M.T.; Morales, C. Effect of benzyladenine and indolebutyric acid on ultrastructure, glands formation, and essential oil accumulation in Lavandula dentata plantlets. Biol. Plant. 2001, 44, 1–6. [Google Scholar] [CrossRef]
- Kusnetsov, V.; Herrmann, R.G.; Kulaeva, O.N.; Oelmüller, R. Cytokinin stimulates and abscisic acid inhibits greening of etiolated Lupinus luteus cotyledons by affecting the expression of the light-sensitive protochlorophyllide oxidoreductase. Mol. Gen. Genet. 1998, 259, 21–28. [Google Scholar] [CrossRef]
- Kuroda, H.; Masuda, T.; Fusada, N.; Ohta, H.; Takamiya, K.-I. Cytokinin–induced transcriptional activation of NADPH–protochlorophyllide oxidoreductase gene in cucumber. J. Plant Res. 2001, 114, 1–7. [Google Scholar] [CrossRef]
- Wilhelmova, N.; Kutik, J. Influence of exogenously applied 6-benzylaminopurine on the structure of chloroplasts and arrangement of their membranes. Photosynthetica 1995, 31, 559–570. [Google Scholar]
- Zavaleta-Mancera, H.A.; Thomas, B.J.; Thomas, H.; Scott, I.M. Regreening of senescent nicotiana leaves. II. Redifferentiation of plastids. J. Exp. Bot. 1999, 50, 1683–1689. [Google Scholar] [CrossRef]
- Zavaleta-Mancera, H.A.; Franklin, K.A.; Ougham, H.J.; Thomas, H.; Scott, I.M. Regreening of senescent Nicotiana leaves. I. Reappearance of NADPH-protochlorophyllide oxidoreductase and light-harvesting chlorophyll A/B-binding protein. J. Exp. Bot. 1999, 50, 1677–1682. [Google Scholar] [CrossRef]
- Talla, S.K.; Panigrahy, M.; Kappara, S.; Nirosha, P.; Neelamraju, S.; Ramanan, R. Cytokinin delays dark-induced senescence in rice by maintaining the chlorophyll cycle and photosynthetic complexes. J. Exp. Bot. 2016, 67, 1839–1851. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Paramonova, N.V.; Krasavina, M.S.; Sokolova, S.V. Ultrastructure of chloroplasts in phloem companion cells and mesophyll cells as related to the stimulation of sink activity by cytokinins. Russ. J. Plant Physiol. 2002, 49, 187–195. [Google Scholar] [CrossRef]
- Synková, H.; Schnablová, R.; Polanská, L.; Hušák, M.; Šiffel, P.; Vácha, F.; Malbeck, J.; Macháčková, I.; Nebesářová, J. Three-dimensional reconstruction of anomalous chloroplasts in transgenic ipt tobacco. Planta 2006, 223, 659–671. [Google Scholar] [CrossRef] [PubMed]
- Vlckova, A.; Spundova, M.; Kotabova, E.; Novotny, R.; Dolezal, K.; Naus, J. Protective cytokinin action switches to damaging during senescence of detached wheat leaves in continuous light. Physiol. Plant. 2006, 126, 257–267. [Google Scholar] [CrossRef] [Green Version]
- Criado, M.V.; Caputo, C.; Roberts, I.N.; Castro, M.A.; Barneix, A.J. Cytokinin-induced changes of nitrogen remobilization and chloroplast ultrastructure in wheat (Triticum aestivum). J. Plant Physiol. 2009, 166, 1775–1785. [Google Scholar] [CrossRef]
- Cortleven, A.; Schmülling, T. Regulation of chloroplast development and function by cytokinin. J. Exp. Bot. 2015, 66, 4999–5013. [Google Scholar] [CrossRef] [Green Version]
- Lerbs, S.; Lerbs, W.; Klyachko, N.L.; Romanko, E.G.; Kulaeva, O.N.; Wollgiehn, R.; Parthier, B. Gene expression in cytokinin-and light-mediated plastogenesis of Cucurbita cotyledons: Ribulose-1,5-bisphosphate carboxylase/oxygenase. Planta 1984, 162, 289–298. [Google Scholar] [CrossRef]
- Ohya, T.; Suzuki, H. The effects of benzyladenine on the accumulation of messenger RNAs that encode the large and small subunits of ribulose-l,5-bisphosphate carboxylase/oxygenase and light-harvesting chlorophyll A/B protein in excised cucumber cotyledons. Plant Cell Physiol. 1991, 32, 577–580. [Google Scholar] [CrossRef]
- Benková, E.; Witters, E.; Van Dongen, W.; Kolar, J.; Motyka, V.; Brzobohatý, B.; van Onckelen, H.A.; Machácková, I. Cytokinins in tobacco and wheat chloroplasts. occurrence and changes due to light/dark treatment. Plant Physiol. 1999, 121, 245–252. [Google Scholar] [CrossRef]
- Kasahara, H.; Takei, K.; Ueda, N.; Hishiyama, S.; Yamaya, T.; Kamiya, Y.; Yamaguchi, S.; Sakakibara, H. Distinct isoprenoid origins of cis-and trans-zeatin biosyntheses in Arabidopsis. J. Biol. Chem. 2004, 279, 14049–14054. [Google Scholar] [CrossRef] [PubMed]
- Polanska, L.; Vicankova, A.; Novakova, M.; Malbeck, J.; Dobrev, P.I.; Brzobohaty, B.; Vankova, R.; Machackova, I. Altered cytokinin metabolism affects cytokinin, auxin, and abscisic acid contents in leaves and chloroplasts, and chloroplast ultrastructure in transgenic tobacco. J. Exp. Bot. 2007, 58, 637–649. [Google Scholar] [CrossRef]
- Ananieva, K.; Malbeck, J.; Kaminek, M.; van Staden, J. Changes in endogenous cytokinin levels in cotyledons of Cucurbita pepo (zucchini) during natural and dark-induced senescence. Physiol. Plant. 2004, 122, 133–142. [Google Scholar] [CrossRef]
- Ananieva, K.; Ananiev, E.D.; Doncheva, S.; Georgieva, K.; Tzvetkova, N.; Kamínek, M.; Motyka, V.; Dobrev, P.; Gajdošová, S.; Malbeck, J. Senescence progression in a single darkened cotyledon depends on the light status of the other cotyledon in Cucurbita pepo (zucchini) seedlings: Potential involvement of cytokinins and cytokinin oxidase/dehydrogenase activity. Physiol. Plant. 2008, 134, 609–623. [Google Scholar] [CrossRef]
- Roberts, I.N.; Caputo, C.; Kade, M.; Criado, M.V.; Barneix, A.J. Subtilisin-like serine proteases involved in N remobilization during grain filling in wheat. Acta Physiol. Plant. 2011, 33, 1997–2001. [Google Scholar] [CrossRef]
- Janečková, H.; Husičková, A.; Ferretti, U.; Prčina, M.; Pilařová, E.; Plačková, L.; Pospíšil, P.; Doležal, K.; Špundová, M. The interplay between cytokinins and light during senescence in detached Arabidopsis leaves. Plant. Cell Environ. 2018, 41, 1870–1885. [Google Scholar] [CrossRef] [PubMed]
- Wojciechowska, N.; Sobieszczuk-Nowicka, E.; Bagniewska-Zadworna, A. Plant organ senescence—Regulation by manifold pathways. Plant Biol. 2018, 20, 167–181. [Google Scholar] [CrossRef] [PubMed]
- Weidhase, R.A.; Lehmann, J.; Kramell, H.; Sembdner, G.; Parthier, B. Degradation of ribulose-1,5-bisphosphate carboxylase and chlorophyll in senescing barley leaf segments triggered by jasmonic acid methylester, and counteraction by cytokinin. Physiol. Plant. 1987, 69, 161–166. [Google Scholar] [CrossRef]
- Selivankina, S.Y.; Karavaiko, N.N.; Kuiper, D.; Novikova, G.V.; Kulaeva, O.N. Cytokinin activity of zeatin allylic phosphate, a natural compound. Plant Growth Regul. 2001, 33, 157–164. [Google Scholar] [CrossRef]
- Liu, X.; Huang, B. Cytokinin effects on creeping bentgrass response to heat stress. Crop Sci. 2002, 42, 466. [Google Scholar] [CrossRef]
- Hudák, J.; Vizárová, G.; Šikulová, J.; Ovečková, O. Effect of cytokinins produced by strains of Agrobacterium tumefaciens with binary vectors on plastids in senescent barley leaves. Acta Physiol. Plant. 1996, 18, 205–210. [Google Scholar]
- Catsky, J.; Pospisilova, J.; Kaminek, M.; Gaudinova, A.; Pulkrabek, J.; Zahradnicek, J. Seasonal changes in sugar beet photosynthesis as affected by exogenous cytokinin N6-(m-hydroxybenzyl)adenosine. Biol. Plant. 1996, 38, 511–518. [Google Scholar] [CrossRef]
- Rivero, R.M.; Shulaev, V.; Blumwald, E. Cytokinin-dependent photorespiration and the protection of photosynthesis during water deficit. Plant Physiol. 2009, 150, 1530–1540. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Liang, C.Y.; Xu, Y.; Gianfagna, T.; Huang, B.R. Effects of Ipt gene expression on leaf senescence induced by nitrogen or phosphorus deficiency in creeping bentgrass. J. Am. Soc. Hortic. Sci. 2010, 135, 108–115. [Google Scholar]
- Wang, K.; Zhang, X.; Ervin, E. Effects of nitrate and cytokinin on creeping bentgrass under supraoptimal temperatures. J. Plant Nutr. 2013, 36, 1549–1564. [Google Scholar] [CrossRef]
- Weaver, L.M.; Gan, S.; Quirino, B.; Amasino, R.M. A comparison of the expression patterns of several senescence-associated genes in response to stress and hormone treatment. Plant Mol. Biol. 1998, 37, 455–469. [Google Scholar] [CrossRef] [PubMed]
- Gepstein, S.; Sabehi, G.; Carp, M.-J.; Hajouj, T.; Nesher, M.F.O.; Yariv, I.; Dor, C.; Bassani, M. Large-scale identification of leaf senescence-associated genes. Plant J. 2003, 36, 629–642. [Google Scholar] [CrossRef] [Green Version]
- Costa, M.L.; Civello, P.M.; Chaves, A.R.; Martínez, G.A. Effect of ethephon and 6-benzylaminopurine on chlorophyll degrading enzymes and a peroxidase-linked chlorophyll bleaching during post-harvest senescence of broccoli (Brassica oleracea L.) at 20 °C. Postharvest Biol. Technol. 2005, 35, 191–199. [Google Scholar] [CrossRef]
- Sergiev, I.; Todorova, D.; Somleva, M.; Alexieva, V.; Karanov, E.; Stanoeva, E.; Lachkova, V.; Smith, A.; Hall, M. Influence of cytokinins and novel cytokinin antagonists on the senescence of detached leaves of Arabidopsis thaliana. Biol. Plant. 2007, 51, 377–380. [Google Scholar] [CrossRef]
- Büchert, A.M.; Civello, P.M.; Martínez, G.A. Chlorophyllase versus pheophytinase as candidates for chlorophyll dephytilation during senescence of broccoli. J. Plant Physiol. 2011, 168, 337–343. [Google Scholar] [CrossRef]
- Kuderová, A.; Gallová, L.; Kuricová, K.; Nejedlá, E.; Čurdová, A.; Micenková, L.; Plíhal, O.; Šmajs, D.; Spíchal, L.; Hejátko, J. Identification of AHK2- and AHK3-like cytokinin receptors in Brassica napus reveals two subfamilies of AHK2 orthologues. J. Exp. Bot. 2015, 66, 339–353. [Google Scholar] [CrossRef]
- Lomin, S.N.; Krivosheev, D.M.; Steklov, M.Y.; Arkhipov, D.V.; Osolodkin, D.I.; Schmülling, T.; Romanov, G.A. Plant membrane assays with cytokinin receptors underpin the unique role of free cytokinin bases as biologically active ligands. J. Exp. Bot. 2015, 66, 1851–1863. [Google Scholar] [CrossRef]
- Lomin, S.N.; Myakushina, Y.A.; Kolachevskaya, O.O.; Getman, I.A.; Arkhipov, D.V.; Savelieva, E.M.; Osolodkin, D.I.; Romanov, G.A. Cytokinin perception in potato: New features of canonical players. J. Exp. Bot. 2018, 69, 3839–3853. [Google Scholar] [CrossRef] [PubMed]
- Halevy, A.H.; Dilley, D.R.; Wittwer, S.H. Senescence inhibition and respiration induced by growth retardants and 6N-benzyladenine. Plant Physiol. 1966, 41, 1085–1089. [Google Scholar] [CrossRef] [PubMed]
- Adedipe, N.O.; Fletcher, R.A. Retardation of bean leaf senescence by benzyladenine and its influence on phosphate metabolism. Plant Physiol. 1970, 46, 614–617. [Google Scholar] [CrossRef] [PubMed]
- Prokopová, J.; Špundová, M.; Sedlářová, M.; Husičková, A.; Novotný, R.; Doležal, K.; Nauš, J.; Lebeda, A. Photosynthetic responses of lettuce to downy mildew infection and cytokinin treatment. Plant Physiol. Biochem. 2010, 48, 716–723. [Google Scholar] [CrossRef]
- Osborne, D.J. Effect of kinetin on protein & nucleic acid metabolism in Xanthium leaves during senescence. Plant Physiol. 1962, 37, 595–602. [Google Scholar] [CrossRef]
- Von Abrams, G.J.; Pratt, H.K. Interaction of naphthaleneacetic acid and kinetin in the senescence of detached leaves. Plant Physiol. 1966, 41, 1525–1530. [Google Scholar] [CrossRef]
- Kasamo, K. The role of the epidermis in kinetin-induced retardation of chlorophyll degradation in tobacco leaf discs during senescence. Plant Cell Physiol. 1976, 17, 1297–1307. [Google Scholar]
- Zubo, Y.O.; Yamburenko, M.V.; Selivankina, S.Y.; Shakirova, F.M.; Avalbaev, A.M.; Kudryakova, N.V.; Zubkova, N.K.; Liere, K.; Kulaeva, O.N.; Kusnetsov, V.V.; et al. Cytokinin stimulates chloroplast transcription in detached barley leaves. Plant Physiol. 2008, 148, 1082–1093. [Google Scholar] [CrossRef]
- Buschmann, C.; Lichtenthaler, H.K. The effect of cytokinins on growth and pigment accumulation of radish seedlings (Raphanus sativus L.) Grown in the dark and at different light quanta fluence rates. Photochem. Photobiol. 1982, 35, 217–221. [Google Scholar] [CrossRef]
- Keshishian, E.A.; Rashotte, A.M. Plant cytokinin signalling. Essays Biochem. 2015, 58, 13–27. [Google Scholar] [CrossRef] [PubMed]
- Brenner, W.G.; Ramireddy, E.; Heyl, A.; Schmülling, T. Gene regulation by cytokinin in Arabidopsis. Front. Plant Sci. 2012, 3, 1–22. [Google Scholar] [CrossRef] [PubMed]
- Heyl, A.; Riefler, M.; Romanov, G.A.; Schmülling, T. Properties, functions and evolution of cytokinin receptors. Eur. J. Cell Biol. 2012, 91, 246–256. [Google Scholar] [CrossRef] [PubMed]
- Inoue, T.; Higuchi, M.; Hashimoto, Y.; Seki, M.; Kobayashi, M.; Kato, T.; Tabata, S.; Shinozaki, K.; Kakimoto, T. Identification of CRE1 as a cytokinin receptor from Arabidopsis. Nature 2001, 409, 1060–1063. [Google Scholar] [CrossRef] [PubMed]
- Brenner, W.G.; Schmulling, T. Summarizing and exploring data of a decade of cytokinin-related transcriptomics. Front. Plant Sci. 2015, 6, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Brandstatter, I.; Kieber, J.J. Two genes with similarity to bacterial response regulators are rapidly and specifically induced by cytokinin in Arabidopsis. Plant Cell Online 1998, 10, 1009–1020. [Google Scholar] [CrossRef]
- Hwang, I.; Sheen, J. Two-component circuitry in Arabidopsis cytokinin signal transduction. Nature 2001, 413, 383–389. [Google Scholar] [CrossRef]
- Zwack, P.J.; Robinson, B.R.; Risley, M.G.; Rashotte, A.M. Cytokinin response factor 6 negatively regulates leaf senescence and is induced in response to cytokinin and numerous abiotic stresses. Plant Cell Physiol. 2013, 54, 971–981. [Google Scholar] [CrossRef]
- Cortleven, A.; Nitschke, S.; Klaumunzer, M.; AbdElgawad, H.; Asard, H.; Grimm, B.; Riefler, M.; Schmulling, T. A novel protective function for cytokinin in the light stress response is mediated by the Arabidopsis histidine kinase 2 and Arabidopsis histidine kinase 3 receptors. Plant Physiol. 2014, 164, 1470–1483. [Google Scholar] [CrossRef]
- Cortleven, A.; Valcke, R. Evaluation of the photosynthetic activity in transgenic tobacco plants with altered endogenous cytokinin content: Lessons from cytokinin. Physiol. Plant. 2012, 144, 394–408. [Google Scholar] [CrossRef] [PubMed]
- Gan, S.; Amasino, R.M. Making sense of senescence (molecular genetic regulation and manipulation of leaf senescence). Plant Physiol. 1997, 113, 313–319. [Google Scholar] [CrossRef] [PubMed]
- Zwack, P.J.; Rashotte, A.M. Cytokinin inhibition of leaf senescence. Plant Signal. Behav. 2013, 8, e24737. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.-S.; Li, H.-C.; Lai, Y.-M.; Lo, H.-F.; Chen, L.-F.O. Proteomics and transcriptomics of broccoli subjected to exogenously supplied and transgenic senescence-induced cytokinin for amelioration of postharvest yellowing. J. Proteom. 2013, 93, 133–144. [Google Scholar] [CrossRef] [PubMed]
- Chang, H.; Jones, M.L.; Banowetz, G.M.; Clark, D.G. Overproduction of cytokinins in petunia flowers transformed with P(SAG12)-IPT delays corolla senescence and decreases sensitivity to ethylene. Plant Physiol. 2003, 132, 2174–2183. [Google Scholar] [CrossRef] [PubMed]
- Brady, C.J. Nucleic acid and protein synthesis. In Senescence and Aging in Plants; Noodén, L.D., Ed.; Academic Press: San Diego, CA, USA, 1988; pp. 147–178. [Google Scholar]
- Taylor, C.B.; Bariola, P.A.; DelCardayre, S.B.; Raines, R.T.; Green, P.J. RNS2: A senescence-associated RNase of Arabidopsis that diverged from the S-RNases before speciation. Proc. Natl. Acad. Sci. USA 1993, 90, 5118–5122. [Google Scholar] [CrossRef] [PubMed]
- Hensel, L.L.; Grbic, V.; Baumgarten, V.A.; Bleecker, A.B. Developmental and age-related processes that influence the longevity and senescence of photosynthetic tissues in Arabidopsis. Plant Cell 1993, 5, 553–564. [Google Scholar] [CrossRef]
- Lohman, K.N.; Gan, S.; John, M.C.; Amasino, R.M. Molecular analysis of natural leaf senescence in Arabidopsis thaliana. Physiol. Plant. 1994, 92, 322–328. [Google Scholar] [CrossRef]
- Drake, R.; John, I.; Farrell, A.; Cooper, W.; Schuch, W.; Grierson, D. Isolation and analysis of cDNAs encoding tomato cysteine proteases expressed during leaf senescence. Plant Mol. Biol. 1996, 30, 755–767. [Google Scholar] [CrossRef]
- Ryu, S.B.; Wang, X. Expression of phospholipase D during castor bean leaf senescence. Plant Physiol. 1995, 108, 713–719. [Google Scholar] [CrossRef]
- Watanabe, A.; Hamada, K.; Yokoi, H.; Watanabe, A. Biphasic and differential expression of cytosolic glutamine synthetase genes of radish during seed germination and senescence of cotyledons. Plant Mol. Biol. 1994, 26, 1807–1817. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.; Gan, S.S. Translational researches on leaf senescence for enhancing plant productivity and quality. J. Exp. Bot. 2014, 65, 3901–3913. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jordi, W.; Schapendonk, A.; Davelaar, E.; Stoopen, G.M.; Pot, C.S.; de Visser, R.; van Rhijn, J.A.; Gan, S.; Amasino, R.M. Increased cytokinin levels in transgenic P(SAG12)-IPT tobacco plants have large direct and indirect effects on leaf senescence, photosynthesis and N partitioning. Plant Cell Environ. 2000, 23, 279–289. [Google Scholar] [CrossRef]
- Lara, M.E.B.; Garcia, M.-C.G.; Fatima, T.; Ehneβ, R.; Lee, T.K.; Proels, R.; Tanner, W.; Roitsch, T.; Lara, M.E.B.; Garcia, M.-C.G.; et al. Extracellular invertase is an essential component of cytokinin-mediated delay of senescence. Plant Cell 2004, 16, 1276–1287. [Google Scholar] [CrossRef] [PubMed]
- Synková, H.; Semorádová, Š.; Schnablová, R.; Witters, E.; Hušák, M.; Valcke, R. Cytokinin-induced activity of antioxidant enzymes in transgenic Pssu-IPT tobacco during plant ontogeny. Biol. Plant. 2006, 50, 31–41. [Google Scholar] [CrossRef]
- Dertinger, U.; Schaz, U.; Schulze, E.D. Age-dependence of the antioxidative system in tobacco with enhanced glutathione reductase activity or senescence-induced production of cytokinins. Physiol. Plant. 2003, 119, 19–29. [Google Scholar] [CrossRef]
- Procházková, D.; Haisel, D.; Wilhelmová, N. Antioxidant protection during ageing and senescence in chloroplasts of tobacco with modulated life span. Cell Biochem. Funct. 2008, 26, 582–590. [Google Scholar] [CrossRef]
- He, P.; Osaki, M.; Takebe, M.; Shinano, T.; Wasaki, J. Endogenous hormones and expression of senescence-related genes in different senescent types of maize. J. Exp. Bot. 2005, 56, 1117–1128. [Google Scholar] [CrossRef] [Green Version]
Cytokinin | Plant | Concentrations of Antioxidant Related Enzymes, Secondary Metabolites and Antioxidant Activity | Reference |
---|---|---|---|
BAP | St John’s-wort (Hypericum hirsutum sc.) | ↑hyperforin | [79] |
St John’s-wort (Hypericum macalatum sc.) | ↑pseudohypericin, hyperforin | [79] | |
Wheat (Triticum aestivum L.) leaves | ↑CAT, ↑APX, ↓level of H2O2 | [35] | |
Litchi (Litchi chinensis Sonn). fruit | ↑SOD, ↑CAT, ↑APX, DPPH assay ↓level of H2O2, ↓lipid peroxidation, | [83] | |
Skullcap (Scutellaria altisima) explants | ↑baicalin, ↑wogonoside ↓lipid peroxidation | [76] | |
Eggplant (Solanum melongena L.) plants | ↓lipid peroxidation, ↑SOD, ↑CAT, ↑POD, ↑APX | [84] | |
Wheat (JM20) plants | ↓lipid peroxidation, ↑SOD, ↑CAT, ↑POD, ↑APX | [85] | |
Summer maize (hybrids DengHai605, Zheng-Dan958) plants | ↓lipid peroxidation, ↑SOD, ↑CAT, ↑POD | [87] | |
Rice (Oriza sativa cv. Taichung Native 1) leaves | ↓lipid peroxidation | [88] | |
Maerwilla (Merwilla plumbea) explants | ↑phenolic acids (PA, VA) | [70] | |
iP | ↑phenolic acid (CafA) | ||
mTR | ↑phenolic acids (PA, FA, 4CA), ORAC | ||
mT | ORAC | ||
Banana (Musa spp. AAA cultivar ‘Williams’) explants | ↑total phenolics, ↑proanthocyanidins | [69] | |
mMTTHP | ↑total phenolics, ↑total flavonoids, ↑proanthocynidins | ||
Maerwilla (Merwilla plumbea) explants | ↑phenolic acids (4CA, FA) | [70] | |
tZR | Creeping Bentgrass (Agrostis palustris L.) plants | ↓lipid peroxidation, ↓electrolyte leakage, ↑SOD, ↑CAT | [86] |
Creeping Bentgrass (Agrostis palustris L.) plants | ↓lipid peroxidation, ↑SOD, ↑CAT | [89] | |
TDZ | Skullcap (Scutellaria alpina) explants | ↑flavonoids (BC, WO) ↑verbascoside | [75] |
CPPU | Maize (Zea mays L.) seedlings | ↓lipid peroxidation, ↓level of H2O2, ↑CAT | [90] |
Tomato (Lycopersicon esculentum Mill.) leaves | ↓lipid peroxidation, ↑SOD, ↑APX | [91] | |
INCYDE | Lettuce (Lactuca sativa) | ↑4CA, ↑FA, ORAC | [78] |
Eucomis autumnalis explants | ↑flavonoids, DPPH and β-carotene acid antioxidant assay | [77] | |
PI-55 | |||
Kin | St John’s-wort (Hypericum hirsutum sc.) | ↑hyperforin | [79] |
St John’s-wort (Hypericum macalatum sc.) | ↑pseudohypericin, hyperforin | [79] | |
Tomato (Solanum lycopersicum L.) plants | ↓level of H2O2, ↓lipid peroxidation, ↓electrolyte leakage, ↑SOD, ↑CAT, ↑ascorbate-glutathione cycle, ↑total phenols, ↑flavonoids | [92] | |
Oat (Avena sativa L. cv. Victory) leaves | ↓lipid peroxidation, ↑SOD, ↑CAT, | [29] | |
Anthurium (Anthurium andraeanum Lindl.) leaves | ↑APX | [82] |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hönig, M.; Plíhalová, L.; Husičková, A.; Nisler, J.; Doležal, K. Role of Cytokinins in Senescence, Antioxidant Defence and Photosynthesis. Int. J. Mol. Sci. 2018, 19, 4045. https://doi.org/10.3390/ijms19124045
Hönig M, Plíhalová L, Husičková A, Nisler J, Doležal K. Role of Cytokinins in Senescence, Antioxidant Defence and Photosynthesis. International Journal of Molecular Sciences. 2018; 19(12):4045. https://doi.org/10.3390/ijms19124045
Chicago/Turabian StyleHönig, Martin, Lucie Plíhalová, Alexandra Husičková, Jaroslav Nisler, and Karel Doležal. 2018. "Role of Cytokinins in Senescence, Antioxidant Defence and Photosynthesis" International Journal of Molecular Sciences 19, no. 12: 4045. https://doi.org/10.3390/ijms19124045
APA StyleHönig, M., Plíhalová, L., Husičková, A., Nisler, J., & Doležal, K. (2018). Role of Cytokinins in Senescence, Antioxidant Defence and Photosynthesis. International Journal of Molecular Sciences, 19(12), 4045. https://doi.org/10.3390/ijms19124045