New Insights into the Tumor Microenvironment Utilizing Protein Array Technology
Abstract
:1. Introduction
2. The Tumor Microenvironment
3. Cytokines and Cell Networks in the Tumor Microenvironment
3.1. Cytokines
3.2. Cell Networks in the Tumor Microenvironment (TME)
4. Protein Array Technology
5. Protein Arrays Reveal Unique Insight into the Tumor Microenvironment
5.1. TME Regulation of Tumor Progression and Metastasis
5.2. Identification of Potential Drug Targets
5.3. Drug Resistance
5.4. Cancer Stem Cells and the Tumor Microenvironment
6. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Lorusso, G.; Rüegg, C. The tumor microenvironment and its contribution to tumor evolution toward metastasis. Histochem. Cell Biol. 2008, 130, 1091–1103. [Google Scholar] [CrossRef] [PubMed]
- Whiteside, T.L. The tumor microenvironment and its role in promoting tumor growth. Oncogene 2008, 27, 5904–5912. [Google Scholar] [CrossRef] [PubMed]
- Quail, D.F.; Joyce, J.A. Microenvironmental regulation of tumor progression and metastasis. Nat. Med. 2013, 19, 1423–1437. [Google Scholar] [CrossRef] [PubMed]
- Balkwill, F.R.; Capasso, M.; Hagemann, T. The tumor microenvironment at a glance. J. Cell Sci. 2012, 125, 5591–5596. [Google Scholar] [CrossRef] [PubMed]
- Witz, I.P. The tumor microenvironment: The making of a paradigm. Cancer Microenviron. 2009, 1, 9–17. [Google Scholar] [CrossRef] [PubMed]
- Balkwill, F.; Mantovani, A. Inflammation and cancer: Back to Virchow? Lancet 2001, 357, 539–545. [Google Scholar] [CrossRef]
- Gajewski, T.F.; Schreiber, H.; Fu, Y.X. Innate and adaptive immune cells in the tumor microenvironment. Nat. Immunol. 2013, 14, 1014–1022. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.F. Regulatory T cells and innate immune regulation in tumor immunity. Springer Semin. Immunopathol. 2006, 28, 17–23. [Google Scholar] [CrossRef] [PubMed]
- Kuang, Z.Z.; Wilson, J.J.; Luo, S.H.; Zhu, S.W.; Huang, R.P. Deciphering Asthma Biomarkers with Protein Profiling Technology. Int. J. Inflamm. 2015, 2015, 630637. [Google Scholar] [CrossRef] [PubMed]
- Landskron, G.; De la Fuente, M.; Thuwajit, P.; Thuwajit, C.; Hermoso, M.A. Chronic inflammation and cytokines in the tumor microenvironment. J. Immunol. Res. 2014, 2014, 149185. [Google Scholar] [CrossRef] [PubMed]
- Huang, R.P. An array of possibilities in cancer research using cytokine antibody arrays. Expert Rev. Proteom. 2007, 4, 299–308. [Google Scholar] [CrossRef] [PubMed]
- Ozaki, K.; Leonard, W.J. Cytokine and cytokine receptor pleiotropy and redundancy. J. Biol. Chem. 2002, 277, 29355–29358. [Google Scholar] [CrossRef] [PubMed]
- Huang, R.; Brett, B.; Valerie, S.J.; Jiang, W.D.; Mao, Y.Q.; Chen, Q.L.; Shi, Z. Cytokine Antibody Arrays in Biomarker Discovery and Validation. Curr. Proteom. 2012, 9, 55–70. [Google Scholar] [CrossRef]
- Goubran, H.A.; Kotb, R.R.; Stakiw, J.; Emara, M.E.; Burnouf, T. Regulation of tumor growth and metastasis: The role of tumor microenvironment. Cancer Growth Metastasis 2014, 7, 9–18. [Google Scholar] [CrossRef] [PubMed]
- Su, S.; Liu, Q.; Chen, J.; Chen, J.; Chen, F.; He, C.; Huang, D.; Wu, W.; Lin, L.; Huang, W.; et al. A positive feedback loop between mesenchymal-like cancer cells and macrophages is essential to breast cancer metastasis. Cancer Cell 2014, 25, 605–620. [Google Scholar] [CrossRef] [PubMed]
- Biswas, S.K.; Mantovani, A. Macrophage plasticity and interaction with lymphocyte subsets: Cancer as a paradigm. Nat. Immunol. 2010, 11, 889–896. [Google Scholar] [CrossRef] [PubMed]
- Escribese, M.M.; Casas, M.; Corbí, A.L. Influence of low oxygen tensions on macrophage polarization. Immunobiology 2012, 217, 1233–1240. [Google Scholar] [CrossRef] [PubMed]
- Xing, F.; Saidou, J.; Watabe, K. Cancer associated fibroblasts (CAFs) in tumor microenvironment. Front. Biosci. 2010, 15, 166–179. [Google Scholar] [CrossRef]
- Cirri, P.; Chiarugi, P. Cancer associated fibroblasts: The dark side of the coin. Am. J. Cancer Res. 2011, 1, 482–497. [Google Scholar] [PubMed]
- Kalluri, R.; Zeisberg, M. Fibroblasts in cancer. Nat. Rev. Cancer 2006, 6, 392–401. [Google Scholar] [CrossRef] [PubMed]
- Fu, H.; Yang, H.; Zhang, X.; Xu, W. The emerging roles of exosomes in tumor-stroma interaction. J. Cancer Res. Clin. Oncol. 2016, 142, 1897–1907. [Google Scholar] [CrossRef] [PubMed]
- Yu, Z.; Pestell, T.G.; Lisanti, M.P.; Pestell, R.G. Cancer stem cells. Int. J. Biochem. Cell Biol. 2012, 44, 2144–2151. [Google Scholar] [CrossRef] [PubMed]
- Magee, J.A.; Piskounova, E.; Morrison, S.J. Cancer stem cells: Impact, heterogeneity, and uncertainty. Cancer Cell 2012, 21, 283–296. [Google Scholar] [CrossRef] [PubMed]
- Medema, J.P. Cancer stem cells: The challenges ahead. Nat. Cell Biol. 2013, 15, 338–344. [Google Scholar] [CrossRef] [PubMed]
- Kopf, E.; Zharhary, D. Antibody arrays—An emerging tool in cancer proteomics. Int. J. Biochem. Cell Biol. 2007, 39, 1305–1317. [Google Scholar] [CrossRef] [PubMed]
- Yu, X.; Schneiderhan-Marra, N.; Joos, T.O. Protein microarrays for personalized medicine. Clin. Chem. 2010, 56, 376–387. [Google Scholar] [CrossRef] [PubMed]
- Caiazzo, R.J., Jr.; Maher, A.J.; Drummond, M.P.; Lander, C.I.; Tassinari, O.W.; Nelson, B.P.; Liu, B.C. Protein microarrays as an application for disease biomarkers. Proteom. Clin. Appl. 2009, 3, 138–147. [Google Scholar] [CrossRef] [PubMed]
- Sanchez-Carbayo, M. Antibody arrays: Technical considerations and clinical applications in cancer. Clin. Chem. 2006, 52, 1651–1659. [Google Scholar] [CrossRef] [PubMed]
- Huang, R.P.; Yang, W.; Yang, D.; Flowers, L.; Horowitz, I.R.; Cao, X.; Huang, R. The promise of cytokine antibody arrays in the drug discovery process. Expert Opin. Ther. Targets 2005, 9, 601–615. [Google Scholar] [CrossRef] [PubMed]
- Haab, B.B. Applications of antibody array platforms. Curr. Opin. Biotechnol. 2006, 17, 415–421. [Google Scholar] [CrossRef] [PubMed]
- Charboneau, L.; Tory, H.; Chen, T.; Winters, M.; Petricoin, E.F., III; Liotta, L.A.; Paweletz, C.P. Utility of reverse phase protein arrays: Applications to signalling pathways and human body arrays. Brief. Funct. Genom. Proteom. 2002, 1, 305–315. [Google Scholar] [CrossRef]
- Calvo, K.R.; Liotta, L.A.; Petricoin, E.F. Clinical proteomics: From biomarker discovery and cell signaling profiles to individualized personal therapy. Biosci. Rep. 2005, 25, 107–125. [Google Scholar] [CrossRef] [PubMed]
- Ramachandran, N.; Srivastava, S.; Labaer, J. Applications of protein microarrays for biomarker discovery. Proteom. Clin. Appl. 2008, 2, 1444–1459. [Google Scholar] [CrossRef] [PubMed]
- Chen, F.; Zhuang, X.; Lin, L.; Yu, P.; Wang, Y.; Shi, Y.; Hu, G.; Sun, Y. New horizons in tumor microenvironment biology: Challenges and opportunities. BMC Med. 2015, 5, 45. [Google Scholar] [CrossRef] [PubMed]
- Joyce, J.A. Therapeutic targeting of the tumor microenvironment. Cancer Cell 2005, 7, 513–520. [Google Scholar] [CrossRef] [PubMed]
- Mattei, F.; Schiavoni, G.; Sestili, P.; Spadaro, F.; Fragale, A.; Sistigu, A.; Lucarini, V.; Spada, M.; Sanchez, M.; Scala, S.; et al. IRF-8 controls melanoma progression by regulating the cross talk between cancer and immune cells within the tumor microenvironment. Neoplasia 2012, 14, 1223–1235. [Google Scholar] [CrossRef] [PubMed]
- Anderberg, C.; Li, H.; Fredriksson, L.; Andrae, J.; Betsholtz, C.; Li, X.; Eriksson, U.; Pietras, K. Paracrine signaling by Platelet Derived Growth Factor-CC promotes tumor growth by recruitment of cancer-associated fibroblasts. Cancer Res. 2009, 69, 369–378. [Google Scholar] [CrossRef] [PubMed]
- Alkasalias, T.; Flaberg, E.; Kashuba, V.; Alexeyenko, A.; Pavlova, T.; Savchenko, A.; Szekely, L.; Klein, G.; Guven, H. Inhibition of tumor cell proliferation and motility by fibroblasts is both contact and soluble factor dependent. Proc. Natl. Acad. Sci. USA 2014, 111, 17188–17193. [Google Scholar] [CrossRef] [PubMed]
- Frankenberger, C.; Rabe, D.; Bainer, R.; Sankarasharma, D.; Chada, K.; Krausz, T.; Gilad, Y.; Becker, L.; Rosner, M.R. Metastasis Suppressors Regulate the Tumor Microenvironment by Blocking Recruitment of Prometastatic Tumor-Associated Macrophages. Cancer Res. 2015, 75, 4063–4073. [Google Scholar] [CrossRef] [PubMed]
- Song, J.; Ge, Z.; Yang, X.; Luo, Q.; Wang, C.; You, H.; Ge, T.; Deng, Y.; Lin, H.; Cui, Y.; et al. Hepatic stellate cells activated by acidic tumor microenvironment promote the metastasis of hepatocellular carcinoma via osteopontin. Cancer Lett. 2015, 356, 713–720. [Google Scholar] [CrossRef] [PubMed]
- Fu, X.T.; Dai, Z.; Song, K.; Zhang, Z.J.; Zhou, Z.J.; Zhou, S.L.; Zhao, Y.M.; Xiao, Y.S.; Sun, Q.M.; Ding, Z.B.; et al. Macrophage-secreted IL-8 induces epithelial-mesenchymal transition in hepatocellular carcinoma cells by activating the JAK2/STAT3/Snail pathway. Int. J. Oncol. 2015, 46, 587–596. [Google Scholar] [CrossRef] [PubMed]
- Straussman, R.; Morikawa, T.; Shee, K.; Barzilyrokni, M.; Qian, Z.R.; Du, J.Y.; Davis, A.; Mongare, M.M.; Gould, J.; Frederick, D.T.; et al. Tumor microenvironment induces innate RAF-inhibitor resistance through HGF secretion. Nature 2012, 487, 500–504. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, X.; Mao, Y.; Wang, J.; Zu, L.; Hao, M.; Cheng, G.; Qu, Q.; Cui, D.; Keller, E.T.; Chen, X.; et al. IL-6 secreted by cancer-associated fibroblasts induces tamoxifen resistance in luminal breast cancer. Oncogene 2014, 33, 3350. [Google Scholar] [CrossRef] [PubMed]
- Wan, S.; Zhao, E.; Kryczek, I.; Vatan, L.; Sadovskaya, A.; Ludema, G.; Simeone, D.M.; Zou, W.; Welling, T.H. Tumor-Associated Macrophages Produce Interleukin 6 and Signal via STAT3 to Promote Expansion of Human Hepatocellular Carcinoma Stem Cells. Gastroenterology 2014, 147, 1393–1404. [Google Scholar] [CrossRef] [PubMed]
- Zhu, L.; Cheng, X.; Shi, J.; Jiacheng, L.; Chen, G.; Jin, H.; Liu, A.B.; Pyo, H.; Ye, J.; Zhu, Y.; et al. Crosstalk between bone marrow-derived myofibroblasts and gastric cancer cells regulates cancer stemness and promotes tumorigenesis. Oncogene 2016, 35, 5388–5399. [Google Scholar] [CrossRef] [PubMed]
- Vermeulen, L.; de Sousa E Melo, F.; van der Heijden, M.; Cameron, K.; de Jong, J.H.; Borovski, T.; Tuynman, J.B.; Todaro, M.; Merz, C.; Rodermond, H.; et al. Wnt activity defines colon cancer stem cells and is regulated by the microenvironment. Nat. Cell Biol. 2010, 12, 468–476. [Google Scholar] [CrossRef] [PubMed]
- Boran, A.D.; Iyengar, R. Systems approaches to polypharmacology and drug discovery. Curr. Opin. Drug Discov. Dev. 2010, 13, 297–309. [Google Scholar]
- Yıldırım, M.A.; Goh, K.; Cusick, M.E.; Barabási, A.; Vidal, M. Drug–target network. Nat. Biotechnol. 2007, 25, 1119–1126. [Google Scholar] [CrossRef] [PubMed]
- Castano, Z.; Fillmore, C.M.; Kim, C.F.; McAllister, S.S. The bed and the bugs: Interactions between the tumor microenvironment and cancer stem cells. Semin. Cancer Biol. 2012, 22, 462–470. [Google Scholar] [CrossRef] [PubMed]
- Lecomte, J.; Masset, A.; Blacher, S.; Maertens, L.; Gothot, A.; Delgaudine, M.; Bruyère, F.; Carnet, O.; Paupert, J.; Illemann, M.; et al. Bone marrow-derived myofibroblasts are the providers of pro-invasive matrix metalloproteinase 13 in primary tumor. Neoplasia 2012, 14, 943–951. [Google Scholar] [CrossRef] [PubMed]
- Quante, M.; Tu, S.P.; Tomita, H.; Gonda, T.; Wang, S.S.; Takashi, S.; Baik, G.H.; Shibata, W.; Diprete, B.; Betz, K.S.; et al. Bone marrow-derived myofibroblasts contribute to the mesenchymal stem cell niche and promote tumor growth. Cancer Cell 2011, 19, 257–272. [Google Scholar] [CrossRef] [PubMed]
Cell Type | Experimental Method | Array Type | Array Result | Citation |
---|---|---|---|---|
B16-F10 cells | in vitro cell co-culture | sandwich-based FPPM | IL-3, IL-6 and IL-10 are released by immune cells in the TME | [36] |
PDGF-C transfected B16-F10 cell-derived tumors | in vivo mouse tumor model | sandwich-based FPPM | FGF-2 and osteopontin expression was significantly higher in B16/PDGF-C tumor lysates compared with controls | [37] |
BJhTERTs and PC3 mRFP tumor cells | in vitro cell culture | label-based FPPM | GDF-15, DKK1, EDA-A2, EMAP-II, Galectin-3, CXCL2, Nidogen1 and uPA were significantly increased and MMP3 significantly decreased in CM from the confrontation sample compared with controls | [38] |
RKIP + BM1 tumor-derived TAMs | in vitro cell culture | sandwich-based FPPM | VEGF-A, VEGF-D, OPN, LGALS3, SLPI, MMP-12, sTNFR2 and PGRN were significantly increased in TAM-CM isolated from RKIP+CCL5 tumors compared with controls | [39] |
LX-2 cells | in vitro cell culture | sandwich-based FPPM | osteopontin secretion was increased in an acidic environment and was the driving force behind the migration of HCC cells | [40] |
MHCC-97H, Hep-G2, and THP-1 cells | in vitro cell co-culture | sandwich-based FPPM | MIP-3α, TNF-α, RANTES, MCP-1, IL-6, IL-8, IL-1β and GRO-α were significantly increased in both co-cultured MHCC-97H and Hep-G2 cells compared with controls | [41] |
MCF-7, EMT-MCF-7, and MDA-MB-231 cells | in vitro cell culture | sandwich-based FPPM | GM-CSF, IL-8, CCL2, GRO and GROα were significantly increased in MCF-7 cells that have undergone EMT and MDA-MB-231 cells compared with MCF-7 cells | [15] |
18 stromal cell lines | in vitro cell co-culture | sandwich-based and label-based FPPMs | HGF was best correlated with PLX4720 resistance | [42] |
NAFs, FADs, PCFs and CAFs | in vitro cell co-culture | sandwich-based FPPM | IL-6, IL-8 and GRO (CXCL1, CXCL2 and CXCL3) levels were consistently higher in the CAF-CM than in the NAF, FAD and PCF-CM | [43] |
HepG2, Hep3B, and TAMs | in vitro cell co-culture | sandwich-based FPPM | IL-6 was significantly increased in HepG2/TAM co-cultures compared with HepG2 or TAMs cultures | [44] |
BMFs and MKN28 cells | in vitro cell co-culture | sandwich-based FPPM | IL-6 levels were significantly higher in co-culture-CM than those in BMF-CM | [45] |
myofibroblasts and CSCs | in vitro cell culture | sandwich-based FPPM | HGF was significantly upregulated in MFs compared to controls. | [46] |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, W.; Luo, S.; Burgess, R.; Yi, Y.-H.; Huang, G.F.; Huang, R.-P. New Insights into the Tumor Microenvironment Utilizing Protein Array Technology. Int. J. Mol. Sci. 2018, 19, 559. https://doi.org/10.3390/ijms19020559
Huang W, Luo S, Burgess R, Yi Y-H, Huang GF, Huang R-P. New Insights into the Tumor Microenvironment Utilizing Protein Array Technology. International Journal of Molecular Sciences. 2018; 19(2):559. https://doi.org/10.3390/ijms19020559
Chicago/Turabian StyleHuang, Wei, Shuhong Luo, Rob Burgess, Yu-Hua Yi, Gordon F. Huang, and Ruo-Pan Huang. 2018. "New Insights into the Tumor Microenvironment Utilizing Protein Array Technology" International Journal of Molecular Sciences 19, no. 2: 559. https://doi.org/10.3390/ijms19020559
APA StyleHuang, W., Luo, S., Burgess, R., Yi, Y. -H., Huang, G. F., & Huang, R. -P. (2018). New Insights into the Tumor Microenvironment Utilizing Protein Array Technology. International Journal of Molecular Sciences, 19(2), 559. https://doi.org/10.3390/ijms19020559