Inflammatory Markers and MicroRNAs: The Backstage Actors Influencing Prognosis in Colorectal Cancer Patients
Abstract
:1. Introduction
2. Literature Review
2.1. Inflammatory Pathway
2.1.1. Acute-Phase Reactants
2.1.2. Inflammatory Cytokines
2.1.3. Blood Cell Ratios
2.2. MiRNAs
3. Materials and Methods
- Selection criteria consisted of the following:
- English published papers
- Published between 2008–2018
- Published in peer reviewed journals
- Papers assessing prognostic role of inflammatory markers and predictive miRNAs in different settings of colorectal cancer
4. Conclusions
Author Contributions
Conflicts of Interest
Abbreviations
CRC | Colorectal cancer |
CRP | C-reactive protein |
TNF-α | Tumor necrosis factor α |
IL | Interleukin |
TNM | Tumor-node-metastasis |
NLR | Neutrophil to lymphocyte ratio |
LMR | Lymphocyte to monocyte ratio |
PLR | Platelet to lymphocyte ratio |
M0 | No metastasis |
M1 | Distant metastasis |
FOLFOX | 5-Fluorouracil, leucovorin, and oxaliplatin |
CA19-9 | Carbohydrate antigen 19-9 |
CEA | Carcinoembryonic antigen |
OS | Overall survival |
PFS | Progression free survival |
DFS | Disease free survival |
ORR | Overall response rate |
HR | Hazard ratio |
FOLFIRI | Folinic acid, bolus/continuous fluorouracil, and irinotecan |
Bev | Bevacizumab |
References
- Ferlay, J.; Soerjomataram, I.; Dikshit, R.; Eser, S.; Mathers, C.; Rebelo, M.; Parkin, D.M.; Forman, D.; Bray, F. Cancer incidence and mortality worldwide: Sources, methods and major patterns in GLOBOCAN 2012. Int. J. Cancer 2015, 136, E359–E386. [Google Scholar] [CrossRef] [PubMed]
- Pulivarthi, S.; Gurram, M.K. Effectiveness of d-dimer as a screening test for venous thromboembolism: An update. N. Am. J. Med. Sci. 2014, 6, 491–499. [Google Scholar] [PubMed]
- Chan, J.C.; Chan, D.L.; Diakos, C.I.; Engel, A.; Pavlakis, N.; Gill, A.; Clarke, S.J. The lymphocyte-to-monocyte ratio is a superior predictor of overall survival in comparison to established biomarkers of resectable colorectal cancer. Ann. Surg. 2017, 265, 539–546. [Google Scholar] [CrossRef] [PubMed]
- Haram, A.; Boland, M.R.; Kelly, M.E.; Bolger, J.C.; Waldron, R.M.; Kerin, M.J. The prognostic value of neutrophil-to-lymphocyte ratio in colorectal cancer: A systematic review. J. Surg. Oncol. 2017, 115, 470–479. [Google Scholar] [CrossRef] [PubMed]
- Iversen, L.H.; Thorlacius-Ussing, O. Relationship of coagulation test abnormalities to tumour burden and postoperative DVT in resected colorectal cancer. Thromb. Haemost. 2002, 87, 402–408. [Google Scholar] [PubMed]
- Sun, L.; Hu, S.; Yu, L.; Guo, C.; Sun, L.; Yang, Z.; Qi, J.; Ran, Y. Serum haptoglobin as a novel molecular biomarker predicting colorectal cancer hepatic metastasis. Int. J. Cancer 2016, 138, 2724–2731. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Facciorusso, A.; Del Prete, V.; Crucinio, N.; Serviddio, G.; Vendemiale, G.; Muscatiello, N. Lymphocyte-to-monocyte ratio predicts survival after radiofrequency ablation for colorectal liver metastases. World J. Gastroenterol. 2016, 22, 4211–4218. [Google Scholar] [CrossRef] [PubMed]
- Tang, H.; Li, B.; Zhang, A.; Lu, W.; Xiang, C.; Dong, J. Prognostic significance of neutrophil-to-lymphocyte ratio in colorectal liver metastasis: A systematic review and meta-analysis. PLoS ONE 2016, 11. [Google Scholar] [CrossRef] [PubMed]
- MacFarlane, L.-A.; Murphy, P.R. MicroRNA: Biogenesis, function and role in cancer. Curr. Genom. 2010, 11, 537–561. [Google Scholar] [CrossRef] [PubMed]
- Schetter, A.J.; Okayama, H.; Harris, C.C. The role of microRNAs in colorectal cancer. Cancer J. 2012, 18, 244–252. [Google Scholar] [CrossRef] [PubMed]
- McMillan, D.C. Systemic inflammation, nutritional status and survival in patients with cancer. Curr. Opin. Clin. Nutr. Metab. Care 2009, 12, 223–226. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Greevenbroek, M.M.; Schalkwijk, C.G.; Stehouwer, C.D. Obesity-associated low-grade inflammation in type 2 diabetes mellitus: Causes and consequences. Neth. J. Med. 2013, 71, 174–187. [Google Scholar] [PubMed]
- Greenberg, A.S.; Obin, M.S. Obesity and the role of adipose tissue in inflammation and metabolism. Am. J. Clin. Nutr. 2006, 83, 461s–465s. [Google Scholar] [CrossRef] [PubMed]
- Naugler, W.E.; Karin, M. The wolf in sheep’s clothing: The role of interleukin-6 in immunity, inflammation and cancer. Trends Mol. Med. 2008, 14, 109–119. [Google Scholar] [CrossRef] [PubMed]
- Waldner, M.J.; Foersch, S.; Neurath, M.F. Interleukin-6—A key regulator of colorectal Cancer development. Int. J. Biol. Sci. 2012, 8, 1248–1253. [Google Scholar] [CrossRef] [PubMed]
- Hassanzadeh, P. Colorectal cancer and NF-κB signaling pathway. Gastroenterol. Hepatol. Bed Bench 2011, 4, 127–132. [Google Scholar] [PubMed]
- Bollrath, J.; Phesse, T.J.; von Burstin, V.A.; Putoczki, T.; Bennecke, M.; Bateman, T.; Nebelsiek, T.; Lundgren-May, T.; Canli, O.; Schwitalla, S.; et al. gp130-mediated Stat3 activation in enterocytes regulates cell survival and cell-cycle progression during colitis-associated tumorigenesis. Cancer Cell 2009, 15, 91–102. [Google Scholar] [CrossRef] [PubMed]
- Castell, J.V.; Gomez-Lechon, M.J.; David, M.; Fabra, R.; Trullenque, R.; Heinrich, P.C. Acute-phase response of human hepatocytes: Regulation of acute-phase protein synthesis by interleukin-6. Hepatology 1990, 12, 1179–1186. [Google Scholar] [CrossRef] [PubMed]
- Zimmerman, M.A.; Selzman, C.H.; Cothren, C.; Sorensen, A.C.; Raeburn, C.D.; Harken, A.H. Diagnostic implications of C-reactive protein. Arch. Surg. 2003, 138, 220–224. [Google Scholar] [CrossRef] [PubMed]
- Doweiko, J.P.; Nompleggi, D.J. The role of albumin in human physiology and pathophysiology, Part III: Albumin and disease states. JPEN 1991, 15, 476–483. [Google Scholar] [CrossRef] [PubMed]
- Sadrzadeh, S.M.H.; Bozorgmehr, J. Haptoglobin phenotypes in health and disorders. Pathol. Patterns Rev. 2004, 121, 971S–1004S. [Google Scholar] [CrossRef]
- Park, J.; Yang, J.S.; Jung, G.; Woo, H.I.; Park, H.-D.; Kim, J.-W.; Huh, W.; Ko, J.-W.; Kim, H.; Cho, J.-Y.; et al. Subunit-specific mass spectrometry method identifies haptoglobin subunit alpha as a diagnostic marker in non-small cell lung cancer. J. Proteom. 2013, 94, 302–310. [Google Scholar] [CrossRef] [PubMed]
- Hamrita, B.; Chahed, K.; Trimeche, M.; Guillier, C.L.; Hammann, P.; Chaïeb, A.; Korbi, S.; Chouchane, L. Proteomics-based identification of α1-antitrypsin and haptoglobin precursors as novel serum markers in infiltrating ductal breast carcinomas. Clin. Chim. Acta 2009, 404, 111–118. [Google Scholar] [CrossRef] [PubMed]
- Mandato, V.D.; Magnani, E.; Abrate, M.; Casali, B.; Nicoli, D.; Farnetti, E.; Formisano, D.; Pirillo, D.; Ciarlini, G.; Deiaco, P.; et al. Haptoglobin phenotype and epithelial ovarian cancer. Anticancer Res. 2012, 32, 4353–4358. [Google Scholar] [PubMed]
- Lai, C.-H.; Chang, N.-W.; Lin, C.-F.; Lin, C.-D.; Lin, Y.-J.; Wan, L.; Sheu, J.J.-C.; Chen, S.-Y.; Huang, Y.-P.; Sing, Y.-T.; et al. Proteomics-based identification of haptoglobin as a novel plasma biomarker in oral squamous cell carcinoma. Clin. Chim. Acta 2010, 411, 984–991. [Google Scholar] [CrossRef] [PubMed]
- Alvarez-Blasco, F.; Martinez-Garcia, M.A.; Luque-Ramirez, M.; Parraza, N.; San Millan, J.L.; Escobar-Morreale, H.F. Role of haptoglobin in polycystic ovary syndrome (PCOS), obesity and disorders of glucose tolerance in premenopausal women. PLoS ONE 2009, 4, e5606. [Google Scholar] [CrossRef] [PubMed]
- Ritchie, D.G.; Levy, B.A.; Adams, M.A.; Fuller, G.M. Regulation of fibrinogen synthesis by plasmin-derived fragments of fibrinogen and fibrin: An indirect feedback pathway. Proc. Natl. Acad. Sci. USA 1982, 79, 1530–1534. [Google Scholar] [CrossRef] [PubMed]
- Robson, S.C.; Shephard, E.G.; Kirsch, R.E. Fibrin degradation product D-dimer induces the synthesis and release of biologically active IL-1 beta, IL-6 and plasminogen activator inhibitors from monocytes in vitro. Br. J. Haematol. 1994, 86, 322–326. [Google Scholar] [CrossRef] [PubMed]
- Sahni, A.; Simpson-Haidaris, P.J.; Sahni, S.K.; Vaday, G.G.; Francis, C.W. Fibrinogen synthesized by cancer cells augments the proliferative effect of fibroblast growth factor-2 (FGF-2). JTH 2008, 6, 176–183. [Google Scholar] [CrossRef] [PubMed]
- Macciò, A.; Madeddu, C.; Gramignano, G.; Mulas, C.; Tanca, L.; Cherchi, M.C.; Floris, C.; Omoto, I.; Barracca, A.; Ganz, T. The role of inflammation, iron, and nutritional status in cancer-related anemia: Results of a large, prospective, observational study. Haematologica 2015, 100, 124–132. [Google Scholar] [CrossRef] [PubMed]
- Tingting, H.; Di, S.; Xiaoping, C.; Xiaohong, W.; Dong, H. High preoperative serum ferritin predicted poor prognosis in non-metastatic colorectal cancer. Saudi Med. J. 2017, 38, 268–275. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gonzalez-Trejo, S.; Carrillo, J.F.; Carmona-Herrera, D.D.; Baz-Gutierrez, P.; Herrera-Goepfert, R.; Nunez, G.; Ochoa-Carrillo, F.J.; Gallardo-Rincon, D.; Aiello-Crocifoglio, V.; Onate-Ocana, L.F. Baseline serum albumin and other common clinical markers are prognostic factors in colorectal carcinoma: A retrospective cohort study. Medicine 2017, 96, e6610. [Google Scholar] [CrossRef] [PubMed]
- Chiang, J.M.; Chang, C.J.; Jiang, S.F.; Yeh, C.Y.; You, J.F.; Hsieh, P.S.; Huang, H.Y. Pre-operative serum albumin level substantially predicts post-operative morbidity and mortality among patients with colorectal cancer who undergo elective colectomy. Eur. J. Cancer Care 2017, 26. [Google Scholar] [CrossRef] [PubMed]
- Artac, M.; Uysal, M.; Karaagac, M.; Korkmaz, L.; Er, Z.; Guler, T.; Boruban, M.C.; Bozcuk, H. Prognostic impact of neutrophil/lymphocyte ratio, platelet count, CRP, and albumin levels in metastatic colorectal cancer patients treated with folfiri-bevacizumab. J. Gastrointest. Cancer 2017, 48, 176–180. [Google Scholar] [CrossRef] [PubMed]
- Thomsen, M.; Kersten, C.; Sorbye, H.; Skovlund, E.; Glimelius, B.; Pfeiffer, P.; Johansen, J.S.; Kure, E.H.; Ikdahl, T.; Tveit, K.M.; et al. Interleukin-6 and C-reactive protein as prognostic biomarkers in metastatic colorectal cancer. Oncotarget 2016, 7, 75013–75022. [Google Scholar] [CrossRef] [PubMed]
- Casadei Gardini, A.; Carloni, S.; Scarpi, E.; Maltoni, P.; Dorizzi, R.M.; Passardi, A.; Frassineti, G.L.; Cortesi, P.; Giannini, M.B.; Marisi, G.; et al. Prognostic role of serum concentrations of high-sensitivity C-reactive protein in patients with metastatic colorectal cancer: Results from the ITACa trial. Oncotarget 2016, 7, 10193–10202. [Google Scholar] [PubMed]
- Riedl, J.M.; Posch, F.; Moik, F.; Bezan, A.; Szkandera, J.; Smolle, M.A.; Kasparek, A.K.; Pichler, M.; Stoger, H.; Stotz, M.; et al. Inflammatory biomarkers in metastatic colorectal cancer: Prognostic and predictive role beyond the first line setting. Oncotarget 2017, 8, 96048–96061. [Google Scholar] [CrossRef] [PubMed]
- Kostner, A.H.; Kersten, C.; Lowenmark, T.; Ydsten, K.A.; Peltonen, R.; Isoniemi, H.; Haglund, C.; Gunnarsson, U.; Isaksson, B. The prognostic role of systemic inflammation in patients undergoing resection of colorectal liver metastases: C-reactive protein (CRP) is a strong negative prognostic biomarker. J. Surg. Oncol. 2016, 114, 895–899. [Google Scholar] [CrossRef] [PubMed]
- Nagai, H.; Yuasa, N.; Takeuchi, E.; Miyake, H.; Yoshioka, Y.; Miyata, K. The mean corpuscular volume as a prognostic factor for colorectal cancer. Surg. Today 2018, 48, 186–194. [Google Scholar] [CrossRef] [PubMed]
- Mik, M.; Dziki, L.; Berut, M.; Trzcinski, R.; Dziki, A. Neutrophil to lymphocyte ratio and C-reactive protein as two predictive tools of anastomotic leak in colorectal cancer open surgery. Dig. Surg. 2018, 35, 77–84. [Google Scholar] [CrossRef] [PubMed]
- Shibutani, M.; Maeda, K.; Nagahara, H.; Iseki, Y.; Hirakawa, K.; Ohira, M. The significance of the C-reactive protein to albumin ratio as a marker for predicting survival and monitoring chemotherapeutic effectiveness in patients with unresectable metastatic colorectal cancer. SpringerPlus 2016, 5, 1798. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ishizuka, M.; Nagata, H.; Takagi, K.; Iwasaki, Y.; Shibuya, N.; Kubota, K. Clinical significance of the C-reactive protein to albumin ratio for survival after surgery for colorectal cancer. Ann. Surg. Oncol. 2016, 23, 900–907. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.; Song, A.; Eo, W. Serum ferritin as a prognostic biomarker for survival in relapsed or refractory metastatic colorectal cancer. J. Cancer 2016, 7, 957–964. [Google Scholar] [CrossRef] [PubMed]
- Lu, S.L.; Ye, Z.H.; Ling, T.; Liang, S.Y.; Li, H.; Tang, X.Z.; Xu, Y.S.; Tang, W.Z. High pretreatment plasma D-dimer predicts poor survival of colorectal cancer: Insight from a meta-analysis of observational studies. Oncotarget 2017, 8, 81186–81194. [Google Scholar] [CrossRef] [PubMed]
- Tekesin, K.; Bayrak, S.; Esatoglu, V.; Ozdemir, E.; Ozel, L.; Melih Kara, V. D-dimer and carcinoembryonic antigen levels: Useful indicators for predicting the tumor stage and postoperative survival. Gastroenterol. Res. Pract. 2016, 2016. [Google Scholar] [CrossRef] [PubMed]
- Pedrazzani, C.; Mantovani, G.; Salvagno, G.L.; Baldiotti, E.; Ruzzenente, A.; Iacono, C.; Lippi, G.; Guglielmi, A. Elevated fibrinogen plasma level is not an independent predictor of poor prognosis in a large cohort of Western patients undergoing surgery for colorectal cancer. World J. Gastroenterol. 2016, 22, 9994–10001. [Google Scholar] [CrossRef] [PubMed]
- Liang, T.; Kai, L.; Junfeng, W.; Cui, W.; Peng, Z.; Jianzhong, L. High preoperative plasma fibrinogen levels are associated with distant metastases and impaired prognosis after curative resection in patients with colorectal cancer. J. Surg. Oncol. 2010, 102, 428–432. [Google Scholar]
- Yu, J.; Li, D.; Lei, D.; Yuan, F.; Pei, F.; Zhang, H.; Yu, A.; Wang, K.; Chen, H.; Chen, L.; et al. Tumor-specific D-dimer concentration ranges and influencing factors: A cross-sectional study. PLoS ONE 2016, 11, e0165390. [Google Scholar] [CrossRef] [PubMed]
- Bondurant, K.L.; Lundgreen, A.; Herrick, J.S.; Kadlubar, S.; Wolff, R.K.; Slattery, M.L. Interleukin genes and associations with colon and rectal cancer risk and overall survival. Int. J. Cancer 2013, 132, 905–915. [Google Scholar] [CrossRef] [PubMed]
- Shiga, K.; Hara, M.; Nagasaki, T.; Sato, T.; Takahashi, H.; Sato, M.; Takeyama, H. Preoperative serum interleukin-6 is a potential prognostic factor for colorectal cancer, including stage II patients. Gastroenterol. Res. Pract. 2016, 2016. [Google Scholar] [CrossRef] [PubMed]
- Chang, P.H.; Pan, Y.P.; Fan, C.W.; Tseng, W.K.; Huang, J.S.; Wu, T.H.; Chou, W.C.; Wang, C.H.; Yeh, K.Y. Pretreatment serum interleukin-1beta, interleukin-6, and tumor necrosis factor-alpha levels predict the progression of colorectal cancer. Cancer Med. 2016, 5, 426–433. [Google Scholar] [CrossRef] [PubMed]
- Yan, X.; Zhao, J.; Zhang, R. Interleukin-37 mediates the antitumor activity in colon cancer through beta-catenin suppression. Oncotarget 2017, 8, 49064–49075. [Google Scholar] [PubMed]
- Hu, W.H.; Chen, H.H.; Yen, S.L.; Huang, H.Y.; Hsiao, C.C.; Chuang, J.H. Increased expression of interleukin-23 associated with progression of colorectal cancer. J. Surg. Oncol. 2017, 115, 208–212. [Google Scholar] [CrossRef] [PubMed]
- Amicarella, F.; Muraro, M.G.; Hirt, C.; Cremonesi, E.; Padovan, E.; Mele, V.; Governa, V.; Han, J.; Huber, X.; Droeser, R.A.; et al. Dual role of tumour-infiltrating T helper 17 cells in human colorectal cancer. Gut 2017, 66, 692–704. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cusack, J.C.; Liu, R.; Baldwin, A.S. NF- κB and chemoresistance: Potentiation of cancer drugs via inhibition of NF- κB. Drug Resist. Updates 1999, 2, 271–273. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Jia, H.; Yu, W.; Xu, Y.; Li, X.; Li, Q.; Cai, S. Nomograms for predicting prognostic value of inflammatory biomarkers in colorectal cancer patients after radical resection. Int. J. Cancer 2016, 139, 220–231. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Olsen, R.S.; Nijm, J.; Andersson, R.E.; Dimberg, J.; Wagsater, D. Circulating inflammatory factors associated with worse long-term prognosis in colorectal cancer. World J. Gastroenterol. 2017, 23, 6212–6219. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.H.; Lee, J.Y.; Kim, H.K.; Lee, J.W.; Jung, S.G.; Jung, K.; Kim, S.E.; Moon, W.; Park, M.I.; Park, S.J. Prognostic significance of the neutrophil-to-lymphocyte ratio and platelet-to-lymphocyte ratio in patients with stage III and IV colorectal cancer. World J. Gastroenterol. 2017, 23, 505–515. [Google Scholar] [CrossRef] [PubMed]
- Nozoe, T.; Matono, R.; Ijichi, H.; Ohga, T.; Ezaki, T. Glasgow prognostic score (GPS) can be a useful indicator to determine prognosis of patients with colorectal carcinoma. Int. Surg. 2014, 99, 512–517. [Google Scholar] [CrossRef] [PubMed]
- Tan, D.; Fu, Y.; Su, Q.; Wang, H. Prognostic role of platelet-lymphocyte ratio in colorectal cancer: A systematic review and meta-analysis. Medicine 2016, 95, e3837. [Google Scholar] [CrossRef] [PubMed]
- Yuan, Z.; Baker, K.; Redman, M.W.; Wang, L.; Adams, S.V.; Yu, M.; Dickinson, B.; Makar, K.; Ulrich, N.; Bohm, J.; et al. Dynamic plasma microRNAs are biomarkers for prognosis and early detection of recurrence in colorectal cancer. Br. J. Cancer 2017. [Google Scholar] [CrossRef] [PubMed]
- Deng, J.; Lei, W.; Fu, J.C.; Zhang, L.; Li, J.H.; Xiong, J.P. Targeting miR-21 enhances the sensitivity of human colon cancer HT-29 cells to chemoradiotherapy in vitro. Biochem. Biophys. Res. Commun. 2014, 443, 789–795. [Google Scholar] [CrossRef] [PubMed]
- Peng, J.; Omran, A.; Ashhab, M.U.; Kong, H.; Gan, N.; He, F.; Yin, F. Expression patterns of miR-124, miR-134, miR-132, and miR-21 in an immature rat model and children with mesial temporal lobe epilepsy. J. Mol. Neurosci. 2013, 50, 291–297. [Google Scholar] [CrossRef] [PubMed]
- Chen, Q.; Xia, H.-W.; Ge, X.-J.; Zhang, Y.-C.; Tang, Q.-L.; Bi, F. Serum miR-19a predicts resistance to FOLFOX chemotherapy in advanced colorectal cancer cases. Asian Pac. J. Cancer Prev. 2013, 14, 7421–7426. [Google Scholar] [CrossRef] [PubMed]
- Matsumura, T.; Sugimachi, K.; Iinuma, H.; Takahashi, Y.; Kurashige, J.; Sawada, G.; Ueda, M.; Uchi, R.; Ueo, H.; Takano, Y.; et al. Exosomal microRNA in serum is a novel biomarker of recurrence in human colorectal cancer. Br. J. Cancer 2015, 113, 275–281. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hansen, T.F.; Carlsen, A.L.; Heegaard, N.H.H.; Sørensen, F.B.; Jakobsen, A. Changes in circulating microRNA-126 during treatment with chemotherapy and bevacizumab predicts treatment response in patients with metastatic colorectal cancer. Br. J. Cancer 2015, 112, 624–629. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schou, J.V.; Rossi, S.; Jensen, B.V.; Nielsen, D.L.; Pfeiffer, P.; Høgdall, E.; Yilmaz, M.; Tejpar, S.; Delorenzi, M.; Kruhøffer, M. miR-345 in metastatic colorectal cancer: A non-invasive biomarker for clinical outcome in non-KRAS mutant patients treated with 3rd line cetuximab and irinotecan. PLoS ONE 2014, 9. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Wang, W.; Zhang, Y.; Chen, Y.; Hu, T. Predicting distant metastasis and chemoresistance using plasma miRNAs. Med. Oncol. 2013, 31, 799. [Google Scholar] [CrossRef] [PubMed]
- Gao, S.; Zhao, Z.Y.; Wu, R.; Zhang, Y.; Zhang, Z.Y. Prognostic value of microRNAs in colorectal cancer: A meta-analysis. Cancer Manag. Res. 2018, 10, 907–929. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.; Bao, Y.; Yang, W. Regulatory miRNAs in colorectal carcinogenesis and metastasis. Int. J. Mol. Sci. 2017, 18, 890. [Google Scholar] [CrossRef] [PubMed]
- Josse, C.; Bours, V. MicroRNAs and inflammation in colorectal cancer. Adv. Exp. Med. Biol. 2016, 937, 53–69. [Google Scholar] [PubMed]
- Shen, Z.; Zhou, R.; Liu, C.; Wang, Y.; Zhan, W.; Shao, Z.; Liu, J.; Zhang, F.; Xu, L.; Zhou, X.; et al. MicroRNA-105 is involved in TNF-alpha-related tumor microenvironment enhanced colorectal cancer progression. Cell Death Dis. 2017, 8. [Google Scholar] [CrossRef] [PubMed]
- Rokavec, M.; Oner, M.G.; Li, H.; Jackstadt, R.; Jiang, L.; Lodygin, D.; Kaller, M.; Horst, D.; Ziegler, P.K.; Schwitalla, S.; et al. IL-6R/STAT3/miR-34a feedback loop promotes EMT-mediated colorectal cancer invasion and metastasis. J. Clin. Investig. 2014, 124, 1853–1867. [Google Scholar] [CrossRef] [PubMed]
- Nassar, F.J.; Nasr, R.; Talhouk, R. MicroRNAs as biomarkers for early breast cancer diagnosis, prognosis and therapy prediction. Pharmacol. Ther. 2017, 172, 34–49. [Google Scholar] [CrossRef] [PubMed]
Study | Study Design | Population | Aim | Results |
---|---|---|---|---|
Albumin | ||||
Gonzalez-Trejo et al. [32] | Retrospective | 1464 CRC patients | To define the prognostic role of baseline serum albumin in CRCs across tumor-node-metastasis (TNM) stages | Baseline serum albumin was inversely correlated with TNM stages. |
Chiang et al. [33] | Retrospective | 3732 CRC surgery patients | To evaluate according to albumin level the postoperative morbidity and mortality in CRC patients | Morbidity decreased by 7.3% and mortality by 15.6% with every 0.1 g/dL increase in albumin level |
CRP | ||||
Mik et al. [40] | Retrospective | 724 CRC surgery patients | Development of anastomotic leak and OS | Anastomotic leak: 4.6% CRP had sensitivity of 75% and a specificity of 91% in determining anastomotic leak. CRP levels were also found to be significantly higher in patients who died in the postoperative phase |
Riedl et al. [37] | Retrospective | 258 mCRC patients undergoing palliative chemotherapy or immunotherapy | 6-month PFS and overall response rate (ORR) during first, second, and third line treatment, and 6-month OS during best supportive care (BSC) | Higher CRP levels predicted worse PFS in the first chemotherapy lines and in BSC (hazard ratio (HR) = 1.49 (p < 0.0001 first line); HR = 1.25 (p = 0.007 second line); HR = 1.09 (95% CI 0.81–1.48, p = 0.552 third line and HR = 1.43 (p = 0.002 in BSC)) |
Nagai [39] | Review of prospective database | 1174 patients with stage I, II, or III CRC who underwent R0 resection | Identify the prognostic factors from preoperative routine blood data that have a significant relationship with DFS | A higher CRP level was significantly correlated with worse DFS upon univariate analysis but not upon multivariate analysis |
Artac et al. [34] | Retrospective | 90 mCRC patients receiving folinic acid, bolus/continuous fluorouracil, and irinotecan with bevacizumab (FOLFIRI-Bev) | Identify the efficacy of CRP on PFS in patients receiving FOLFIRI-Bev | At multivariate analysis, CRP was shown to be an independent prognostic factor. The median PFSs of the patients with normal and above the upper limit of normal were 11.3 versus 5.8 months, respectively (p = 0.022) |
Thomsen et al. [35] | Review of prospectively collected data | 393 mCRC patients from phase III trial of cetuximab with continuous or intermittent fluorouracil, leucovorin, and oxaliplatin (Nordic FLOX) versus FLOX alone (NORDIC-VII trial) receiving 1st line therapy | Identify the effect of CRP levels on PFS and OS | In the four categories of baseline serum CRP level (≤10, 11–30, 31–60, and >60 mg/L), median PFS was 8.9, 7.6, 8.2, and 6.6 months, respectively (log rank test, p < 0.001) and median OS was 24.3, 20.6, 17.1, and 12.3 months, respectively (log rank test, p < 0.001) |
Shibutani et al. [41] | Retrospective | 99 mCRC patients undergoing palliative chemotherapy | Evaluate the significance of the C-reactive protein to albumin (CRP/ALB) ratio in colorectal cancer | The OS rate was significantly worse in the high pretreatment CRP/ALB ratio group than in the low pretreatment CRP/ALB ratio group (p = 0.0009) |
Kostner et al. [38] | Retrospective | 492 CRC patients with liver metastases | Evaluate the prognostic role of CRP in colorectal cancer patients with liver metastasis | Preoperative CRP > 10 mg/L was a strong predictor of worse survival (HR = 1.72, 95% CI 1.84–2.50, p < 0.01). Patients with CRP ≤ 10 mg/L had a median survival of 4.27 years compared to only 47 days in patients with CRP ≥ 30 mg/L (p < 0.01). |
Ishizuka et al. [42] | Retrospective | 626 CRC patients who underwent elective surgery | Estimate the clinical significance of the CRP/ALB ratio for prediction of postoperative survival | Multivariate analysis showed that CRP/ALB ratio was associated with OS (hazard ratio 2.596; 95% confidence interval 1.603–4.204; p < 0.001). The study also showed a significant difference between patients with low CAR and those with high CAR in Kaplan–Meier analysis and log rank test (p < 0.001). |
Casadei Gardini et al. [36] | Secondary analysis on patients enrolled in the phase III prospective multicenter randomized “Italian Trial in Advanced Colorectal Cancer (ITACa)” | 132 CRC patients. Samples were collected at baseline and 2 months after starting 1st line chemotherapy | To assess high-sensitivity C-reactive protein (hs-CRP) levels at diagnosis and their impact on PFS and OS. | High levels of hs-CRP (≥13.1 mg/L) were associated with poorer median PFS (p < 0.0001) and OS (p < 0.0001) than low hs-CRP levels (<13.1 mg/L). hs-CRP values in 107 patients were evaluated again after 2 months of therapy, revealing that patients with low hs-CRP levels in both baseline and second serum samples had the best median PFS and OS. |
Ferritin | ||||
Lee et al. [43] | Retrospective | 120 mCRC patients | To investigate the prognostic impact of serum ferritin on survival in patients with mCRC | High serum ferritin levels were associated with increased mortality after mCRC treatment, with increased hazard ratio and poor survival (ferritin ≥ 150 ng/mL; HR 1.763, 95% CI 1.169–2.660, p = 0.007) |
Tingting et al. [31] | Prospective | 514 CRC surgery patients | To validate the prognostic significance of preoperative serum iron metabolism parameters in non-metastatic colorectal cancer patients treated with curative resection. | High serum ferritin levels had a 2.21-fold increase in mortality compared with patients with the lowest quartile ferritin |
Haptoglobin | ||||
Sun et al. [6] | Retrospective | 475 CRC patients and 152 healthy volunteers | To assess the potential of serum haptoglobin as a marker for early detection of CRC metastasis | The study showed that serum haptoglobin levels were 89.1% sensitive and 85.8% specific in detecting hepatic metastasis |
Fibrinogen | ||||
Pedrazzani et al. [46] | Retrospective | 653 CRC surgery patients | To evaluate the clinical significance of the preoperative fibrinogen plasma level as a prognostic marker after surgery for colorectal cancer | OS and tumor-related survival were significantly higher in patients with fibrinogen values ≤ 400 mg/dL (p < 0.001). Elevated fibrinogen levels did not remain statistically significant for either overall (p = 0.313) or tumor-related survival (p = 0.355) upon multivariate analysis. |
Tang et al. [47] | Retrospective | 341 CRC surgery patients | To evaluate the association between preoperative plasma fibrinogen levels on clinicopathologic parameters and OS in patients after curative resection with colorectal cancer | Elevated plasma fibrinogen levels were associated with advanced tumor stage (p = 0.008), venous invasion (p = 0.006), and postoperative distant metastases (p < 0.001). Multivariate analysis showed that preoperative plasma fibrinogen level was prognostic for survival (p = 0.029) |
D-dimer | ||||
Lu et al. [44] | Meta-analysis of 15 studies | 2283 CRC patients | To provide insight into the prognostic role of pretreatment D-dimer levels | High pretreatment plasma D-dimer predicts poor survival of CRC HR of 2.167 (95% CI: 1.672–2.809, p < 0.001) |
Yu et al. [48] | Cross-sectional study | 120 CRC patients | To look into the prognostic values of D-dimer levels in cancer patients | D-dimer levels are significantly higher in cancer patients compared to healthy controls. D-dimer levels correlated with poor prognosis and survival rate |
Tekesin et al. [45] | Prospective study | 165 CRC surgery patients | To relate the preoperative D-dimer and CEA levels of patients with CRC undergoing surgical resection to the prognosis and postoperative survival rate | Increased D-dimer and CEA levels were associated with significant decrease in postoperative survival rate and prognosis |
miRNA | Predictive Role in CRC | Reference |
---|---|---|
miR-155 | Resistance to adjuvant chemotherapy mFOLFOX | Chen et al. [68] |
miR-155, miR-200c, and miR-210 | Local recurrence and distant metastasis | Chen et al. [68] |
miR-19a | Resistance to first line FOLFOX | Chen et al. and Matsumura et al. [64,65] |
miR-31, miR-141, and miR-16 | Early prediction of disease recurrence following resection | Yuan et al. [61] |
miR-141 | Prognosis | Gao et al. [69] |
miR-126 | Bevacizumab resistance | Hansen et al. [66] |
miR-345 | Insensitivity to third line cetuximab and irinotecan | Schou et al. [67] |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nasr, R.; Salim Hammoud, M.; Nassar, F.; Mukherji, D.; Shamseddine, A.; Temraz, S. Inflammatory Markers and MicroRNAs: The Backstage Actors Influencing Prognosis in Colorectal Cancer Patients. Int. J. Mol. Sci. 2018, 19, 1867. https://doi.org/10.3390/ijms19071867
Nasr R, Salim Hammoud M, Nassar F, Mukherji D, Shamseddine A, Temraz S. Inflammatory Markers and MicroRNAs: The Backstage Actors Influencing Prognosis in Colorectal Cancer Patients. International Journal of Molecular Sciences. 2018; 19(7):1867. https://doi.org/10.3390/ijms19071867
Chicago/Turabian StyleNasr, Rihab, Miza Salim Hammoud, Farah Nassar, Deborah Mukherji, Ali Shamseddine, and Sally Temraz. 2018. "Inflammatory Markers and MicroRNAs: The Backstage Actors Influencing Prognosis in Colorectal Cancer Patients" International Journal of Molecular Sciences 19, no. 7: 1867. https://doi.org/10.3390/ijms19071867
APA StyleNasr, R., Salim Hammoud, M., Nassar, F., Mukherji, D., Shamseddine, A., & Temraz, S. (2018). Inflammatory Markers and MicroRNAs: The Backstage Actors Influencing Prognosis in Colorectal Cancer Patients. International Journal of Molecular Sciences, 19(7), 1867. https://doi.org/10.3390/ijms19071867