Morphological Complexity as a Floral Signal: From Perception by Insect Pollinators to Co-Evolutionary Implications
Abstract
:1. Introduction
2. What Are Morphologically Complex Flowers?
3. How Common Are Complex Flowers?
4. The Role of Morphological Complexity in Specialization of Plant–Pollinator Interactions
5. Benefits of Complex Flower Shapes: The Plant Perspective
6. Benefits of Complex Flower Shapes: The Pollinator Perspective. Is Floral Complexity an Honest Signal of Reward?
7. Perception and Processing of Floral Complexity Signals
8. Learning to Handle Complex Flowers
9. Conclusions and Future Directions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Frame, D.; Durou, S. Morphology and biology of Napoleonaea vogelii (Lecythidaceae) flowers in relation to the natural history of insect visitors. Biotropica 2001, 33, 458–471. [Google Scholar] [CrossRef]
- Heinrich, B. “Majoring” and “minoring” by foraging bumblebees, Bombus vagans: An experimental analysis. Ecology 1979, 60, 245–255. [Google Scholar] [CrossRef]
- Laverty, T.M. The flower-visiting behaviour of bumble bees: Floral complexity and learning. Can. J. Zool. 1980, 58, 1324–1335. [Google Scholar] [CrossRef]
- Laverty, T.M. Bumble bee learning and flower morphology. Anim. Behav. 1994, 47, 531–545. [Google Scholar] [CrossRef]
- Neal, P.R.; Dafni, A.; Giurfa, M. Floral symmetry and its role in plant-pollinator systems: Terminology, distribution, and hypotheses. Annu. Rev. Ecol. Syst. 1998, 29, 345–373. [Google Scholar] [CrossRef]
- Kaiser-Bunbury, C.N.; Vázquez, D.P.; Stang, M.; Ghazoul, J. Determinants of the microstructure of plant–pollinator networks. Ecology 2014, 95, 3314–3324. [Google Scholar] [CrossRef]
- Muth, F.; Keasar, T.; Dornhaus, A. Trading off short-term costs for long-term gains: How do bumblebees decide to learn morphologically complex flowers? Anim. Behav. 2015, 101, 191–199. [Google Scholar] [CrossRef]
- Stefanaki, A.; Kantsa, A.; Tscheulin, T.; Charitonidou, M.; Petanidou, T. Lessons from red data books: Plant vulnerability increases with floral complexity. PLoS ONE 2015, 10, e0138414. [Google Scholar] [CrossRef] [PubMed]
- Endress, P.K. Evolution of floral symmetry. Curr. Opin. Plant Biol. 2001, 4, 86–91. [Google Scholar] [CrossRef]
- Endress, P.K. Evolutionary diversification of the flowers in angiosperms. Am. J. Bot. 2011, 98, 370–396. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Westerkamp, C. Keel blossoms: Bee flowers with adaptations against bees. Flora 1997, 192, 125–132. [Google Scholar] [CrossRef]
- Westerkamp, C.; Claßen-Bockhoff, R. Bilabiate flowers: The ultimate response to bees? Ann. Bot. 2007, 100, 361–374. [Google Scholar] [CrossRef] [PubMed]
- Endress, P.K. The immense diversity of floral monosymmetry and asymmetry across angiosperms. Bot. Rev. 2012, 78, 345–397. [Google Scholar] [CrossRef]
- Hileman, L.C. Trends in flower symmetry evolution revealed through phylogenetic and developmental genetic advances. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2014, 369. [Google Scholar] [CrossRef] [PubMed]
- Berg, R. The ecological significance of correlation pleiades. Evolution 1960, 14, 171–180. [Google Scholar] [CrossRef]
- Harder, L.D.; Johnson, S.D. Darwin’s beautiful contrivances: Evolutionary and functional evidence for floral adaptation. New Phytol. 2009, 183, 530–545. [Google Scholar] [CrossRef] [PubMed]
- De Luca, P.A.; Vallejo-Marín, M. What’s the ‘buzz’about? The ecology and evolutionary significance of buzz-pollination. Curr. Opin. Plant Biol. 2013, 16, 429–435. [Google Scholar] [CrossRef] [PubMed]
- Morgan, T.; Whitehorn, P.; Lye, G.C.; Vallejo-Marín, M. Floral sonication is an innate behaviour in bumblebees that can be fine-tuned with experience in manipulating flowers. J. Insect Behav. 2016, 29, 233–241. [Google Scholar] [CrossRef] [PubMed]
- Stebbins, G.L. Natural selection and the differentiation of angiosperm families. Evolution 1951, 5, 299–324. [Google Scholar] [CrossRef]
- Leonard, A.S.; Dornhaus, A.; Papaj, D.R. Flowers help bees cope with uncertainty: Signal detection and the function of floral complexity. J. Exp. Biol. 2011, 214, 113–121. [Google Scholar] [CrossRef] [PubMed]
- Russell, A.L.; Mauerman, K.B.; Golden, R.E.; Papaj, D.R. Linking components of complex signals to morphological part: The role of anther and corolla in the complex floral display. Anim. Behav. 2018, 135, 223–236. [Google Scholar] [CrossRef]
- Renner, S.S. Rewardless flowers in the angiosperms and the role of insect cognition in their evolution. In Plant-Pollinator Interactions: From Specialization to Generalization; University of Chicago Press: Chicago, IL, USA, 2006; pp. 123–144. [Google Scholar]
- Zhang, J.; Tian, Y.; Wang, L.; He, C. Functional evolutionary developmental biology (evo-devo) of morphological novelties in plants. J. Syst. Evol. 2010, 48, 94–101. [Google Scholar] [CrossRef]
- Gaskett, A. Orchid pollination by sexual deception: Pollinator perspectives. Biol. Rev. 2011, 86, 33–75. [Google Scholar] [CrossRef] [PubMed]
- Binkenstein, J.; Stang, M.; Renoult, J.P.; Schaefer, H.M. Weak correlation of flower color and nectar-tube depth in temperate grasslands. J. Plant Ecol. 2016, 10, 397–405. [Google Scholar] [CrossRef]
- Menzel, R.; Shmida, A. The ecology of flower colours and the natural colour vision of insect pollinators: The Israeli flora as a study case. Biol. Rev. 1993, 68, 81–120. [Google Scholar] [CrossRef]
- Dukas, R.; Shmida, A. Correlation between the color, size and shape of Israeli crucifer flowers and relationships to pollinators. Oikos 1989, 54, 281–286. [Google Scholar] [CrossRef]
- Hodges, S.A.; Whittall, J.B.; Fulton, M.; Yang, J.Y. Genetics of floral traits influencing reproductive isolation between Aquilegia formosa and Aquilegia pubescens. Am. Nat. 2002, 159, S51–S60. [Google Scholar] [CrossRef] [PubMed]
- Galen, C.; Zimmer, K.A.; Newport, M.E. Pollination in floral scent morphs of Polemonium viscosum: A mechanism for disruptive selection on flower size. Evolution 1987, 41, 599–606. [Google Scholar] [PubMed]
- Vallejo-Marín, M.; Da Silva, E.M.; Sargent, R.D.; Barrett, S.C. Trait correlates and functional significance of heteranthery in flowering plants. New Phytol. 2010, 188, 418–425. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Buchmann, S. Buzz pollination in angiosperms. In Handbook of Experimental Pollination Biology; Jones, C.E., Little, R.J., Eds.; Van Nostrand Reinhold: New York, NY, USA, 1983; pp. 73–113. [Google Scholar]
- Stebbins, G.L. Flowering Plants: Evolution above the Species Level; Arnold: London, UK, 1974. [Google Scholar]
- Crepet, W.L. Timing in the evolution of derived floral characters: Upper Cretaceous (Turonian) taxa with tricolpate and tricolpate-derived pollen. Rev. Palaeobot. Palynol. 1996, 90, 339–359. [Google Scholar] [CrossRef]
- Donoghue, M.J.; Ree, R.H.; Baum, D.A. Phylogeny and the evolution of flower symmetry in the Asteridae. Trends Plant Sci. 1998, 3, 311–317. [Google Scholar] [CrossRef]
- Endress, P.K. Symmetry in flowers: Diversity and evolution. Int. J. Plant Sci. 1999, 160, S3–S23. [Google Scholar] [CrossRef] [PubMed]
- Sargent, R.D. Floral symmetry affects speciation rates in angiosperms. Proc. R. Soc. Lond. B Biol. Sci. 2004, 271, 603–608. [Google Scholar] [CrossRef] [PubMed]
- Fenster, C.B.; Armbruster, W.S.; Wilson, P.; Dudash, M.R.; Thomson, J.D. Pollination syndromes and floral specialization. Annu. Rev. Ecol. Evol. Syst. 2004, 35, 375–403. [Google Scholar] [CrossRef]
- Kay, K.M.; Sargent, R.D. The role of animal pollination in plant speciation: Integrating ecology, geography, and genetics. Annu. Rev. Ecol. Evol. Syst. 2009, 40, 637–656. [Google Scholar] [CrossRef]
- Citerne, H.; Jabbour, F.; Nadot, S.; Damerval, C. The evolution of floral symmetry. Adv. Bot. Res. 2010, 54, 85–137. [Google Scholar]
- Vamosi, J.C.; Vamosi, S.M. Zygomorphy, Area, and the Latitudinal Biodiversity Gradient in Angiosperms. In Evolution of Plant-Pollinator Relationships; Patiny, S., Ed.; Cambridge University Press: Cambridge, UK, 2012; pp. 320–343. [Google Scholar]
- Zhao, Y.; Ren, Z.; Lázaro, A.; Wang, H.; Bernhardt, P.; Li, H.; Li, D. Floral traits influence pollen vectors’ choices in higher elevation communities in the Himalaya-Hengduan Mountains. BMC Ecol. 2016, 16, 26. [Google Scholar] [CrossRef] [PubMed]
- Lázaro, A.; Jakobsson, A.; Totland, Ø. How do pollinator visitation rate and seed set relate to species’ floral traits and community context? Oecologia 2013, 173, 881–893. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stang, M.; Klinkhamer, P.G.; Van der Meijden, E. Asymmetric specialization and extinction risk in plant–flower visitor webs: A matter of morphology or abundance? Oecologia 2007, 151, 442–453. [Google Scholar] [CrossRef] [PubMed]
- Benadi, G.; Hovestadt, T.; Poethke, H.; Blüthgen, N. Specialization and phenological synchrony of plant–pollinator interactions along an altitudinal gradient. J. Anim. Ecol. 2014, 83, 639–650. [Google Scholar] [CrossRef] [PubMed]
- Olesen, J.M.; Dupont, Y.L.; Ehlers, B.K.; Hansen, D.M. The openness of a flower and its number of flower-visitor species. Taxon 2007, 56, 729–736. [Google Scholar] [CrossRef]
- Watts, S.; Dormann, C.F.; Martín González, A.M.; Ollerton, J. The influence of floral traits on specialization and modularity of plant–pollinator networks in a biodiversity hotspot in the Peruvian Andes. Ann. Bot. 2016, 118, 415–429. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McCall, C.; Primack, R.B. Influence of flower characteristics, weather, time of day, and season on insect visitation rates in three plant communities. Am. J. Bot. 1992, 79, 434–442. [Google Scholar] [CrossRef]
- Saleh, N.; Ohashi, K.; Thomson, J.D.; Chittka, L. Facultative use of the repellent scent mark in foraging bumblebees: Complex versus simple flowers. Anim. Behav. 2006, 71, 847–854. [Google Scholar] [CrossRef]
- Hegland, S.J.; Totland, Ø. Relationships between species’ floral traits and pollinator visitation in a temperate grassland. Oecologia 2005, 145, 586–594. [Google Scholar] [CrossRef] [PubMed]
- Ohashi, K. Consequence of floral complexity for bumblebee-mediated geitonogamous self-pollination in Salvia nipponica Miq. (Labiatae). Evolution 2002, 56, 2414–2423. [Google Scholar] [PubMed]
- Pellissier, L.; Pottier, J.; Vittoz, P.; Dubuis, A.; Guisan, A. Spatial pattern of floral morphology: Possible insight into the effects of pollinators on plant distributions. Oikos 2010, 119, 1805–1813. [Google Scholar] [CrossRef]
- Fantinato, E.; Giovanetti, M.; Del Vecchio, S.; Buffa, G. Altitudinal patterns of floral morphologies in dry calcareous grasslands. Plant Sociol. 2016, 53, 83–90. [Google Scholar]
- Rodríguez-Gironés, M.A.; Santamaría, L. Resource competition, character displacement, and the evolution of deep corolla tubes. Am. Nat. 2007, 170, 455–464. [Google Scholar] [CrossRef] [PubMed]
- Montgomery, B.R.; Rathcke, B.J. Effects of floral restrictiveness and stigma size on heterospecific pollen receipt in a prairie community. Oecologia 2012, 168, 449–458. [Google Scholar] [CrossRef] [PubMed]
- McLernon, S.M.; Murphy, S.D.; Aarssen, L.W. Heterospecific pollen transfer between sympatric species in a midsuccessional old-field community. Am. J. Bot. 1996, 83, 1168–1174. [Google Scholar] [CrossRef]
- Arceo-Gómez, G.; Abdala-Roberts, L.; Jankowiak, A.; Kohler, C.; Meindl, G.A.; Navarro-Fernández, C.M.; Parra-Tabla, V.; Ashman, T.; Alonso, C. Patterns of among-and within-species variation in heterospecific pollen receipt: The importance of ecological generalization. Am. J. Bot. 2016, 103, 396–407. [Google Scholar] [CrossRef] [PubMed]
- Stout, J.C.; Allen, J.A.; Goulson, D. The influence of relative plant density and floral morphological complexity on the behaviour of bumblebees. Oecologia 1998, 117, 543–550. [Google Scholar] [CrossRef] [PubMed]
- Culbert, B.M.; Forrest, J.R. Floral symmetry affects bumblebee approach consistency in artificial flowers. J. Pollinat. Ecol. 2016, 18, 1–6. [Google Scholar]
- Cohen, D.; Shmida, A. The evolution of flower display and reward. In Evolutionary Biology; Hecht, M.K., MacIntyre, R.J., Clegg, M.T., Eds.; Springer: New York, NY, USA, 1993; Volume 27, pp. 197–243. [Google Scholar]
- Warren, J.; Diaz, A. A two-pollinator model for the evolution of floral complexity. Evol. Ecol. 2001, 15, 157–166. [Google Scholar] [CrossRef]
- Harder, L.; Cruzan, M. An evaluation of the physiological and evolutionary influences of inflorescence size and flower depth on nectar production. Funct. Ecol. 1990, 4, 559–572. [Google Scholar] [CrossRef]
- Ornelas, J.; Ordano, M.; De-Nova, A.J.; Quintero, M.; Garland, T. Phylogenetic analysis of interspecific variation in nectar of hummingbird-visited plants. J. Evol. Biol. 2007, 20, 1904–1917. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tavares, D.C.; Freitas, L.; Gaglianone, M.C. Nectar volume is positively correlated with flower size in hummingbird-visited flowers in the Brazilian Atlantic Forest. J. Trop. Ecol. 2016, 32, 335–339. [Google Scholar] [CrossRef]
- Petanidou, T.; Smets, E. The potential of marginal lands for bees and apiculture: Nectar secretion in Mediterranean shrublands. Apidologie 1995, 26, 39–52. [Google Scholar] [CrossRef]
- Levin, M.; Haydak, M. Comparative value of different pollens in the nutrition of Osmia lignaria. Bee World 1957, 38, 221–226. [Google Scholar] [CrossRef]
- Buchmann, S.L. Vibratile pollination in Solanum and Lycopersicon: A look at pollen chemistry. In Solanaceae: Biology and Systematics; D’Arcy, W.G., Ed.; Columbia University Press: New York, NY, USA, 1986; pp. 237–252. [Google Scholar]
- Greenberg, L. Year-round culturing and productivity of a sweat bee, Lasioglossum zephyrum (Hymenoptera: Halictidae). J. Kans. Entomol. Soc. 1982, 55, 13–22. [Google Scholar]
- Schmidt, J.O.; Thoenes, S.C.; Levin, M.D. Survival of honey bees, Apis mellifera (Hymenoptera: Apidae), fed various pollen sources. Ann. Entomol. Soc. Am. 1987, 80, 176–183. [Google Scholar] [CrossRef]
- Regali, A.; Rasmont, P. Nouvelles méthodes de test pour l'évaluation du régime alimentaire chez des colonies orphelines de Bombus terrestris (L) (Hymenoptera, Apidae). Apidologie 1995, 26, 273–281. [Google Scholar] [CrossRef]
- Plowright, R.; Pendrel, B. Larval growth in bumble bees (Hymenoptera: Apidae). Can. Entomol. 1977, 109, 967–973. [Google Scholar] [CrossRef]
- Ribeiro, M. Growth in bumble bee larvae: Relation between development time, mass, and amount of pollen ingested. Can. J. Zool. 1994, 72, 1978–1985. [Google Scholar] [CrossRef]
- Génissel, A.; Aupinel, P.; Bressac, C.; Tasei, J.; Chevrier, C. Influence of pollen origin on performance of Bombus terrestris micro-colonies. Entomol. Exp. Appl. 2002, 104, 329–336. [Google Scholar] [CrossRef]
- Tasei, J.; Aupinel, P. Nutritive value of 15 single pollens and pollen mixes tested on larvae produced by bumblebee workers (Bombus terrestris, Hymenoptera: Apidae). Apidologie 2008, 39, 397–409. [Google Scholar] [CrossRef]
- Dobson, H.E. Survey of pollen and pollenkitt lipids—Chemical cues to flower visitors? Am. J. Bot. 1988, 170–182. [Google Scholar] [CrossRef]
- Buchmann, S.L.; Cane, J.H. Bees assess pollen returns while sonicating Solanum flowers. Oecologia 1989, 81, 289–294. [Google Scholar] [CrossRef] [PubMed]
- Gori, D.F. Floral color change in Lupinus argenteus (Fabaceae): Why should plants advertise the location of unrewarding flowers to pollinators? Evolution 1989, 43, 870–881. [Google Scholar] [CrossRef] [PubMed]
- Harder, L.D. Behavioral responses by bumble bees to variation in pollen availability. Oecologia 1990, 85, 41–47. [Google Scholar] [CrossRef] [PubMed]
- Simpson, B.B.; Neff, J.L. Evolution and diversity of floral rewards. In Handbook of Experimental Pollination Biology; Jones, C.E., Little, R.J., Eds.; Van Nostrand Reinhold: New York, NY, USA, 1983; pp. 142–159. [Google Scholar]
- Roulston, T.H.; Cane, J.H.; Buchmann, S.L. What governs protein content of pollen: Pollinator preferences, pollen–pistil interactions, or phylogeny? Ecol. Monogr. 2000, 70, 617–643. [Google Scholar]
- Goulson, D.; Darvill, B. Niche overlap and diet breadth in bumblebees; are rare species more specialized in their choice of flowers? Apidologie 2004, 35, 55–63. [Google Scholar] [CrossRef] [Green Version]
- Goulson, D. Bumblebees. In Silent Summer: The State of Wildlife in Britain and Ireland; Maclean, N., Ed.; Cambridge University Press: Cambridge, UK, 2010; pp. 415–429. [Google Scholar]
- Forcone, A.; Aloisi, P.V.; Ruppel, S.; Muñoz, M. Botanical composition and protein content of pollen collected by Apis mellifera L. in the north-west of Santa Cruz (Argentinean Patagonia). Grana 2011, 50, 30–39. [Google Scholar] [CrossRef]
- Cronin, T.W.; Johnsen, S.; Marshall, N.J.; Warrant, E.J. Visual Ecology; Princeton University Press: Princeton, NJ, USA, 2014. [Google Scholar]
- Menzel, R.; Blakers, M. Colour receptors in the bee eye—Morphology and spectral sensitivity. J. Comp. Physiol. A 1976, 108, 11–13. [Google Scholar] [CrossRef]
- Peitsch, D.; Fietz, A.; Hertel, H.; de Souza, J.; Ventura, D.F.; Menzel, R. The spectral input systems of hymenopteran insects and their receptor-based colour vision. J. Comp. Physiol. A 1992, 170, 23–40. [Google Scholar] [CrossRef] [PubMed]
- Kinoshita, M.; Shimada, N.; Arikawa, K. Colour vision of the foraging swallowtail butterfly Papilio xuthus. J. Exp. Biol. 1999, 202, 95–102. [Google Scholar] [PubMed]
- Daumer, K. Reizmetrische untersuchung des Farbensehens der Bienen. Z. Vergl. Physiol. 1956, 38, 413–478. [Google Scholar]
- Backhaus, W. Color opponent coding in the visual system of the honeybee. Vis. Res. 1991, 31, 1381–1397. [Google Scholar] [CrossRef]
- Giurfa, M.; Vorobyev, M.; Kevan, P.; Menzel, R. Detection of coloured stimuli by honeybees: Minimum visual angles and receptor specific contrasts. J. Comp. Physiol. A 1996, 178, 699–709. [Google Scholar] [CrossRef]
- Giurfa, M.; Vorobyev, M.; Brandt, R.; Posner, B.; Menzel, R. Discrimination of coloured stimuli by honeybees: Alternative use of achromatic and chromatic signals. J. Comp. Physiol. A 1997, 180, 235–243. [Google Scholar] [CrossRef]
- Ne’eman, G.; Ne’eman, R. Factors determining visual detection distance to real flowers by Bumble bees. J. Pollinat. Ecol. 2017, 20, 1–12. [Google Scholar]
- Land, M.F. Visual acuity in insects. Annu. Rev. Entomol. 1997, 42, 147–177. [Google Scholar] [CrossRef] [PubMed]
- Giurfa, M.; Backhaus, W.; Menzel, R. Color and angular orientation in the discrimination of bilateral symmetric patterns in the honeybee. Naturwissenschaften 1995, 82, 198–201. [Google Scholar] [CrossRef]
- Rodríguez, I.; Gumbert, A.; de Ibarra, N.H.; Kunze, J.; Giurfa, M. Symmetry is in the eye of the ‘beeholder’: Innate preference for bilateral symmetry in flower-naïve bumblebees. Naturwissenschaften 2004, 91, 374–377. [Google Scholar] [CrossRef] [PubMed]
- Plowright, C.; Evans, S.; Leung, J.C.; Collin, C. The preference for symmetry in flower-naïve and not-so-naïve bumblebees. Learn. Motiv. 2011, 42, 76–83. [Google Scholar] [CrossRef]
- Horridge, G.A. The honeybee (Apis mellifera) detects bilateral symmetry and discriminates its axis. J. Insect Physiol. 1996, 42, 755–764. [Google Scholar] [CrossRef]
- Giurfa, M.; Eichmann, B.; Menzel, R. Symmetry perception in an insect. Nature 1996, 382, 458. [Google Scholar] [CrossRef] [PubMed]
- Kugler, H. Die Ausnützung der Saftmalsumfärbung bei der Roßkastanie durch Bienen und Hummeln. Ber. Dtsch. Bot. Ges. 1936, 54, 394–400. [Google Scholar]
- Kugler, H. Hummeln als Blütenbesucher: Ein Beitrag zur experimentellen Blütenkologie. Naturwissenschaften 1943, 19, 143–323. [Google Scholar]
- Manning, A. The effect of honey-guides. Behaviour 1956, 9, 114–139. [Google Scholar] [CrossRef]
- Free, J. Effect of flower shapes and nectar guides on the behaviour of foraging honeybees. Behaviour 1970, 37, 269–285. [Google Scholar] [CrossRef]
- Leppik, E. The ability of insects to distinguish number. Am. Nat. 1953, 87, 229–236. [Google Scholar] [CrossRef]
- Giurfa, M.; Dafni, A.; Neal, P.R. Floral symmetry and its role in plant-pollinator systems. Int. J. Plant Sci. 1999, 160, S41–S50. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Srinivasan, M. Prior experience enhances pattern discrimination in insect vision. Nature 1994, 368, 330. [Google Scholar] [CrossRef]
- Dyer, A.G.; Griffiths, D.W. Seeing near and seeing far; behavioural evidence for dual mechanisms of pattern vision in the honeybee (Apis mellifera). J. Exp. Biol. 2012, 215, 397–404. [Google Scholar] [CrossRef] [PubMed]
- Avarguès-Weber, A.; d’Amaro, D.; Metzler, M.; Dyer, A.G. Conceptualization of relative size by honeybees. Front. Neurosci. 2014, 8, 80. [Google Scholar]
- Srinivasan, M.V.; Zhang, S.; Rolfe, B. Is pattern vision in insects mediated by ‘cortical’ processing? Nature 1993, 362, 539. [Google Scholar] [CrossRef]
- O’Carroll, D. Feature-detecting neurons in dragonflies. Nature 1993, 362, 541. [Google Scholar] [CrossRef]
- Osorio, D. Symmetry detection by categorization of spatial phase, a model. Proc. R. Soc. Lond. B 1996, 263, 105–110. [Google Scholar] [CrossRef]
- Collett, T.; Blest, A. Binocular, directionally selective neurones, possibly involved in the optomotor response of insects. Nature 1966, 212, 1330–1333. [Google Scholar] [CrossRef] [PubMed]
- Collett, T. Centripetal and centrifugal visual cells in medulla of the insect optic lobe. J. Neurophysiol. 1970, 33, 239–256. [Google Scholar] [CrossRef] [PubMed]
- Wehner, R. Pattern modulation and pattern detection in the visual system of Hymenoptera. In Information Processing in the Visual Systems of Anthropods; Wehner, R., Ed.; Springer: Berlin, Germany, 1972; pp. 183–194. [Google Scholar]
- Lindauer, M.; Nedel, J.O. Ein Schweresinnesorgan der Honigbiene. Z. Vergl. Physiol. 1959, 42, 334–364. [Google Scholar] [CrossRef]
- Gegear, R.J.; Laverty, T.M. Effect of flower complexity on relearning flower-handling skills in bumble bees. Can. J. Zool. 1995, 73, 2052–2058. [Google Scholar] [CrossRef]
- Woodward, G.L.; Laverty, T.M. Recall of flower handling skills by bumble bees: A test of Darwin’s interference hypothesis. Anim. Behav. 1992, 44, 1045–1051. [Google Scholar] [CrossRef]
- Chittka, L.; Thomson, J.D. Sensori-motor learning and its relevance for task specialization in bumble bees. Behav. Ecol. Sociobiol. 1997, 41, 385–398. [Google Scholar] [CrossRef]
- Gegear, R.; Laverty, T. How many flower types can bumble bees work at the same time? Can. J. Zool. 1998, 76, 1358–1365. [Google Scholar] [CrossRef]
- Keasar, T.; Motro, U.; Shur, Y.; Shmida, A. Overnight memory retention of foraging skills by bumblebees is imperfect. Anim. Behav. 1996, 52, 95–104. [Google Scholar] [CrossRef]
- Chittka, L. Sensorimotor learning in bumblebees: Long-term retention and reversal training. J. Exp. Biol. 1998, 201, 515–524. [Google Scholar]
- Stephens, D.W.; Brown, J.S.; Ydenberg, R.C. Foraging: Behavior and Ecology; University of Chicago Press: Chicago, IL, USA, 2007. [Google Scholar]
- Charlton, N.L.; Houston, A.I. What currency do bumble bees maximize? PLoS ONE 2010, 5, e12186. [Google Scholar] [CrossRef] [PubMed]
- Shafir, S. Intransitivity of preferences in honey bees: Support for ‘comparative’ evaluation of foraging options. Anim. Behav. 1994, 48, 55–67. [Google Scholar] [CrossRef]
- Sanderson, C.E.; Orozco, B.S.; Hill, P.S.; Wells, H. Honeybee (Apis mellifera ligustica) response to differences in handling time, rewards and flower colours. Ethology 2006, 112, 937–946. [Google Scholar] [CrossRef]
Term | Definition |
---|---|
Achromatic stimuli | Visual stimuli that vary only in the total intensity of reflected light. |
Actinomorphy | Two or more planes of symmetry; radial symmetry. |
Chromatic stimuli | Visual stimuli that vary only in the spectral (wavelength) composition of the reflected light (color). |
Color distance | A metric indicative of perceptual color difference between two stimuli in animal color spaces (graphical models based on photoreceptor properties and sensitivities). |
Color-opponency | Combination of differential neuronal outputs of color-sensitive photoreceptors to create a signal in the processing of color. |
Floral integration | Covariation in flower parts. |
Flower constancy | Tendency for an individual pollinator to visit flowers of a single species within a foraging bout. |
Geitonogamy | A type of self-pollination, in which a flower is fertilized by pollen from another flower of the same individual plant. |
Nectary | Specialized cells that are usually part of a flower, which secrete sugary fluids. |
Photopigment | A chemical that undergoes a chemical change when exposed to light. In vision, these are primarily the visual pigments or other opsin-based molecules. |
Poricidal anthers | Anthers packed with loose pollen grains, dehiscing by a pore at one end of the thecae. |
Trichromacy | A color-vision system based on three classes of color receptors. |
Visual acuity | The minimum angular separation between two objects in the visual field that are perceived as distinct, at a given distance from the viewer. |
Visual field | The limits of the space around the eyes from which visual information is obtained. |
Zygomorphy | A single plane of symmetry; bilateral symmetry; one half of an object mirrors the other half. |
Family | Floral Morphology | Pollinators | Examples (Genera) |
---|---|---|---|
Acanthaceae | Fused corolla lobes, usually bilabiate (upper lip suppressed and larger lower lip in some species) | Bees, hummingbirds, flies, moths | Acanthus, Justicia |
Balsaminaceae | Four petals combined in pairs and one upper petal, usually 3–5 sepals, one of which forms a long tube called spur | Bees | Impatiens, Hydrocera |
Bignoniaceae | Fused corolla lobes (usually five), bilabiate, large and showy, with wider upper part | Bees, bats, hummingbirds | Tecoma, Incarvillea, Spathodea |
Boraginaceae | Five petals fused, sometimes lobed, forming a tube or funnel shape with infoldings or scales | Bees, butterflies, hummingbirds | Onosma, Heliotropium |
Cannaceae | Corolla three-lobed, forming a tube together with stamen and staminodes | Bees, birds | Canna |
Caprifoliaceae | Five fused corolla lobes forming a tube or funnel shape | Bees, butterflies, moths, hummingbirds | Lonicera, Abelia |
Fabaceae | Flag is formed by single median petal and the keel is composed of two petals (in lower lateral position) which secondarily join into a common boat-shaped petal | Bees | Lupinus, Lotus |
Goodeniaceae | Five unified corolla lobes either uni-or bilabiate, stamens form a tube-like structure | Bees | Dampiera, Scaevola |
Iridaceae | Corolla is formed by three inner and three outer segments, free or united | Bees, birds | Iris, Crocosmia |
Lamiaceae | 4–5 corolla lobes often reduced to 2–3, with two lips. Upper lip is two-lobed and lower lip is three-lobed. Lower lip occasionally hooded or concave | Bees, hummingbirds, flies | Salvia, Plectranthus, Lamium |
Moringaceae | Five petals, unequal and overlapping; petaloid sepal; resemble inverted keel flowers of Fabaceae | Bees | Moringa |
Orchidaceae | Three petaloid sepals and three petals, variable in shape and color, sometimes spurred or with enlarged sac-like tepal. The inner median, anterior tepal is enlarged and is called the labellum | Bees | Ophrys, Catasetum |
Proteaceae | Four slender petaloid sepals, distinct or united, forming a tubular structure, petals usually absent | Birds, beetles | Grevillea, Conospermum |
Resedaceae | Clawed petals, fringed, bifid, vary in number from 2 to 8, innermost petal is large and outer ones are smaller | Bees | Reseda |
Scrophulariaceae | Bell-shaped corollas with variations including narrow corolla tube, spurs, keel petal | Bees, hummingbirds | Digitalis, Linaria, Antirrhinum |
Valerianaceae | Five overlapping corolla lobes, sometimes fused, basal nectar-filled spur | Butterflies | Centranthus |
Vochysiaceae | Five overlapping corolla lobes, fused, basal nectar filled spur | Bees, butterflies | Vochysia, Callisthene |
Zingiberaceae | Tubular corolla with three lobes, colored petaloid labellum derived from staminodes | Bees | Mantisia, Zingiber |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Krishna, S.; Keasar, T. Morphological Complexity as a Floral Signal: From Perception by Insect Pollinators to Co-Evolutionary Implications. Int. J. Mol. Sci. 2018, 19, 1681. https://doi.org/10.3390/ijms19061681
Krishna S, Keasar T. Morphological Complexity as a Floral Signal: From Perception by Insect Pollinators to Co-Evolutionary Implications. International Journal of Molecular Sciences. 2018; 19(6):1681. https://doi.org/10.3390/ijms19061681
Chicago/Turabian StyleKrishna, Shivani, and Tamar Keasar. 2018. "Morphological Complexity as a Floral Signal: From Perception by Insect Pollinators to Co-Evolutionary Implications" International Journal of Molecular Sciences 19, no. 6: 1681. https://doi.org/10.3390/ijms19061681
APA StyleKrishna, S., & Keasar, T. (2018). Morphological Complexity as a Floral Signal: From Perception by Insect Pollinators to Co-Evolutionary Implications. International Journal of Molecular Sciences, 19(6), 1681. https://doi.org/10.3390/ijms19061681