Mining of Brassica-Specific Genes (BSGs) and Their Induction in Different Developmental Stages and under Plasmodiophora brassicae Stress in Brassica rapa
Abstract
:1. Introduction
2. Results
2.1. Identification of BSGs and CSGs in B. rapa
2.2. Genic Features of the BSGs and CSGs in B. rapa
2.3. Verification of the BSGs in B. rapa and Other Species
2.4. Expression Patterns of BSGs during Different B. rapa Developmental Stages
2.5. Expression Patterns of BSGs in B. rapa after P. brassicae Infection
2.6. Heading Stage-Specific Expression Patterns of BSGs1 in Chinese Cabbage
3. Discussion
3.1. Identification of Orphan Genes in B. rapa
3.2. Characterizing BSGs and CSGs
3.3. Verification of BSGs
3.4. Expression Analysis of BSGs at Different Developmental Stages and Response to P. brassicae
3.5. BSGs1 May Be Associated with Leafy Head Formation in Chinese Cabbage
4. Materials and Methods
4.1. Genome Datasets
4.2. Homolog Search
4.3. Genic Features and Physical Maps
4.4. Verification of BSGs
4.5. Expression Evidence and RNA-Sequence (Seq) Data Reassemble
4.6. Different Developmental Stage Sampling
4.7. P. brassicae Treatment Sampling
4.8. Total RNA Isolation and cDNA Synthesis
4.9. Semi-qPCR and qRT-PCR
5. Conclusions
Supplementary Materials
Author Contributions
Acknowledgments
Conflicts of Interest
Abbreviations
BSGs | Brassica-specific genes |
CSGs | Cruciferae-specific genes |
ECGs | evolutionary-conserved genes |
LSGs | lineage-specific genes |
ORFans | opening reading frames with no detectable sequence similarity to any other ORF in a targeted database |
TRPs | tandem repeat proteins |
TRGs | taxonomically restricted genes |
References
- Amiri, H.; Davids, W.; Andersson, S.G. Birth and death of orphan genes in Rickettsia. Mol. Biol. Evol. 2003, 20, 1575–1587. [Google Scholar] [CrossRef] [PubMed]
- Beike, A.K.; Lang, D.; Zimmer, A.D.; Wüst, F.; Trautmann, D.; Wiedemann, G.; Beyer, P.; Decker, E.L.; Reski, R. Insights from the cold transcriptome of Physcomitrella patens: Global specialization pattern of conserved transcriptional regulators and identification of orphan genes involved in cold acclimation. New Phytol. 2015, 205, 869–881. [Google Scholar] [CrossRef] [PubMed]
- Donoghue, M.T.; Keshavaiah, C.; Swamidatta, S.H.; Spillane, C. Evolutionary origins of Brassicaceae specific genes in Arabidopsis thaliana. BMC Evol. Biol. 2011, 11, 47. [Google Scholar] [CrossRef] [PubMed]
- Tautz, D.; Domazet-Lošo, T. The evolutionary origin of orphan genes. Nat. Rev. Genet. 2013, 12, 692–702. [Google Scholar] [CrossRef] [PubMed]
- Arendsee, Z.W.; Li, L.; Wurtele, E.S. Coming of age: Orphan genes in plants. Trends Plant Sci. 2014, 19, 698–708. [Google Scholar] [CrossRef] [PubMed]
- Dujon, B. The yeast genome project: What did we learn? Trends Genet. 1996, 12, 263–270. [Google Scholar] [CrossRef]
- Campbell, M.A.; Zhu, W.; Jiang, N.; Lin, H.; Ouyang, S.; Childs, K.L.; Haas, B.J.; Hamilton, J.P.; Buell, C.R. Identification and characterization of lineage-specific genes within the Poaceae. Plant Physiol. 2007, 145, 1311–1322. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.L. Gene family evolution in green plants with emphasis on the origination and evolution of Arabidopsis thaliana genes. Plant J. 2013, 73, 941–951. [Google Scholar] [CrossRef] [PubMed]
- Lin, H.; Moghe, G.; Ouyang, S.; Iezzoni, A.; Shiu, S.H.; Gu, X.; Buell, C.R. Comparative analyses reveal distinct sets of lineage-specific genes within Arabidopsis thaliana. BMC Evol. Biol. 2010, 10, 41. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Jawdy, S.; Tschaplinski, T.J.; Tuskan, G.A. Genome-wide identification of lineage-specific genes in Arabidopsis, Oryza and Populus. Genomics 2009, 93, 473–480. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Wu, G.; Hao, B.; Chen, L.; Deng, X.; Xu, Q. Identification, characterization and expression analysis of lineage-specific genes within sweet orange (Citrus sinensis). BMC Genom. 2015, 16, 995. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Foster, C.M.; Gan, Q.; Nettleton, D.; James, M.G.; Myers, A.M.; Wurtele, E.S. Identification of the novel protein QQS as a component of the starch metabolic network in Arabidopsis leaves. Plant J. 2009, 58, 485–498. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Wurtele, E.S. The QQS orphan gene of Arabidopsis modulates carbon and nitrogen allocation in soybean. Plant Biotechnol. J. 2015, 13, 177–187. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Zheng, W.; Zhu, Y.; Ye, H.; Tang, B.; Arendsee, Z.W.; Jones, D.; Li, R.; Ortiz, D.; Zhao, X.; et al. QQS orphan gene regulates carbon and nitrogen partitioning across species via NF-YC interactions. Proc. Natl. Acad. Sci. USA 2015, 112, 14734–14739. [Google Scholar] [CrossRef] [PubMed]
- Perochon, A.; Jianguang, J.; Kahla, A.; Arunachalam, C.; Scofield, S.R.; Bowden, S.; Wallington, E.; Doohan, F.M. TaFROG encodes a Pooideae orphan protein that interacts with SnRK1 and enhances resistance to the mycotoxigenic Fungus Fusarium graminearum. Plant Physiol. 2015, 169, 2895–2906. [Google Scholar] [CrossRef] [PubMed]
- Yadeta, K.A.; Valkenburg, D.-J.; Hanemian, M.; Marco, Y.; Thomma, B.P.H.J. The Brassicaceae-specific EWR1 gene provides resistance to vascular wilt pathogens. PLoS ONE 2014, 9, e88230. [Google Scholar] [CrossRef] [PubMed]
- Luhua, S.; Hegie, A.; Suzuki, N.; Shulaev, E.; Luo, X.; Cenariu, D.; Ma, V.; Kao, S.; Lim, J.; Gunay, M.B.; et al. Linking genes of unknown function with abiotic stress responses by high-throughput phenotype screening. Physiol. Plant. 2013, 148, 322–333. [Google Scholar] [CrossRef] [PubMed]
- Newman, A.M.; Cooper, J.B. Global analysis of proline-rich tandem repeat proteins reveals broad phylogenetic diversity in plant secretomes. PLoS ONE 2011, 6, e23167. [Google Scholar] [CrossRef] [PubMed]
- Shigenobu, S.; Stern, D.L. Aphids evolved novel secreted proteins for symbiosis with bacterial endosymbiont. Proc. R. Soc. B 2013, 280, 20121952. [Google Scholar] [CrossRef] [PubMed]
- Toll-Riera, M.; Bosch, N.; Bellora, N.; Castelo, R.; Armengol, L.; Estivill, X.; Alba, M.M. Origin of primate orphan genes: A comparative genomics approach. Mol. Biol. Evol. 2009, 26, 603–612. [Google Scholar] [CrossRef] [PubMed]
- Kagale, S.; Robinson, S.J.; Nixon, J.; Xiao, R.; Huebert, T.; Condie, J.; Kessler, D.; Clarke, W.E.; Edger, P.P.; Links, M.G.; et al. Polyploid evolution of the Brassicaceae during the Cenozoic era. Plant Cell 2014, 26, 2777–2791. [Google Scholar] [CrossRef] [PubMed]
- Rakow, G. Species Origin and Economic Importance of Brassica. In Biotechnology in Agriculture and Forestry, 1st ed.; Pua, E.C., Douglas, C.J., Eds.; Springer: Berlin, Germany, 2004; Volume 54, pp. 3–11. ISBN 9783662061640. [Google Scholar]
- Wang, X.; Wang, H.; Wang, J.; Sun, R.; Wu, J.; Liu, S.; Bai, Y.; Mun, J.-H.; Bancroft, I.; Cheng, F.; et al. The genome of the mesopolyploid crop species Brassica rapa. Nat. Genet. 2011, 43, 1035–1039. [Google Scholar] [CrossRef] [PubMed]
- Nagaharu, U. Genome analysis in Brassica with special reference to the experimental formation of B. napus and peculiar mode of fertilization. Jpn. J. Bot. 1935, 389–452. [Google Scholar]
- Cheng, F.; Mandakova, T.; Wu, J.; Xie, Q.; Lysak, M.A.; Wang, X. Deciphering the diploid ancestral genome of the Mesohexaploid Brassica rapa. Plant Cell 2013, 25, 1541–1554. [Google Scholar] [CrossRef] [PubMed]
- Cheng, F.; Sun, R.; Hou, X.; Zheng, H.; Zhang, F.; Zhang, Y.; Liu, B.; Liang, J.; Zhuang, M.; Liu, Y.; et al. Subgenome parallel selection is associated with morphotype diversification and convergent crop domestication in Brassica rapa and Brassica oleracea. Nat. Genet. 2016, 48, 1218–1224. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.-W.; Wei, Y.-P.; Xiao, D.; Gao, L.-W.; Lyu, S.-W.; Hou, X.-L.; Bouuema, G. Transcriptomic and proteomic analyses provide new insights into the regulation mechanism of low-temperature-induced leafy head formation in Chinese cabbage. J. Proteom. 2016, 144, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Wu, F.; Bai, J.; He, Y. BrpSPL9 (Brassica rapa ssp. pekinensis SPL9) controls the earliness of heading time in Chinese cabbage. Plant Biotechnol. J. 2014, 12, 312–321. [Google Scholar] [PubMed]
- Fuchs, H.; Sacristán, M.D. Identification of a gene in Arabidopsis thaliana controlling resistance to clubroot (Plasmodiophora brassicae) and characterization of the resistance response. Mol. Plant-Microbe Interact. 1996, 9, 091. [Google Scholar] [CrossRef]
- Grsic-Rausch, S.; Kobelt, P.; Siemens, J.M.; Bischoff, M.; Ludwig-Müller, J. Expression and localization of nitrilase during symptom development of the clubroot disease in Arabidopsis. Plant Physiol. 2000, 122, 369–378. [Google Scholar] [CrossRef] [PubMed]
- Piao, Z.Y.; Deng, Y.Q.; Choi, S.R.; Park, Y.J.; Lim, Y.P. SCAR and CAPS mapping of CRb, a gene conferring resistance to Plasmodiophora brassicae in Chinese cabbage (Brassica rapa ssp. pekinensis). Theor. Appl. Genet. 2004, 108, 1458–1465. [Google Scholar] [PubMed]
- Chen, J.; Pang, W.; Chen, B.; Zhang, C.; Piao, Z. Transcriptome analysis of Brassica rapa near-iIsogenic lines carrying clubroot-resistant and -susceptible alleles in response to Plasmodiophora brassicae during early infection. Front. Plant Sci. 2015, 6, 1183. [Google Scholar] [PubMed]
- Tong, C.; Wang, X.; Yu, J.; Wu, J.; Li, W.; Huang, J.; Dong, C.; Hua, W.; Liu, S. Comprehensive analysis of RNA-seq data reveals the complexity of the transcriptome in Brassica rapa. BMC Genom. 2013, 14, 689. [Google Scholar] [CrossRef] [PubMed]
- Johnson, B.R.; Tsutsui, N.D. Taxonomically restricted genes are associated with the evolution of sociality in the honey bee. BMC Genom. 2011, 12, 164. [Google Scholar] [CrossRef] [PubMed]
- Lin, W.-L.; Cai, B.; Cheng, Z.-M. Identification and characterization of lineage-specific genes in Populus trichocarpa. Plant Cell Tissue Organ Cult. 2013, 116, 217–225. [Google Scholar] [CrossRef]
- Yang, L.; Zou, M.; Fu, B.; He, S. Genome-wide identification, characterization, and expression analysis of lineage-specific genes within zebrafish. BMC Genom. 2013, 14, 65. [Google Scholar] [CrossRef] [PubMed]
- Domazet-Loso, T.; Tautz, D. An evolutionary analysis of orphan genes in Drosophila. Genome Res. 2003, 13, 2213–2219. [Google Scholar] [CrossRef] [PubMed]
- Deora, A.; Gossen, B.D.; McDonald, M.R. Infection and development of Plasmodiophora brassicae in resistant and susceptible canola cultivars. Can. J. Plant Pathol. 2012, 34, 239–247. [Google Scholar] [CrossRef]
- Ge, Y.; Ramchiary, N.; Wang, T.; Liang, C.; Wang, N.; Wang, Z.; Choi, S.R.; Lim, Y.P.; Piao, Z. Mapping quantitative trait loci for leaf and heading-related traits in Chinese cabbage (Brassica rapa L. ssp. pekinesis). Hortic. Environ. Biotechnol. 2011, 52, 494–501. [Google Scholar] [CrossRef]
- Gu, A.; Meng, C.; Chen, Y.; Wei, L.; Dong, H.; Lu, Y.; Wang, Y.; Chen, X.; Zhao, J.; Shen, S. Coupling Seq-BSA and RNA-Seq analyses reveal the molecular pathway and genes associated with heading type in Chinese Cabbage. Front. Genet. 2017, 8, 176. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Liu, Y.; Yang, X.; Tong, C.; Edwards, D.; Parkin, I.A.P.; Zhao, M.; Ma, J.; Yu, J.; Huang, S.; et al. The Brassica oleracea genome reveals the asymmetrical evolution of polyploid genomes. Nat. Commun. 2014, 5, 3930. [Google Scholar] [CrossRef] [PubMed]
- Waminal, N.E.; Perumal, S.; Lee, J.; Kim, H.H.; Yang, T.-J. Repeat Evolution in Brassica rapa (AA), B. oleracea (CC), and B. napus (AACC) Genomes. Plant Breed. Biotechnol. 2016, 4, 107–122. [Google Scholar] [CrossRef]
- Carvunis, A.R.; Rolland, T.; Wapinski, I.; Calderwood, M.A.; Yildirim, M.A.; Simonis, N.; Charloteaux, B.; Hidalgo, C.A.; Barbette, J.; Santhanam, B.; et al. Proto-genes and de novo gene birth. Nature 2012, 487, 370–374. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Neme, R.; Tautz, D. Phylogenetic patterns of emergence of new genes support a model of frequent de novo evolution. BMC Genom. 2013, 14, 117. [Google Scholar] [CrossRef] [PubMed]
- Zou, M.; Guo, B.; He, S. The roles and evolutionary patterns of intronless genes in deuterostomes. Comp. Funct. Genom. 2011, 2011, 680673. [Google Scholar] [CrossRef] [PubMed]
- Tautz, D.; Neme, R.; Domazet-Lošo, T. Evolutionary Origin of Orphan Genes, 1st ed.; Maccarrone, M., Ed.; John Wiley & Sons: Chichester, UK, 2013; pp. 1–10. ISBN 9780470015902. [Google Scholar]
- Yang, J.; Liu, D.; Wang, X.; Ji, C.; Cheng, F.; Liu, B.; Hu, Z.; Chen, S.; Pental, D.; Ju, Y.; et al. The genome sequence of allopolyploid Brassica juncea and analysis of differential homoeolog gene expression influencing selection. Nat. Genet. 2016, 48, 1225–1232. [Google Scholar] [CrossRef] [PubMed]
- Chalhoub, B.; Denoeud, F.; Liu, S.; Parkin, I.A.; Tang, H.; Wang, X.; Chiquet, J.; Belcram, H.; Tong, C.; Samans, B.; et al. Early allopolyploid evolution in the post-Neolithic Brassica napus oilseed genome. Science 2014, 345, 950–953. [Google Scholar] [CrossRef] [PubMed]
- Yang, T.J.; Kim, J.S.; Kwon, S.J.; Lim, K.B.; Choi, B.S.; Kim, J.A.; Jin, M.; Park, J.Y.; Lim, M.H.; Kim, H.I.; et al. Sequence-level analysis of the diploidization process in the triplicated FLOWERING LOCUS C region of Brassica rapa. Plant Cell 2006, 18, 1339–1347. [Google Scholar] [CrossRef] [PubMed]
- Navabi, Z.-K.; Huebert, T.; Sharpe, A.G.; O’Neill, C.M.; Bancroft, I.; Parkin, I.A.P. Conserved microstructure of the Brassica B Genome of Brassica nigra in relation to homologous regions of Arabidopsis thaliana, B. rapa and B. oleracea. BMC Genom. 2013, 14, 250. [Google Scholar] [CrossRef] [PubMed]
- Bosch, T.C.G.; Augustin, R.; Anton-Erxleben, F.; Fraune, S.; Hemmrich, G.; Zill, H.; Rosenstiel, P.; Jacobs, G.; Schreiber, S.; Leippe, M.; et al. Uncovering the evolutionary history of innate immunity: The simple metazoan Hydra uses epithelial cells for host defence. Dev. Comp. Immunol. 2009, 33, 559–569. [Google Scholar] [CrossRef] [PubMed]
- Guo, W.J.; Li, P.; Ling, J.; Ye, S.P. Significant comparative characteristics between orphan and nonorphan genes in the rice (Oryza sativa L.) genome. Comp. Funct. Genom. 2007, 21676. [Google Scholar] [CrossRef] [PubMed]
- Jiang, M.; Liu, J.; Quan, X.; Quan, L.; Wu, S. Different chilling stresses stimulated the accumulation of different types of ginsenosides in Panax ginseng cells. Acta Physiol. Plant. 2016, 38, 1–8. [Google Scholar] [CrossRef]
- Voorrips, R.E. MapChart: Software for the graphical presentation of linkage maps and QTLs. J. Hered. 2002, 93, 77–78. [Google Scholar] [CrossRef] [PubMed]
- Pang, W.; Li, X.; Choi, S.; Dhandapani, V.; Im, S.; Park, M.; Soon Jang, C.; Yang, M.-S.; Ki Ham, I.; Mo Lee, E.; et al. Development of a leafy Brassica rapa fixed line collection for genetic diversity and population structure analysis. Mol. Breed. 2015, 35, 1–15. [Google Scholar] [CrossRef]
- Trapnell, C.; Pachter, L.; Salzberg, S.L. TopHat: Discovering splice junctions with RNA-Seq. Bioinformatics 2009, 25, 1105–1111. [Google Scholar] [CrossRef] [PubMed]
- Blankenberg, D.; Gordon, A.; Von Kuster, G.; Coraor, N.; Taylor, J.; Nekrutenko, A.; Galaxy, T. Manipulation of FASTQ data with Galaxy. Bioinformatics 2010, 26, 1783–1785. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Trapnell, C.; Williams, B.A.; Pertea, G.; Mortazavi, A.; Kwan, G.; van Baren, M.J.; Salzberg, S.L.; Wold, B.J.; Pachter, L. Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat. Biotechnol. 2010, 28, 511–515. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, J.; Piao, Y.; Liu, Y.; Li, X.; Piao, Z. Genome-wide identification and expression analysis of chitinase gene family in Brassica rapa reveals its role in clubroot resistance. Plant Sci. 2018, 270, 257–267. [Google Scholar] [CrossRef] [PubMed]
Feature | BSGs | CSGs | ECGs | ALSGs [9] | A. thaliana ECs [9] | Sweet Orange Orphan Genes [11] | Sweet Orange ECs [11] | P. trichocarpa Species-Specific Genes [35] | P. trichocarpa Conserved Genes [35] |
---|---|---|---|---|---|---|---|---|---|
Mean (SD) | Mean (SD) | Mean (SD) | Mean (SD) | Mean (SD) | Mean (SE) | Mean (SE) | Mean (SD) | Mean (SD) | |
Exons/gene | 1.96 (1.63) | 2.29 (1.69) | 5.07 (5.06) | 1.70 (1.40) | 6.00 (5.20) | 1.56 (0.87) | 4.29 (2.88) | 2.15 (1.23) | 3.90 (2.46) |
CDS length | 340.78 (257.43) | 473.30 (358.00) | 1150.80 (888.33) | — | — | — | — | 284.20 (119.20) | 252.31 (191.54) |
Intron length | 309.49 (350.82) | 378.21 (547.50) | 259.65 (354.95) | 227.00 (321.00) | 163.00 (172.00) | 343.93 (594.69) | 362.67 (588.82) | 306.87 (392.30) | 381.89 (383.70) |
Gene length | 631.61 (799.75) | 907.63 (1016.75) | 1991.15 (1815.28) | 537.00 (652.00) | 2315.00 (1558.00) | 705.86 (781.48) | 3147.41 (2844.08) | 1167.62 (666.80) | 2209.07 (1254.57) |
Protein length | 112.59 (85.81) | 156.76 (119.33) | 382.60 (296.11) | 97.00 (85.00) | 431.00 (298.00) | 98.58 (70.61) | 408.90 (315.22) | — | — |
CDS GC (%) | 49.58 (5.57) | 47.34 (4.81) | 46.59 (3.74) | — | — | — | — | 46.70 (6.80) | 45.00 (3.50) |
Intron GC (%) | 36.89 (7.97) | 36.24 (7.05) | 32.43 (5.19) | 35.10 (7.60) | 32.40 (4.40) | 30.99 (7.47) | 31.68 (4.92) | 22.70 (17.00) | 27.70 (13.00) |
Gene GC (%) | 46.98 (7.35) | 44.50 (6.22) | 42.29 (5.35) | 41.00 (5.10) | 39.60 (3.30) | 43.00 (8.02) | 38.44 (4.36) | 42.70 (7.10) | 38.60 (3.10) |
Types | Genomes * | Gene Numbers | Percentage (%) |
---|---|---|---|
Real A subgenome-specific | A | 529 | 34.35 |
A subgenome-specific | A/AB | 150 | 9.74 |
A/AC | 231 | 15.00 | |
A/AB/AC | 93 | 6.04 | |
A/B subgenome-specific | A/B | 32 | 2.08 |
A/B/AB | 44 | 2.86 | |
A/B/AC | 16 | 1.04 | |
A/B/AB/AC | 38 | 2.47 | |
A/C subgenome-specific | A/C | 39 | 2.53 |
A/C/AB | 13 | 0.84 | |
A/C/AC | 113 | 7.33 | |
A/C/AB/AC | 64 | 4.16 | |
A/B/C subgenome-specific | A/B/C | 4 | 0.26 |
A/B/C/AB | 8 | 0.52 | |
A/B/C/AC | 20 | 1.30 | |
A/B/C/AB/AC | 146 | 9.48 | |
Total | 1540 | 100.00 |
Developmental Stages or Treatment | Gene Numbers |
---|---|
Seedling stage/Rosette stage/Heading stage/Reproductive stage/Pb treatment | 2 |
Seedling stage/Rosette stage/Heading stage/Pb treatment | 5 |
Seedling stage/Heading stage/Reproductive stage/Pb treatment | 2 |
Seedling stage/Heading stage/Pb treatment | 2 |
Rosette stage/Heading stage/Pb treatment | 1 |
Heading stage/Reproductive stag/Pb treatment | 4 |
Reproductive stage/Pb treatment | 2 |
Heading stage | 2 |
Pb treatment | 23 |
Expression was not detected | 9 |
Total | 52 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, M.; Dong, X.; Lang, H.; Pang, W.; Zhan, Z.; Li, X.; Piao, Z. Mining of Brassica-Specific Genes (BSGs) and Their Induction in Different Developmental Stages and under Plasmodiophora brassicae Stress in Brassica rapa. Int. J. Mol. Sci. 2018, 19, 2064. https://doi.org/10.3390/ijms19072064
Jiang M, Dong X, Lang H, Pang W, Zhan Z, Li X, Piao Z. Mining of Brassica-Specific Genes (BSGs) and Their Induction in Different Developmental Stages and under Plasmodiophora brassicae Stress in Brassica rapa. International Journal of Molecular Sciences. 2018; 19(7):2064. https://doi.org/10.3390/ijms19072064
Chicago/Turabian StyleJiang, Mingliang, Xiangshu Dong, Hong Lang, Wenxing Pang, Zongxiang Zhan, Xiaonan Li, and Zhongyun Piao. 2018. "Mining of Brassica-Specific Genes (BSGs) and Their Induction in Different Developmental Stages and under Plasmodiophora brassicae Stress in Brassica rapa" International Journal of Molecular Sciences 19, no. 7: 2064. https://doi.org/10.3390/ijms19072064
APA StyleJiang, M., Dong, X., Lang, H., Pang, W., Zhan, Z., Li, X., & Piao, Z. (2018). Mining of Brassica-Specific Genes (BSGs) and Their Induction in Different Developmental Stages and under Plasmodiophora brassicae Stress in Brassica rapa. International Journal of Molecular Sciences, 19(7), 2064. https://doi.org/10.3390/ijms19072064